首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Minhan Ka  Amanda L. Smith 《Autophagy》2017,13(8):1348-1363
Interneuron progenitors in the ganglionic eminence of the ventral telencephalon generate most cortical interneurons during brain development. However, the regulatory mechanism of interneuron progenitors remains poorly understood. Here, we show that MTOR (mechanistic target of rapamycin [serine/threonine kinase]) regulates proliferation and macroautophagy/autophagy of interneuron progenitors in the developing ventral telencephalon. To investigate the role of MTOR in interneuron progenitors, we conditionally deleted the Mtor gene in mouse interneuron progenitors and their progeny by using Tg(mI56i-cre,EGFP)1Kc/Dlx5/6-Cre-IRES-EGFP and Nkx2–1-Cre drivers. We found that Mtor deletion markedly reduced the number of interneurons in the cerebral cortex. However, relative positioning of cortical interneurons was normal, suggesting that disruption of progenitor self-renewal caused the decreased number of cortical interneurons in the Mtor-deleted brain. Indeed, Mtor-deleted interneuron progenitors showed abnormal proliferation and cell cycle progression. Additionally, we detected a significant activation of autophagy in Mtor-deleted brain. Our findings suggest that MTOR plays a critical role in the regulation of cortical interneuron number and autophagy in the developing brain.  相似文献   

2.
Thymic epithelial cells (TECs) are critical for the establishment and maintenance of appropriate microenvironment for the positive and negative selection of thymocytes and the induction of central immune tolerance. Yet, little about the molecular regulatory network on TEC development and function is understood. Here, we demonstrate that MTOR (mechanistic target of rapamycin [serine/threonine kinase]) is essential for proper development and functional maturation of TECs. Pharmacological inhibition of MTOR activity by rapamycin (RPM) causes severe thymic atrophy and reduction of TECs. TEC-specific deletion of Mtor causes the severe reduction of mTECs, the blockage of thymocyte differentiation and output, the reduced generation of thymic regulatory T (Treg) cells and the impaired expression of tissue-restricted antigens (TRAs) including Fabp2, Ins1, Tff3 and Chrna1 molecules. Importantly, specific deletion of Mtor in TECs causes autoimmune diseases characterized by enhanced tissue immune cell infiltration and the presence of autoreactive antibodies. Mechanistically, Mtor deletion causes overdegradation of CTNNB1/Beta-Catenin due to excessive autophagy and the attenuation of WNT (wingless-type MMTV integration site family) signaling in TECs. Selective inhibition of autophagy significantly rescued the poor mTEC development caused by Mtor deficiency. Altogether, MTOR is essential for TEC development and maturation by regulating proliferation and WNT signaling activity through autophagy. The present study also implies that long-term usage of RPM might increase the risk of autoimmunity by impairing TEC maturation and function.  相似文献   

3.
Sirolimus (rapamycin), an inhibitor of the mechanistic target of rapamycin (MTOR), was originally proposed as an immunosuppressant to prevent rejection of solid organ transplants. There were expectations that MTOR inhibitors would replace nephrotoxic calcineurin inhibitors (CNIs). Despite its potential advantages, evidence that sirolimus causes de novo or worsening proteinuria is unequivocal. Given the well-recognized proteinuric effect of MTOR inhibitors, we were interested in understanding its role in maintaining the glomerular filtration barrier. To investigate this in vivo, we developed a mouse model with a podocyte selective deletion of the Mtor gene (Mtor pod-KO).  相似文献   

4.
MTOR (mechanistic target of rapamycin [serine/threonine kinase]) plays a crucial role in many major cellular processes including metabolism, proliferation and macroautophagy/autophagy induction, and is also implicated in a growing number of proliferative and metabolic diseases. Both MTOR and autophagy have been suggested to be involved in lung disorders, however, little is known about the role of MTOR and autophagy in pulmonary epithelium in the context of acute lung injury (ALI). In the present study, we observed that lipopolysaccharide (LPS) stimulation induced MTOR phosphorylation and decreased the expression of MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3 β)-II, a hallmark of autophagy, in mouse lung epithelium and in human bronchial epithelial (HBE) cells. The activation of MTOR in HBE cells was mediated by TLR4 (toll-like receptor 4) signaling. Genetic knockdown of MTOR or overexpression of autophagy-related proteins significantly attenuated, whereas inhibition of autophagy further augmented, LPS-induced expression of IL6 (interleukin 6) and IL8, through NFKB signaling in HBE cells. Mice with specific knockdown of Mtor in bronchial or alveolar epithelial cells exhibited significantly attenuated airway inflammation, barrier disruption, and lung edema, and displayed prolonged survival in response to LPS exposure. Taken together, our results demonstrate that activation of MTOR in the epithelium promotes LPS-induced ALI, likely through downregulation of autophagy and the subsequent activation of NFKB. Thus, inhibition of MTOR in pulmonary epithelial cells may represent a novel therapeutic strategy for preventing ALI induced by certain bacteria.  相似文献   

5.
6.
Mutations in the LMNA gene, which encodes lamin A and C (lamin A/C), cause a diverse spectrum of tissue-selective diseases termed laminopathies. The most prevalent form affects striated muscles as dilated cardiomyopathy with variable skeletal muscle involvement, which includes autosomal Emery-Dreifuss muscular dystrophy. Mechanisms underlying the disease pathogenesis are beginning to be understood and they point toward defects in cell signaling. We therefore assessed putative signaling defects in a mouse model carrying a point mutation in Lmna (LmnaH222P/H222P) that faithfully recapitulates human Emery-Dreifuss muscular dystrophy. We found that AKT-mechanistic target of rapamycin (MTOR) signaling was hyperactivated in hearts of LmnaH222P/H222P mice and that reducing MTOR activity by pharmacological intervention ameliorated cardiomyopathy. Given the central role of MTOR in regulating autophagy, we assessed fasting-induced autophagic responses and found that they were impaired in hearts of these mice. Moreover, the improved heart function associated with pharmacological blockade of MTOR was correlated with enhanced autophagy. These findings demonstrated that signaling defects that impair autophagy underlie pathogenesis of dilated cardiomyopathy arising from LMNA mutation.  相似文献   

7.
As a central controller of cell growth, mechanistic target of rapamycin (MTOR) affects an array of biological processes, in particular protein synthesis, autophagy and cardiac homeostasis. Conflicting findings have been seen with regard to the role of MTOR signaling and autophagy in cardiac and adipocyte function under metabolic syndrome. AKT, an essential insulin-signaling molecule upstream of MTOR, participates in the regulation of glucose homeostasis and cardiac metabolism. Akt2 knockout may rescue against high-fat diet-disrupted autophagy flux, en route to cardioprotection. Thus, inhibition of MTOR may serve as a possible avenue to retard pathological cardiac hypertrophy via rescuing interrupted autophagic flux.  相似文献   

8.
9.
《Autophagy》2013,9(1):115-117
Mantle cell lymphoma (MCL) is an aggressive neoplasm, which lacks effective therapy. The mechanistic target of rapamycin (MTOR) kinase inhibitor everolimus (RAD001) has shown activity in preclinical and clinical models of MCL, despite the fact that its mechanism of action has not been fully elucidated. We found that everolimus activity in MCL cells is closely linked to AKT phosphorylation status, and that the prevention of AKT rephosphorylation upon everolimus treatment by means of a selective AKT inhibitor, greatly enhances everolimus activity. Furthermore, our data show that an accumulation of autophagic vacuoles correlates with a lack of efficacy of dual AKT-MTOR targeting and that the complete therapeutic potential of this strategy can be restored by ATG gene selective knockdown or secondary inhibition of autolysosome formation by hydroxychloroquine. We thus demonstrated for the first time that the use of an autophagy inhibitor can overcome resistance to the combination of MTOR and AKT inhibitors in MCL cell lines and primary samples, demonstrating the prosurvival role of autophagy in AKT-MTOR compromised cells, and pointing out some potential opportunities using this triple combinational strategy in hematological malignancies.  相似文献   

10.
11.
《Autophagy》2013,9(6):957-971
MTOR, a central regulator of autophagy, is involved in cancer and cardiovascular and neurological diseases. Modulating the MTOR signaling balance could be of great significance for numerous diseases. No chemical activators of MTOR have been found, and the urgent challenge is to find novel MTOR downstream components. In previous studies, we found a chemical small molecule, 3-benzyl-5-((2-nitrophenoxy) methyl)–dihydrofuran-2(3H)-one (3BDO), that inhibited autophagy in human umbilical vein endothelial cells (HUVECs) and neuronal cells. Here, we found that 3BDO activated MTOR by targeting FKBP1A (FK506-binding protein 1A, 12 kDa). We next used 3BDO to detect novel factors downstream of the MTOR signaling pathway. Activation of MTOR by 3BDO increased the phosphorylation of TIA1 (TIA1 cytotoxic granule-associated RNA binding protein/T-cell-restricted intracellular antigen-1). Finally, we used gene microarray, RNA interference, RNA-ChIP assay, bioinformatics, luciferase reporter assay, and other assays and found that 3BDO greatly decreased the level of a long noncoding RNA (lncRNA) derived from the 3′ untranslated region (3′UTR) of TGFB2, known as FLJ11812. TIA1 was responsible for processing FLJ11812. Further experiments results showed that FLJ11812 could bind with MIR4459 targeting ATG13 (autophagy-related 13), and ATG13 protein level was decreased along with 3BDO-decreased FLJ11812 level. Here, we provide a new activator of MTOR, and our findings highlight the role of the lncRNA in autophagy.  相似文献   

12.
《Autophagy》2013,9(11):1577-1589
Ethanol is a neuroteratogen and neurodegeneration is the most devastating consequence of developmental exposure to ethanol. The mechanisms underlying ethanol-induced neurodegeneration are complex. Ethanol exposure produces reactive oxygen species (ROS) which cause oxidative stress in the brain. We hypothesized that ethanol would activate autophagy to alleviate oxidative stress and neurotoxicity. Our results indicated that ethanol increased the level of the autophagic marker Map1lc3-II (LC3-II) and upregulated LC3 puncta in SH-SY5Y neuroblastoma cells. It also enhanced the levels of LC3-II and BECN1 in the developing brain; meanwhile, ethanol reduced SQSTM1 (p62) levels. Bafilomycin A1, an inhibitor of autophagosome and lysosome fusion, increased p62 levels in the presence of ethanol. Bafilomycin A1 and rapamycin potentiated ethanol-increased LC3 lipidation, whereas wortmannin and a BECN1-specific shRNA inhibited ethanol-promoted LC3 lipidation. Ethanol increased mitophagy, which was also modulated by BECN1 shRNA and rapamycin. The evidence suggested that ethanol promoted autophagic flux. Activation of autophagy by rapamycin reduced ethanol-induced ROS generation and ameliorated ethanol-induced neuronal death in vitro and in the developing brain, whereas inhibition of autophagy by wortmannin and BECN1-specific shRNA potentiated ethanol-induced ROS production and exacerbated ethanol neurotoxicity. Furthermore, ethanol inhibited the MTOR pathway and downregulation of MTOR offered neuroprotection. Taken together, the results suggest that autophagy activation is a neuroprotective response to alleviate ethanol toxicity. Ethanol modulation of autophagic activity may be mediated by the MTOR pathway.  相似文献   

13.
14.
15.
16.
When the cell cycle becomes arrested, MTOR (mechanistic Target of Rapamycin) converts reversible arrest into senescence (geroconversion). Hyperexpression of cyclin D1 is a universal marker of senescence along with hypertrophy, beta-Gal staining and loss of replicative/regenerative potential (RP), namely, the ability to restart proliferation when the cell cycle is released. Inhibition of MTOR decelerates geroconversion, although only partially decreases cyclin D1. Here we show that in p21- and p16-induced senescence, inhibitors of mitogen-activated/extracellular signal-regulated kinase (MEK) (U0126, PD184352 and siRNA) completely prevented cyclin D1 accumulation, making it undetectable. We also used MEL10 cells in which MEK inhibitors do not inhibit MTOR. In such cells, U0126 by itself induced senescence that was remarkably cyclin D1 negative. In contrast, inhibition of cyclin-dependent kinase (CDK) 4/6 by PD0332991 caused cyclin D1-positive senescence in MEL10 cells. Both types of senescence were suppressed by rapamycin, converting it into reversible arrest. We confirmed that the inhibitor of CDK4/6 caused cyclin D1 positive senescence in normal RPE cells, whereas U0126 prevented cyclin D1 expression. Elimination of cyclin D1 by siRNA did not prevent other markers of senescence that are consistent with the lack of its effect on MTOR. Our data confirmed that a mere inhibition of the cell cycle was sufficient to cause senescence, providing MTOR was active, and inhibition of MEK partially inhibited MTOR in a cell-type-dependent manner. Second, hallmarks of senescence may be dissociated, and hyperelevated cyclin D1, a marker of hyperactivation of senescent cells, did not necessarily determine other markers of senescence. Third, inhibition of MEK was sufficient to eliminate cyclin D1, regardless of MTOR.  相似文献   

17.
《Autophagy》2013,9(12):1798-1810
We have previously shown that elevated expression of mitotic kinase aurora kinase A (AURKA) in cancer cells promotes the development of metastatic phenotypes and is associated clinically with adverse prognosis. Here, we first revealed a clinically positive correlation between AURKA and autophagy-associated protein SQSTM1 in breast cancer and further demonstrated that AURKA regulated SQSTM1 through autophagy. Indeed, depletion by siRNA or chemical inhibition of AURKA by the small molecule VX-680 increased both the level of microtubule-associated protein 1 light chain 3-II (LC3-II) and the number of autophagosomes, along with decreased SQSTM1. Conversely, overexpression of AURKA inhibited autophagy, as assessed by decreased LC3-II and increased SQSTM1 either upon nutrient deprivation or normal conditions. In addition, phosphorylated forms of both RPS6KB1 and mechanistic target of rapamycin (MTOR) were elevated by overexpression of AURKA whereas they were suppressed by depletion or inhibition of AURKA. Moreover, inhibition of MTOR by PP242, an inhibitor of MTOR complex1/2, abrogated the changes in both LC3-II and SQSTM1 in AURKA-overexpressing BT-549 cells, suggesting that AURKA-suppressed autophagy might be associated with MTOR activation. Lastly, repression of autophagy by depletion of either LC3 or ATG5, sensitized breast cancer cells to VX-680-induced apoptosis. Similar findings were observed in cells treated with the autophagy inhibitors chloroquine (CQ) and bafilomycin A1 (BAF). Our data thus revealed a novel role of AURKA as a negative regulator of autophagy, showing that AURKA inhibition induced autophagy, which may represent a novel mechanism of drug resistance in apoptosis-aimed therapy for breast cancer.  相似文献   

18.
The mTOR (mammalian or mechanistic Target Of Rapamycin), a complex metabolic pathway that involves multiple steps and regulators, is a major human metabolic pathway responsible for cell growth control in response to multiple factors and that is dysregulated in various types of cancer. The classical inhibition of the mTOR pathway is performed by rapamycin and its analogs (rapalogs). Considering that rapamycin binds to an allosteric site and performs a crucial role in the inhibition of the mTOR complex without causing the deleterious side effects common to ATP-competitive inhibitors, we employ ligand-based drug design strategies, such as virtual screening methodology, computational determination of ADME/Tox properties of selected molecules, and molecular dynamics in order to select molecules with the potential to become non-ATP-competitive inhibitors of the mTOR enzymatic complex. Our findings suggest five novel potential mTOR inhibitors, with similar or better properties than the classic inhibitor complex, rapamycin.  相似文献   

19.
《Autophagy》2013,9(10):1540-1541
The mechanistic target of rapamycin (MTOR) has been implicated in regulating synaptic plasticity and neurodegeneration, but MTOR’s role in modulating presynaptic function through autophagy is unexplored. We studied presynaptic function in ventral dopamine neurons, a system from which neurotransmitter release can be measured directly by cyclic voltammetry. We generated mutant mice that were specifically deficient for macroautophagy in dopaminergic neurons by deleting the Atg7 gene in cells that express the dopamine uptake transporter. Dopamine axonal profiles in the mutant dorsal striatum were ~one third larger in the mutant mice, released ~50% more stimulus-evoked dopamine release, and exhibited more rapid presynaptic recovery than controls. Rapamycin reduced dopamine neuron axon profile size by ~30% in control mice, but had no effect on macroautophagy deficient axons. Acute rapamycin decreased dopaminergic synaptic vesicle density by ~25% and inhibited evoked dopamine release by ~25% in control mice, but not in the Atg7 deficient mutants. Thus, both basal and induced macroautophagy can provide a brake on presynaptic activity in vivo, perhaps by regulating the turnover of synaptic vesicles, and further regulates terminal volume and the kinetics of transmitter release.  相似文献   

20.
《Autophagy》2013,9(10):1579-1590
Neuroblastoma is characterized by florid vascularization leading to rapid tumor dissemination to distant organs; angiogenesis contributes to tumor progression and poor clinical outcomes. We have previously demonstrated an increased expression of gastrin-releasing peptide (GRP) and its receptor, GRPR, in neuroblastoma and that GRP activates the PI3K-AKT pathway as a proangiogenic factor during tumor progression. Interestingly, AKT activation phosphorylates MTOR, a critical negative regulator of autophagy, a cellular process involved in the degradation of key proteins. We hypothesize that inhibition of GRPR enhances autophagy-mediated degradation of GRP and subsequent inhibition of angiogenesis in neuroblastoma. Here, we demonstrated a novel phenomenon where targeting GRPR using shRNA or a specific antagonist, RC-3095, decreased GRP secretion by neuroblastoma cells and tubule formation by endothelial cells in vitro. Furthermore, shGRPR or RC-3095 treatment enhanced expression of proautophagic proteins in human neuroblastoma cell lines, BE(2)-C, and BE(2)-M17. Interestingly, rapamycin, an inhibitor of MTOR, enhanced the expression of the autophagosomal marker LC3-II and GRP was localized within LC3-II-marked autophagosomes in vitro as well as in vivo, indicating autophagy-mediated degradation of GRP. Moreover, overexpression of ATG5 or BECN1 attenuated GRP secretion and tubule formation, whereas opposite effects were observed with siRNA silencing of ATG5 and BECN1. Our data supported the role of autophagy in the degradation of GRP and subsequent inhibition of angiogenesis. Therefore, activation of autophagy may lead to novel antivascular therapeutic strategies in the treatment of highly vascular neuroblastomas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号