首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of natural clay's bentonite proportion on Pb2+ sorption capacity was investigated using response surface methodology (RSM), kinetics and equilibrium studies. Experiments were conducted at different initial pH (3–7), bentonite to clay ratio (0–100%), initial Pb2+ ions concentration (20–120 mg/L) and sorbent dosage (0.2–1 g). Under the RSM study, data obtained from 27 experiments undertaken were found to fitted second-order polynomial model (R2 = 0.998 and R2-predicted = 0.994). Analysis of variance showed that the Pb2+ sorption capacity was influenced according to the order; initial concentration> mass of adsorbent > initial pH > bentonite proportion. Optimal operating conditions were obtained at initial pH 5, 0.2 g sorbent dosage, 30% bentonite to clay ratio and 100 mg/L Pb2+ ion concentration. Regardless of the bentonite proportion, Pb2+ sorption kinetics followed pseudo-second-order associated with intra-particle diffusion. The sorption isotherm for the clay which was described by Freundlich yielded higher adsorption capacity (25 mg/g) while that of the bentonite was described by Langmuir model with lower maximum sorption capacity of 15 mg/g. These results suggest that sorption of the Pb2+ ions was not likely to significantly impact on the removal of Pb2+ ions during electrokinetic remediation process of clay having different proportion of bentonite.  相似文献   

2.
Anin vitro study using single concentration and isotherm adsorption was carried out to evaluate the capacity of Vietnamese produced zeolite and bentonite to adsorb aflatoxin B1 (AFB1) in simulated gastrointestinal fluids (SGFs), and a commercial sorbent hydrated sodium calcium aluminosilicate (HSCAS) was used as reference. In this study, AFB1 solution was mixed with sorbents (0.3, 0.4 and 0.5% w/v) in SGFs at pH 3 and pH 7 and shaken for 8 h, centrifuged and the supernatant measured by Vicam fluorometer. Adsorption of AFB1 onto zeolite and bentonite varied according to the pH of SGFs and was lower than HSCAS. Linearity between the increased amount of AFB1 adsorbed on sorbents and the decrease of sorbent concentration was observed for bentonite and HSCAS, except for zeolite in SGFs at pH 7. The observed maximum amounts of AFB1 adsorbed on bentonite and HSCAS were 1.54 and 1.56 mg/g, respectively. The adsorption capacities of bentonite and HSCAS for AFB1 were 12.7 and 13.1 mg/g, respectively, from fitting the data to the Freundlich isotherm equation. Improvement in processing and purification for bentonite is needed to enhance the surface area, which would probably result in better adsorptive capacity for this sorbent.  相似文献   

3.
BackgroundHemagglutinin (HA) of influenza A is one of the key virulence factors that mediates the release of viral components in host cells. HA is initially synthesized as a trimeric precursor (HA0) and then it is cleaved by proteases to become a functional HA. Low pH induces irreversible conformational changes in both HA0 and HA but only HA is fusion compatible. Here, we used high-speed atomic force microscopy (HS-AFM) to record conformational changes in HA0 trimers (H5N1) from neutral to acidic conditions at a millisecond scale.MethodsPurified HA0 protein was diluted with either neutral Tris-HCl (pH 7.4) or acetic acid-titrated Tris-HCl (pH 5.0) and then loaded onto bare mica. Neutral or acidic Tris-HCl was used as the scanning buffer. HS-AFM movies were recorded and processed using Image J software.ResultsThe conformation of HA0neutral visualized using HS-AFM was comparable to the HA trimer structures depicted in the PDB data and the AFM simulator. HA0 underwent rapid conformational changes under low pH condition. The circularity and area of HA0acid were significantly higher than in HA0neutral. In contrast, the height of HA0acid was significantly lower than in HA0neutral.ConclusionsWe have captured real-time images of the native HA0 trimer structure under physiological conditions using HS-AFM. By analyzing the images, we confirm that HA0 trimer is sensitive to acidic conditions.General significanceThe dynamic nature of the HA structure, particularly in the host endosome, is essential for H5N1 infectivity. Understanding this acidic behavior is imperative for designing therapeutic strategies against H5N1. This article reports a sophisticated new tool for studying the spatiotemporal dynamics of the HA precursor protein.  相似文献   

4.
Abstract

Coupled geochemical speciation/transport models are being developed to assess potential transport of metal contaminants in the subsurface environment. In a test of the geochemical speciation portion of the effort, MINTEQA2 model predictions are compared with laboratory data concerning the pH dependent partitioning behavior of eight cationic contaminants (Ba, Be, Cd, Cu, Ni, Pb, Tl and Zn) on a sandy aquifer material in an oxidized environment. MINTEQA2 contains provisions for describing potential attenuation due to both mineral phase precipitation processes and adsorption processes resulting from amorphous iron oxides in aquifer materials (MIT Diffuse Layer Model). In the comparison, several trends were discerned. (1) Adsorptive processes tend to better describe the pH-dependent partitioning behavior of transition metals (especially Pb, Zn and Ni). (2) Cd behavior is better described by precipitation as a cadmium carbonate phase. (3) Cu behavior is not reasonably described by the model. (4) Ba and Be comparisons are poor (although presumably their partitioning behavior results from adsorptive and/or pH sensitive solid solution processes). (5) unlike the other elements, the behavior of Tl is relatively insensitive to pH.  相似文献   

5.
Wang  Peng  Menzies  Neal W.  Wang  Yi-Min  Zhou  Dong-Mei  Zhao  Fang-Jie  Kopittke  Peter M. 《Plant and Soil》2012,361(1-2):317-327
Background and aims

The pH of the growth medium influences Cu speciation in solution, the negativity of plasma membrane (PM) surface potential, and hence the rhizotoxicity of Cu.

Methods

Solution culture experiments were conducted with wheat (Triticum aestivum L.) seedlings to examine the toxicity of various Cu species at pH values ranging from 4.50 to 8.25. The toxic species of Cu was identified, giving particular consideration to the electrical properties at the plant cell membrane and ion activities at the PM surface.

Results

The solution culture studies showed that at pH?<?6.60 (i.e., free Cu2+ >95 % of total Cu), the addition of cations (Ca2+ or H+) decreased the toxic effects of Cu by decreasing the negativity of the PM surface potential (and hence decreasing the activity of Cu2+ at the PM surface). For solutions with pH values from 7.50 to 8.25 (CuCO 03 >50 % of total Cu), an increase in pH significantly enhanced the toxicity of Cu, whilst the addition of Ca had negligible influence on toxicity.

Conclusions

Root growth in solution cultures was influenced primarily by the surface activities of free Cu2+ and CuCO 03 . Across all experiments, the data indicate that it was CuCO 03 , rather than CuOH+, that contributed Cu toxicity over pH?>?7.00. Although our data do not explore the mechanism of toxicity, we propose that CuCO 03 has an important role in Cu rhizotoxicity in alkaline growth media.

  相似文献   

6.
Biosorptive capacity of Pb(II), Cd(II) and Cu(II) by lyophilized cells of Pseudomonas stutzeri was investigated based on Langmuir and Freundlich isotherms. Biosorptive capacity for Pb(II), Cd(II) and Cu(II) decreased with an increase of metal concentration, reaching 142, 43.5 and 36.2 mg/g at initial concentration of 300 mg/l, respectively. Biosorption capacity for metal ions increased with increasing pH. The optimum pH for biosorption rate of Cd(II) and Cu(II) were 5.0, and 6.0 for Pb(II) biosorption. The experimental data showed a better fit with the Langmuir model over the Freundlich model for metal ions throughout the range of initial concentrations. The maximum sorptive capacity (q max) obtained from the Langmuir equation for Pb(II), Cd(II) and Cu(II) were 153.3 (r 2  = 0.998), 43.86 (r 2  = 0.995), and 33.16 (r 2  = 0.997) for metal ions, respectively. The selectivity order for metal ions towards the biomass of P. stutzeri was Pb(II) > Cd(II) > Cu(II) for a given initial metal ions concentration. The interactions between heavy metals and functional groups on the cell wall surface of bacterial biomass were confirmed by FTIR analysis. The results of this study indicate the possible removal of heavy metals from the environment by using lyophilized cells of P. stutzeri.  相似文献   

7.
Summary Diffusion of auxin (indole-3-acetic acid) through planar lipid bilayer membranes was studied as a function of pH and auxin concentration. Membranes were made of egg or soybean lecithin or phosphatidyl serine inn-decane (25–35 mg/ml). Tracer and electrical techniques were used to estimate the permeabilities to nonionized (HA) and ionized (A) auxin. The auxin tracer flux is unstirred layer limited at low pH and membrane limited at high pH, i.e., when [A][HA]. The tracer flux is not affected by the transmembrane voltage and is much higher than the flux predicted from the membrane conductance. Thus, only nonionized auxin crosses the membrane at a significant rate. Auxin transport shows saturation kinetics, but this is due entirely to unstirred layer effects rather than to the existence of an auxin carrier in the membrane. A rapid interconversion of A and HA at the membrane surface allows A to facilitate the auxin flux through the unstirred layer. Thus, the total flux is higher than that expected for the simple diffusion of HA alone. The relation between flux (J A), concentrations and permeabilities is: 1/J A=1/P UL([A]+[HA])+1/P HA M [HA]. By fitting this equation to our data we find thatP UL=6.9×10–4 cm/sec andP HA M =3.3×10–3 cm/sec for egg lecithin-decane bilayers. Similar membrane permeabilities were observed with phosphatidyl serine or soybean lipids. Thus, auxin permeability is not affected by a net surface charge on the membrane. Our model describing diffusion and reaction in the unstirred layers can explain the anomolous relationship between pH and weak acid (or weak base) uptake observed in many plant cells.  相似文献   

8.
Abstract

The nature of H+ and Cu2+ binding by soil-derived humic (HA) and fulvic (FA) acid was characterised using potentiometric titrations. The experimental data obtained showed that the derived proton balance equation was valid and capable of describing proton consumption by both polyelectrolytes. HA was found to be more acidic and more reactive as shown by its lower equivalent weight compared to FA. Acid consumption by HA during titrations was little affected at ionic strength (μ) up to 0.1 M although it was enhanced at higher μ. Displacement of protons by Cu2+ resulted in a nonlinear sigmoidal pattern suggesting the formation of different Cu-HA chelates, or existence of sites that differed in their affinities for Cu on the ligand. Different concentrations of added Cu appeared to favour one or both mechanisms, although the titration method could not differentiate which of the probable mechanisms was more dominant at a specific level of Cu added. Similar values were obtained for conditional stability constants using either the equation of Scatchard or Ruzic.  相似文献   

9.
 Mammalian metallothioneins (MT) are known to maximally bind 12 copper ions in two six-Cu(I) ion clusters. Using electrospray ionization mass spectrometry of MT at pH 4.5, a four-Cu(I) ion cluster was observed intermediate to a fully formed six Cu(I) in a single domain or a fully formed Cu12MT species. The four-Cu(I) cluster was observed in both MT1 and MT3 isoforms. Addition of increasing amounts of Cu(I) to MT at pH 4.5 resulted in prominent ions whoses masses were consistent with apo-MT, Cu4MT, Cu6MT, and Cu12MT. The cooperativity of cluster formation was reduced at pH 2.5. Addition of Cu(I) to apo-MT at a reduced pH resulted in a series of ions consistent with Cu4 to Cu12MT species. However, formation of the tetracopper MT species remained cooperative at low pH, suggesting that this species is very stable. To determine whether the tetracopper cluster was formed in either the α or β domain, domain peptides of MT3 were used. Addition of Cu(I) to the apo β domain resulted in a peak consistent with the formation of a four-Cu(I) cluster. This is consistent with reports that Cu(I) ions bind preferentially to the β domain of MTs. Received: 2 June 1998 / Accepted: 21 August 1998  相似文献   

10.
Microbial degradation of urea was investigated as a potential geochemical catalyst for Ca carbonate precipitation and associated solid phase capture of common groundwater contaminants (Sr, UO2, Cu) in laboratory batch experiments. Bacterial degradation of urea increased pH and promoted Ca carbonate precipitation in both bacterial control and contaminant treatments. Associated solid phase capture of Sr was highly effective, capturing 95% of the 1 mM Sr added within 24 h. The results for Sr are consistent with solid solution formation rather than discrete Sr carbonate phase precipitation. In contrast, UO2 capture was not as effective, reaching only 30% of the initial 1 mM UO2 added, and also reversible, dropping to 7% by 24 h. These results likely reflect differing sites of incorporation of these two elements-Ca lattice sites for Sr versus crystal defect sites for UO2. Cu sequestration was poor, resulting from toxicity of the metal to the bacteria, which arrested urea degradation and concomitant Ca carbonate precipitation. Scanning electron microscopy (SEM) indicated a variety of morphologies reminiscent of those observed in the marine stromatolite literature. In bacterial control treatments, X-ray diffraction (XRD) analyses indicated only calcite; while in the presence of either Sr or UO2, both calcite and vaterite, a metastable polymorph of Ca carbonate, were identified. Tapping mode atomic force microscopy (AFM) indicated differences in surface microtopography among abiotic, bacterial control, and bacterial contaminant systems. These results indicate that Ca carbonate precipitation induced by passive biomineralization processes is highly effective and may provide a useful bioremediation strategy for Ca carbonate-rich aquifers where Sr contamination issues exist.  相似文献   

11.
The complexes [Cu(samen)Cu(L)] and [Cu(samen)Ni(L)2] (Lbpy, phen) have been synthesized by the reaction of sodium N,N′-ethylenedisalicylamidatocuprate(II) pentahydrate (Na2- [Cu(samen)]·5H2O), a divalent metal ion, and 2,2′- dipyridyl or 1,10-phenanthroline. Cryomagnetic data for the CuCu complexes did not fit the Bleaney- Bowers equation; but the data did fit a modified Bleaney-Bowers equation
with a large negative J and a significant negative θ, suggesting that a considerable magnetic interaction operates between essentially planar [Cu(samen)Cu(L)] molecules. The magnetisms of the CuNi complexes were well interpreted in terms of the susceptibility equation based on the Heisenberg model. An antiferromagnetic spin-exchange interaction (J= −13∼−14 cm−1) was suggested between the metal ions.  相似文献   

12.
The reactivity of Amberlite (IRA-67) base “heterogeneous” resin in Sonogashira cross-coupling of 8-bromoguanosine 1 with phenylacetylene 3 to give 2 has been examined. Both 1 and 2 coordinate to Pd and Cu ions, which explains why at equivalent catalyst loadings, the homogeneous reaction employing triethylamine base is poor yielding. X-ray photo-electron spectroscopy (XPS) has been used to probe and quantify the active nitrogen base sites of the Amberlite resin, and postreaction Pd and Cu species. The PdCl2(PPh3)2 precatalyst and CuI cocatalyst degrade to give Amberlite-supported metal nanoparticles (average size ~2.7 nm). The guanosine product 2 formed using the Amberlite Pd/Cu catalyst system is of higher purity than reactions using a homogeneous Pd precatalyst, a prerequisite for use in biological applications.  相似文献   

13.
BackgroundThe impact of chemical elements on the biosphere is a function of their concentration and chemical form. Elucidation and prognosing of the latters in water basins and soil extracts is of particular significance for the assessment of their bioaccumulation in plants and animals.ObjectivesTrace metals dynamics in the system water – soil–plant–wild ratsHymenolepis diminuta in two agro-industrial zones (East and West) around Maglizh city, Bulgaria were investigated through experimental studies and thermodynamic modelling of the chemical species.MethodsSamples from surface waters of rivers, their nearby uncultivated soils, meadow uncultivated vegetation (Ranunculus acris and Gramineae) and field rats were collected. In situ measurements and laboratory analyses were performed for the determination of the physico-chemical characteristics and total concentrations of Al, Fe, Mn, Ni, Cu, Zn and Pb. The distribution of their dissolved chemical species in water samples and in the aqueous soil extracts was calculated using a thermodynamic approach. The relationship chemical species - bioaccumulation was discussed.ResultsWaters and soils in the East zone of Maglizh area were found to be more polluted compared to those in the West one, regarding Ni, Mn, Zn, Pb and Cu, while Mn and Cu displayed the highest mobility in West zone soils. Trace metals contents in Ranunculus acris exceed that in Gramineae, since the highest accumulation factors were calculated for Cu and Zn. The highest accumulation in rats was found for Zn followed by Cu, being higher in the West zone. Thermodynamic modelling shows that Mn2+ free ions are dominant in both waters and aqueous soil extracts. Ni2+ and Zn2+ ions followed by metal-organic complexes are dominant in waters of East zone while metal-organic complexes followed by free ions are dominant in waters of West zone and both soil extracts. Metal-organic complexes are dominant for Fe, Cu and Pb in all samples studied, while mainly hydroxy forms (Al(OH)4) followed by metal-organic complexes are typically for Al depending on pH.ConclusionsExperimentally established bioaccumulation of trace metals in the studied vegetation and rats is a consequence of the total concentration of trace metals in waters and soils, their mobility and chemical species. The dominance of organic complexes of trace metals is a prerequisite for their bioaccumulation in plants. Rats are in direct contact with the soil solution and therefore, of importance is the content of free ions of Mn2+, Ni2+, Zn2+, which are easily absorbed through the skin. The host-helminth system wild rat/H. diminuta could be used as a bioindicator for trace metals pollution.  相似文献   

14.
Summary The inverse protein-folding problem has been explored by designing de novo the betabellin target structure (a 64-residue β-sandwich protein), synthesizing a 32-residue peptide chain (HSLTAKIpkLTFSIAphTYTCAVpkYTAKVSH, wherep=DPro,k=DLys, andh=DHis) that might fold into this structure, and studying how its disulfide-bridged form (betabellin 15D) folds in 10 mM ammonium acetate with and without Cu2+. Circular dichroic spectropolarimetry indicated that at pH 5.8, 6.4, or 6.7 betabellin 15D exhibited β-sheet structure in the presence of Cu2+ but not in its absence. Electrospray mass spectrometry demonstrated that at pH 6.3 each molecule of betabellin 15D bound one or two Cu(II) ions. Electron microscopy showed that at pH 6.7 betabellin 15D formed short broad fibrils in the presence of Cu2+ but not in its absence. The observed width of the fibrils (7±2 nm) was consistent with the width (6.8nm) of a structural model of a fibril that contained two adjacent rows of betabellin 15D β-sandwiches joined lengthwise by multiple intersheet hydrogen bonds and widthwise by multiple Cu(II)-imidazole bonds. Electron paramagnetic resonance spectrometry revealed that some pairs of Cu(II) ions in a Cu(II)/betabellin 15D complex were magnetically coupled, which is consistent with the structural model of the Cu(II)/betabellin 15D fibril.  相似文献   

15.
Sorption affinity of copper flotation waste from KGHM toward Cd(II), Cr(III), Cu(II), and Pb(II) ions was investigated in this work. Batch sorption studies, using single-element synthetic aqueous solutions at various pH (2–12), contact time (10–300 min), initial concentration (100–5000 mg dm?3; 1–100 mg dm?3 for Cd(II)) and adsorbent dose (25–200 g dm?3), were performed. Bonding strength of adsorbed metals was tested from the degree of desorption. The maximum metal removal was observed at pH 5–8, ≥120 min reaction time, and 25 g dm?3 adsorbent dose. Maximum sorption capacities of studied material were 41.6, 58.8, and 83.8 mg g?1 for Cr(III), Cu(II), and Pb(II), respectively, for 5000 mg dm?3 initial concentration, and 0.86 mg g?1 for Cd(II) for initial concentration of 50 mg dm?3. Sorption isotherms were very well fitted to Langmuir (Cd, Cr, Pb) and Freundlich (Cu) models. Sorption kinetics was nearly ideally fitted to pseudo-second-order kinetic model. Desorption studies showed that most of Cr(III) (98.5%) and Pb(II) (67.3%) ions remained bound to the surface, indicating that the chemisorption dominated as a controlling process. On the other hand, mostly desorbed were Cd(II) (98.5%) and Cu(II) (90.3%) ions, which indicated that processes like physisorption or precipitation were prevailing.  相似文献   

16.
White-rot fungi of the Phylum Basidiomycota are quite promising in ligninolytic enzyme production and the optimization of their synthesis is of particular significance. The aim of this study was to investigate the effect of enhanced concentration of copper (Cu) ions (25–1000 μg/ml) on the activity of the ligninolytic enzyme complex (laccase, Lac; lignin peroxidase, LiP; Mn-peroxidase, MnP) in Trametes trogii 46, as well as the changes in the antioxidant cell response. All concentrations tested reduced significantly in growth and glucose consumption. Cu ions affected the ligninolytic enzyme activity in a dose dependent manner. Concentrations in the range of 25–100 μg/ml strongly stimulated Lac production (a 5–6-fold increase compared to the control). LiP activity was also induced by Cu, with the peak value being recorded following exposure to 50 μg/ml metal ions. In contrast, the addition of Cu ions had a positive effect on MnP activity at a concentration higher than 100 μg/ml. The maximum enzyme level was achieved at 1000 μg/ml. The results obtained on superoxide dismutase and catalase activities indicated that exposure of T. trogii 46 mycelia to Cu ions promoted oxidative stress. Both enzyme activities were co-ordinately produced with Lac and LiP but not co-ordinately with MnP.  相似文献   

17.
The microsomal fraction isolated from dog mesenteric nerve fibres was found to contain ATPase activity stimulated by micromolar concentrations of Ca ions. Such a high-affinity Ca2+-ATPase (hereafter referred to as HA Ca-ATPase) followed a Michaelis-Menten kinetics with Km for Ca ions of 0.4 M and Vmax=12.5±2.4 mol Pi.mg–1h–1. The examination of the subcellular origin of HA Ca-ATPase revealed that this enzyme is associated with axonal plasma membranes as documented by its co-purification with several plasma membrane marker enzymes and with tetrodotoxin-sensitive3H-saxitoxin binding. The addition of exogenous magnesium ions (Mg) resulted in a non-competitive inhibition of HA Ca-ATPase with Ki=0.5 mM. The reaction velocity of HA Ca-ATPase was also inhibited by other divalent ions with the order of potency Mg>Mn >ZnCo>Ni. In contrast to low affinity (high Km) Mg- and Ca-ATPase, the HA Ca-ATPase was insensitive to the inhibition by sodium azide (10 mM) and sodium fluoride (10 mM). Similarly, the specific activity of HA Ca-ATPase was unaffected by vanadate (100 M) and N-ethylmaleinimide (100 M). It is concluded that axonal plasma membranes of dog mesenteric nerves contain HA Ca-ATPase which seems to be unrelated to calcium-transporting Mg-dependent, Ca-stimulated ATPase.Abbreviations used BSA bovine serum albumin - HA Ca-ATPase high-affinity Ca2+-ATPase - K-pNPPase onabain-sensitive, K+-stimulated p-nitrophenyl phosphatase - NEM N-ethylmaleinimide - SIM 250 mM sucrose, 10 mM imidazole-HCl pH 7.4 - TRIS tris (hydroxymethyl) aminomethane  相似文献   

18.
This paper reports a precipitation method for the fabrication of compositionally graded biomimetic collagen/nano-hydroxyapatite (HA) composite scaffold. The method is centrifugation based and produce the precipitation of nano-HA crystallites in situ (calcium ions (Ca2+) react phosphate ions (PO43−) and precipitate a non-stoichiometric hydroxyapatite). It was observed that prism needle-like nano-HA crystallites (about 2.5 nm × 3 nm× 25 nm) precipitated on collagen fibrils in the interior of collagen matrix. Chemical and microstructure analysis revealed a gradient of the Ca to P ratio across the width of the scaffold, lead to the formation of a HA-rich side and a HA-deplete side of scaffold. The HA-rich side featured low porosity and agglomerates of the nano-HA crystallites; while HA-depleted side featured higher porosity and nano-HA crystallites integrated with collagen fibrils to form a porous network structure.  相似文献   

19.

The calcium phosphate [Ca3(PO4)2] precipitation was used for improving the clarification efficiency in harvest process of the monoclonal antibody (mAb) containing cell culture fluid (CCF) with high turbidity and product titer. The flocculation conditions (concentration, addition order of flocculants, pH, and operation time), and the effect of flocculants on the mAb physical chemical properties (such as distribution of charge variants and aggregates) and process-related impurities removal (such as DNA and CHOP) were evaluated in this study. The results showed that the turbidity of CCF supernatant was significantly reduced at pH 7, 120 min with addition of phosphate ions first, while a high mAb recovery yield was kept in the CCF supernatant after flocculation. Addition of calcium ions at 15–60 mM was sufficient for flocculation in this study. A relationship between turbidity/mAb recovery yield and the concentration of calcium ions was established. More than 85% DNA in the CCF were effectively removed by the addition of optimal concentration of flocculants. Flocculation process of Ca3(PO4)2 is an effective pretreatment method in purification processes of mAbs from the CCF with high turbidity and product titer.

  相似文献   

20.

This work continues a series of studies devoted to complex formation of ions of biogenic metals with the flavonoid dihydroquercetin (DHQ). The interaction of Со2+ ions with DHQ in aqueous solutions has been investigated. It has been found that, at different pH of a solution, complex compounds (CC) with different stoichiometry are formed; a variation of the pH value of a solution from 6.0 to 7.0 results in the formation of compounds (1)–(3) with the metal : flavonoid ligand ratio (Met : L) from 1 : 2 at рН 6.0 (1), through 2 : 3 at pH 6.4–6.7 (2), to 1 : 1 at рН 6.8–7.0 (3). By using the thermogravimetric method and the data of the elemental analysis, the most probable composition of the compounds with the determination of the amount of bound water has been proposed: [CoL2(H2O)4] for (1), [Co2L3(ОН)(H2O)4] for (2), and [CoL(ОН)(H2O)2] for (3). Conditions for the optimization of product yield in the complexation reaction of Со2+ ions with DHQ in an aqueous solution have been determined for compound (2): the рН value of solution 6.7; the reaction time 15 min; the temperature of the reaction solution 90°С; the molar ratio of the initial reagents DHQ : Со2+ 1 : 1.5; the initial concentration of DHQ 0.020 mol/L and that of Со2+ 0.030 mol/L; and the use of CoSO4 ? 7H2O as a source of cobalt ions. The yield of the product is 81.8%.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号