首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Autophagy》2013,9(11):1687-1692
Mitochondrial homeostasis is critical to cellular homeostasis, and mitophagy is an important mechanism to eliminate mitochondria that are superfluous or damaged. Multiple events can be involved in the recognition of mitochondria by the phagophore, and the key one is the priming of the mitochondria with specific molecular signatures. PARK2/Parkin is an E3 ligase that can be recruited to depolarized mitochondria and is required for mitophagy caused by respiration uncoupling. PARK2 induces ubiquitination of mitochondrial outer membrane proteins, which are subsequently degraded by the proteasome. Why these PARK2-mediated priming events are necessary for mitophagy to occur is not clear. We propose that they are needed to prevent a default pathway that would be inhibitory to mitophagy. In the default pathway depolarized and fragmented mitochondria undergo a dramatic three-dimensional conformational change to become mitochondrial spheroids. This transformation requires mitofusins; however, PARK2 inhibits this process by causing mitofusin ubiquitination and degradation. The spherical transformation may prevent recognition of the damaged mitochondria by the autophagosome, and PARK2 ensures that no such transformation occurs in order to promote mitophagy. Whether the formed mitochondrial spheroids functionally represent an alternative mitigation to mitophagy or an adverse consequence in the absence of PARK2 has yet to be determined.  相似文献   

2.
Defective mitochondria exert deleterious effects on host cells. To manage this risk, mitochondria display several lines of quality control mechanisms: mitochondria-specific chaperones and proteases protect against misfolded proteins at the molecular level, and fission/fusion and mitophagy segregate and eliminate damage at the organelle level. An increase in unfolded proteins in mitochondria activates a mitochondrial unfolded protein response (UPRmt) to increase chaperone production, while the mitochondrial kinase PINK1 and the E3 ubiquitin ligase PARK2/Parkin, whose mutations cause familial Parkinson disease, remove depolarized mitochondria through mitophagy. It is unclear, however, if there is a connection between those different levels of quality control (QC). Here, we show that the expression of unfolded proteins in the matrix causes the accumulation of PINK1 on energetically healthy mitochondria, resulting in mitochondrial translocation of PARK2, mitophagy and subsequent reduction of unfolded protein load. Also, PINK1 accumulation is greatly enhanced by the knockdown of the LONP1 protease. We suggest that the accumulation of unfolded proteins in mitochondria is a physiological trigger of mitophagy.  相似文献   

3.
Yeast Vps10p is a receptor for transport of the soluble vacuolar hydrolase carboxypeptidase Y to the lysosome-like vacuole. Its functional equivalents in mammalian cells are the mannose 6-phosphate receptors that mediate sorting to lysosomes of mannose 6-phosphate-containing lysosomal proteins. A chimeric receptor was constructed by substituting the cytoplasmic domain of M(r) 300,000 mannose 6-phosphate receptor with the Vps10p cytoplasmic tail. Expression of the chimera in cells lacking endogenous mannose 6-phosphate receptors resulted in a subcellular receptor distribution and an efficiency in sorting of lysosomal enzymes similar to that of the wild type M(r) 300,000 mannose 6-phosphate receptor. Moreover, the cytoplasmic tail of the Vps10p was found to interact with GGA1 and GGA2, two mammalian members of a recently discovered family of clathrin-binding cytosolic proteins that participate in trans-Golgi network-endosome trafficking in both mammals and yeast. Our findings suggest a conserved machinery for Golgi-endosome/vacuole sorting and may serve as a model for future studies of yeast proteins.  相似文献   

4.
《Autophagy》2013,9(6):986-1003
GABARAPL1/GEC1 is an early estrogen-induced gene which encodes a protein highly conserved from C. elegans to humans. Overexpressed GABARAPL1 interacts with GABAA or kappa opioid receptors, associates with autophagic vesicles, and inhibits breast cancer cell proliferation. However, the function of endogenous GABARAPL1 has not been extensively studied. We hypothesized that GABARAPL1 is required for maintaining normal autophagic flux, and plays an important role in regulating cellular bioenergetics and metabolism. To test this hypothesis, we knocked down GABARAPL1 expression in the breast cancer MDA-MB-436 cell line by shRNA. Decreased expression of GABARAPL1 activated procancer responses of the MDA-MB-436 cells including increased proliferation, colony formation, and invasion. In addition, cells with decreased expression of GABARAPL1 exhibited attenuated autophagic flux and a decreased number of lysosomes. Moreover, decreased GABARAPL1 expression led to cellular bioenergetic changes including increased basal oxygen consumption rate, increased intracellular ATP, increased total glutathione, and an accumulation of damaged mitochondria. Taken together, our results demonstrate that GABARAPL1 plays an important role in cell proliferation, invasion, and autophagic flux, as well as in mitochondrial homeostasis and cellular metabolic programs.  相似文献   

5.
6.
To investigate the stability, degradation, expression, and targeting of aquaporin-2 (AQP2) by hyperosmolality, stably transfected mIMCD-3 cells expressing AQP2 (AQP2/IMCD3) were generated. In AQP2/IMCD3 cells, both nonglycosylated (ng-AQP2) and glycosylated (g-AQP2) forms were detected by immunoblot. The stability of ng-AQP2 decreased with the lapse of time, whereas that of g-AQP2 was stable. NaCl, but not urea, destabilized ng-AQP2. The half-life of ng-AQP2 in isotonic conditions was approximately 5 h, whereas that in medium supplemented with NaCl was approximately 1.5 h. Urea enhanced it compared to isotonic conditions. These findings indicate that the stability of ng-AQP2 is enhanced by urea, but not NaCl. The degradation of ng-AQP2 was dependent on proteasome and lysosome degradation pathways. The expression of ng-AQP2 was increased by hyperosmolality. Cell surface biotinylation experiments revealed that hyperosmolality enhanced the apical membrane insertion of ng-AQP2. These results indicate that hyperosmolality plays an important role in the stability, degradation, expression, and targeting of ng-AQP2.  相似文献   

7.
The rodent carcinogens dimethylcarbamyl chloride (DMCC) and diethylcarbamyl chloride (DECC) react with dGuo (pH 7.0–7.5, 37°C, 4 h) to form the O6-acyl derivatives 6-dimethylcarbamyloxy-2′-deoxyguanosine (6-DMC-dGuo) and 6-diethylcarbamyloxy-2′-deoxyguanosine (6-DEC-dGuo), respectively. Reaction of DMCC with dThd under identical conditions yielded 4-dimethylamino-thymidine (4-DMA-dThd). Compounds 6-DMC-dGuo and 6-DEC-dGuo undergo a nucleophilic aromatic substitution reaction with dimethylamine (DMA) to form 6-dimethylamino-2′-deoxyguanosine (6-DMA-dGuo) via displacement of the C-6 dialkylcarbamyloxy moiety. The substitution reaction did not take place when diethylamine or NH3 were substituted for DMA. The structures of the new compounds 6-DMC-dGuo, 6-DEC-dGuo, 4-DMA-dThd and 6-DMA-dGuo were deduced from chemical analyses and syntheses, UV and nuclear magnetic resonance (NMR) spectra and electron impact, isobutane chemical ionization and source insertion isobutane chemical ionization mass spectra. It was postulated that 4-DMA-dThd was formed following reaction of the transient intermediate 4-DMC-dThd with DMA formed by hydrolysis of DMCC. Calf thymus DNA was reacted in vitro with DMCC (pH 7.0–7.5, 37°C, 4 h) and the modified DNA hydrolyzed enzymatically to 2′-deoxynucleosides. Compounds 6-DMC-dGuo, 4-DMA-dThd and 6-DMA-dGuo were identified in the hydrolysate by high-pressure liquid chromatography (HPLC). In an indentical manner 6-DEC-dGuo was identified following in vitro reaction of DECC with calf thymus DNA. Compounds 6-DEC-dGuo and 6-DMC-dGuo possess novel structures with respect to the types of adducts known to be formed between carcinogens and bases in DNA. The implications of these findings with respect to chemical mutagenesis and carcinogenesis is discussed. The structural relationship between N4-dimethyl-5-methylcytosine (4-dimethylamino-Thy) formed in DNA following in vitro reaction with DMCC and 5-methylcytosine, the only modified base found in vertebrate DNA is noted.  相似文献   

8.
Wu X  Brewer G 《Gene》2012,500(1):10-21
Messenger RNA decay is an essential step in gene expression to set mRNA abundance in the cytoplasm. The binding of proteins and/or noncoding RNAs to specific recognition sequences or secondary structures within mRNAs dictates mRNA decay rates by recruiting specific enzyme complexes that perform the destruction processes. Often, the cell coordinates the degradation or stabilization of functional subsets of mRNAs encoding proteins collectively required for a biological process. As well, extrinsic or intrinsic stimuli activate signal transduction pathways that modify the mRNA decay machinery with consequent effects on decay rates and mRNA abundance. This review is an update to our 2001 Gene review on mRNA stability in mammalian cells, and we survey the enormous progress made over the past decade.  相似文献   

9.
Alpha4 is a signal transduction molecule that is required for B cell activation. Alpha4 associates with the catalytic subunit of protein phosphatase 2A (PP2Ac) and regulates its enzymatic activity. We examined the interaction of alpha4/PP2Ac with S6 kinase1 (S6K1) as a potential downstream signal transduction molecule because both alpha4/PP2Ac association and S6K1 activity were rapamycin-sensitive. Stimulation of spleen B cells with lipopolysaccharide induced the interaction of alpha4/PP2Ac and S6K1. Pull-down assay demonstrated that alpha4 interacts with S6K1 through PP2Ac. S6K1 and alpha4 bind to the different regions of PP2Ac as S6K1 to the region from amino acid 88th to 309th of PP2Ac and alpha4 to the two separated regions of the amino-terminal (from amino acid 19th to 22nd) and the middle (from 150th to 164th) portions of PP2Ac. These results suggest that alpha4 regulates S6K1 activity through PP2Ac in B cell activation.  相似文献   

10.
11.
The possibility to generate and expand tolerogenic dendritic cells (DC) with TGF-β1 in vitro opens new therapeutic perspectives for the treatment of autoimmune diseases. In the present study, GM-CSF+IL-4 induced the differentiation of DC from adherent peripheral blood mononuclear cells, which had a higher expression of HLA-DR, CD86 and CD1a and the capacity to stimulate T cells. TGF-β1 alone slightly promoted the generation of antigen presenting cells (APC) with higher expression of CD14, but did not differentiate them into E-cadherin + Langerhans cell (LC)-like DC. TGF-β1-driven APC exhibited the morphology, phenotypes and functions of tolerogenic immature DC, and had lower capacity to stimulate T cells. In vivo experiment demonstrates that TGF-β1-treated APC exhibited the therapeutic potential in Lewis rats with experimental autoimmune encephalomyelitis (EAE), followed by increase of IL-10 production in lymph nodes and decrease of inflammatory cells in spinal cords. Most importantly, GM-CSF/IL-4 used in DC preparation abolished the effect of TGF-β1 to induce tolerogenic APC in vitro and in vivo. The results reveal that the usage of GM-CSF for the generation of tolerogenic DC should not be copied from DC preparation for anti-tumor therapy.  相似文献   

12.
Microtubule reorganization is necessary for many cellular functions such as cell migration, cell polarity and cell division. Dynamin was originally identified as a microtubule-binding protein. Previous limited digestion experiment revealed that C-terminal 100-amino acids proline rich domain (PRD) of dynamin is responsible for microtubule binding in vitro. However, as obvious localization of dynamin along microtubules is only observed at the spindle midzone during mitosis but not in interphase cells, it remains unclear how dynamin interacts with microtubules in vivo. Here, we report that GFP-dynamin-2-(1-786), a truncated mutant lacking a C-terminal portion of the PRD, localized along microtubules in interphase HeLa cells. GFP-dynamin-2-wild type (WT) and GFP-dynamin-2-(1-745), a construct that was further truncated to remove the entire PRD, localized in discrete punctate structures but not along microtubules. These data suggest that the N-terminal (residues 746-786) but not the entire PRD is necessary for the interaction of dynamin-2 with microtubules in the cell and that the C-terminus of PRD (787-870) negatively regulate this interaction. Microtubules in cells expressing GFP-dynamin-2-(1-786) were stabilized against exposure to cold. These results provide a first evidence for a regulated interaction of dynamin-2 with microtubules in cultured mammalian cells.  相似文献   

13.
During its physiopathological maturation, the beta-amyloid precursor protein undergoes several distinct proteolytic events by activities called secretases. In Alzheimer's disease, the main histological hallmark called senile plaque is clearly linked to the overproduction of the amyloid peptides Abeta40 and Abeta42, two highly aggregable betaAPP-derived fragments generated by combined cleavages by beta- and gamma-secretases. Recently, an alternative hydrolytic pathway was described, involving another category of proteolytic activities called caspases, responsible for the production of a 31 amino acids betaAPP C-terminal fragment called C31. C31 was reported to lower the viability of N2a cells but the exact mechanisms mediating C31-toxicity remained to be established. Here we show that the transient transfection of pSV2 vector encoding C31 lowers by about 80% TSM1 neuronal cells viability. Arguing against a C31-stimulated apoptotic response, we demonstrate by combined enzymatic and immunological approaches that C31 expression did not modulate basal or staurosporine-induced caspase 3-like activity and pro-caspase-3 activation. Furthermore, C31 did not modify Bax and p53 expressions, poly-(ADP-ribose)-polymerase cleavage and cytochrome c translocation into the cytosol. However, we established that C31 overexpression triggers selective increase of Abeta42 but not Abeta40 production by HEK293 cells expressing wild-type betaAPP751. Altogether, our data demonstrate that C31 induces a caspase-independent toxicity in TSM1 neurons and potentiates the pathogenic betaAPP maturation pathway by increasing selectively Abeta42 species in wild type-betaAPP-expressing human cells.  相似文献   

14.
In neuroblastoma N1E 115 cells, carbachol, histamine and PGE1 elevated cyclic GMP content and, induced the efflux of preloaded 45Ca2+, the release of membrane-bound Ca2+ measured by fluorescent CTC, and the increase in [Ca2+]i as measured by Quin 2 fluorescence. The time course of the responses, the absolute requirement of extracellular Ca2+, the inhibition by receptor blockers, and the concentration dependency on histamine were all similar between these responses. The observation indicates that the mobilization of Ca2+, especially the increase of [Ca2+]i, may be intimately linked to the synthesis of cyclic GMP in the cells.  相似文献   

15.
NDRG2, a member of N-Myc downstream regulated gene family, exerts the important functions in cell differentiation and tumor suppression. Although the ectopic expressed Ndrg2 inhibits the proliferation of tumor cells, its intracellular signal transduction pathway is hardly known. Here, we identified MSP58, a 58-kDa microspherule protein, as an interacting partner of human Ndrg2 by using yeast two-hybrid screening. The interaction was confirmed by glutathione S-transferase pull-down assay in vitro and by co-immune-precipitation assay in vivo. The forkhead associated domain of MSP58 is essential for its interaction with Ndrg2. Ndrg2 could co-localize with MSP58 in nuclear of HeLa cell during cell stress. Furthermore, the modulation of Ndrg2 level influences the cell cycle process together with MSP58. In conclusion, the findings offered a novel insight into the physiological roles of Ndrg2.  相似文献   

16.
In this study the interaction of the preservative sodium chlorite with unsaturated lipids and glutathione was investigated, in comparison with peroxides, sodium hypochlorite, and benzalkonium chloride. The aim was to determine whether the action of sodium chlorite could involve membrane lipid damage or antioxidant depletion, and how this related to toxicity in both mammalian and microbial cells. The treatment of phospholipids with chlorite yielded low levels of hydroperoxides, but sodium chlorite oxidized the thiol-containing antioxidant glutathione to its disulfide form very readily in vitro, with a 1:4 oxidant:GSH stoichiometry. In cultured cells, sodium chlorite also caused a substantial depletion of intracellular glutathione, whereas lipid oxidation was not very prominent. Sodium chlorite had a lower toxicity to ocular mammalian cells than benzalkonium chloride, which could be responsible for the different effects of long-term application in the eye. The fungal cells, which were most resistant to sodium chlorite, maintained higher percentage levels of intracellular glutathione during treatment than the mammalian cells. The results show that sodium chlorite can cause oxidative stress in cells, and suggest that cell damage is more likely to be due to interaction with thiol compounds than with cell membrane lipids. The study also provides important information about the differential resistance of ocular cells and microbes to various preservatives and oxidants.  相似文献   

17.
The human P2Y6 receptor (hP2Y6) is a member of the G protein-coupled pyrimidinergic P2 receptor family that responds specifically to the extracellular nucleotide uridine diphosphate (UDP). Recently, the hP2Y6 receptor has been reported to mediate monocyte IL-8 production in response to UDP or lipopolysaccharide (LPS), but the role of hP2Y6 in regulating other pro-inflammatory cytokines or mediators is largely unknown. We demonstrate here that UDP specifically induces soluble TNF-alpha and IL-8 production in a promonocytic U937 cell line stably transfected with hP2Y6. However, we did not detect IL-1alpha, IL-1beta, IL-6, IL-10, IL-18, and PGE2 in the conditioned media from the same cell line. These results distinguish UDP/P2Y6 signaling from LPS signaling. Interestingly, UDP induces the production of IL-8, but not TNF-alpha, in human astrocytoma 1321N1 cell lines stably transfected with hP2Y6. Therefore, the immune effect of UDP/P2Y6 signaling on the production of proinflammatory cytokines is selective and dependent on cell types. We further identify that UDP can also induce the production of proinflammatory chemokines MCP-1 and IP-10 in hP2Y6 transfected promonocytic U937 cell lines, but not astrocytoma 1321N1 cell lines stably transfected with hP2Y6. From the Taqman analysis, UDP stimulation significantly upregulates the mRNA levels of IL-8, IP-10, and IL-1beta, but not TNF-alpha. Taken together, these new findings expand the pro-inflammatory biology of UDP mediated by the P2Y6 receptor.  相似文献   

18.
The effects of in vitro treatment with ammonium chloride, hepatic encephalopathy (HE) due to thioacetamide (TAA) induced liver failure and chronic hyperammonemia produced by i.p. administration of ammonium acetate on the two components of the multienzyme 2-oxoglutarate dehydrogenase complex (OGDH): 2-oxoglutarate decarboxylase (E1) and lipoamide dehydrogenase (E3), were examined in synaptic and nonsynaptic mitochondria from rat brain. With regard to E1 the response to ammonium ions in vitro (3 mM NH4Cl) was observed in nonsynaptic mitochondria only and was manifested by a 21% decrease of Vmax and a 35% decrease of Km for 2-oxoglutarate (2-OG). By contrast, both in vivo conditions primarily affected the synaptic mitochondrial E1: TAA-induced HE produced an 84% increase of Vmax and a 38% increase of Km for 2-OG. Hyperammonemia elevated Vmax of E1 by 110% and Km for 2-OG by 30%. HE produced no effect at all in nonsynaptic mitochondria while hyperammonemia produced a 35% increase of Vmax and a 30% increase of Km for 2-OG of E1. Both in vivo conditions produced a 20% increase of E3 activity in synaptic mitochondria, but no effect at all in nonsynaptic mitochondria. The preferential sensitivity of E1 to ammonium chloride in vitro in nonsynaptic mitochondria and hyperammonemic conditions in vivo in synaptic mitochondria may play a crucial role in the compartmentation of OGDH responses under analogous conditions. These results confirm the intrinsic differences between the OGDH properties in the synaptic and nonsynaptic brain compartments.  相似文献   

19.
Bcl-2 protects tumor cells from the apoptotic effects of various antineoplastic agents. Increased expression of Bcl-2 has been associated with poor response to chemotherapy in various malignancies, including leukemia. Therefore, bypassing the resistance conferred by anti-apoptotic factors such as Bcl-2 represents an attractive therapeutic strategy against cancer cells, including leukemic cells. We undertook this study to examine whether SAHA (suberoylanilide hydroxamic acid) overcomes the resistance by Bcl-2 in human leukemic cells, with a specific focus on the involvement of PML-NBs. Experiments were conducted with Bcl-2-overexpressing human leukemic U937 cells. Since we previously demonstrated that overexpression of Bcl-2 attenuates resveratrol-induced apoptosis in human leukemic U937 cells, resveratrol-treated U937 cells were used as a negative control. The present study indicates that SAHA at 1-7 μM, the dose range known to induce apoptosis in various cancer cells, overcomes the anti-apoptotic effects of Bcl-2 in Bcl-2-overexpressing human leukemic U937 cells. Notably, we observed that SAHA-induced formation of mature promyelocytic leukemia (PML) nuclear bodies (NBs) correlates with overcoming the anti-apoptotic effects of Bcl-2 in human leukemic U937 cells. Thus, PML protein and the formation of mature PML-NBs could be considered as therapeutic targets that could help bypass the resistance to apoptosis conferred by Bcl-2. Elucidating exactly how PML regulates Bcl-2 will require further work.  相似文献   

20.
The purpose of the present study was to determine the effects of two potent tumor-promoting agents on two DNA repair mechanisms and cyclic nucleotide levels in mammalian cells. Human amnion (AV3) cells were treated with low dose levels of either UV of N-acetoxy-acetylaminofluorene. Subsequently, DNA excision repair as measured by unscheduled DNA synthesis was followed in the absence or presence of non-toxic levels of either 12-O-tetradecanoylphorbol-13-acetate (TPA), phorbol-12,13-dibenzoate (PDB), both potent tumor promoters, or phorbol, a non-promoter. Neither of these compounds inhibited DNA repair synthesis occurring in response to low doses of the carcinogenic agents. In addition, TPA did not inhibit "post-replication repair" in response to UV irradiation of growing Chinese hamster (V79-4) cells. However, both TPA and PDB did cause rapid dramatic increases in cyclic guanosine monophosphate levels in human amnion cells; phorbol had no effect. Neither of these compounds affected cyclic adenosine monophosphate levels. These results are discussed in the light of a possible mechanism of the action of tumor promoters involving "post-replication repair".  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号