首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ras proteins must be localized to the inner surface of the plasma membrane to be biologically active. The motifs that effect Ras plasma membrane targeting consist of a C-terminal CAAX motif plus a second signal comprising palmitoylation of adjacent cysteine residues or the presence of a polybasic domain. In this study, we examined how Ras proteins access the cell surface after processing of the CAAX motif is completed in the endoplasmic reticulum (ER). We show that palmitoylated CAAX proteins, in addition to being localized at the plasma membrane, are found throughout the exocytic pathway and accumulate in the Golgi region when cells are incubated at 15 degrees C. In contrast, polybasic CAAX proteins are found only at the cell surface and not in the exocytic pathway. CAAX proteins which lack a second signal for plasma membrane targeting accumulate in the ER and Golgi. Brefeldin A (BFA) significantly inhibits the plasma membrane accumulation of newly synthesized, palmitoylated CAAX proteins without inhibiting their palmitoylation. BFA has no effect on the trafficking of polybasic CAAX proteins. We conclude that H-ras and K-ras traffic to the cell surface through different routes and that the polybasic domain is a sorting signal diverting K-Ras out of the classical exocytic pathway proximal to the Golgi. Farnesylated Ras proteins that lack a polybasic domain reach the Golgi but require palmitoylation in order to traffic further to the cell surface. These data also indicate that a Ras palmitoyltransferase is present in an early compartment of the exocytic pathway.  相似文献   

2.
Constitutive secretion is used to deliver newly synthesized proteins to the cell surface and to the extracellular milieu. The trans-Golgi network is a key station along this route that mediates sorting of proteins into distinct transport pathways, aided in part by clathrin and adaptor proteins. Subsequent movement of proteins to the plasma membrane can occur either directly or via the endocytic pathway. Moreover, multiple, parallel pathways from the trans-Golgi network to the plasma membrane appear to exist, not only in complex, polarized cells such as epithelial cells and neurons, but also in relatively simple cells such as fibroblasts. In addition to typical secretory vesicles, these pathways involve both small, pleiomorphic transport containers and relatively large tubular-saccular carriers that travel along cytoskeletal tracks. While production and movement of these membranous structures are typically described as constitutive, recent studies have revealed that these key steps in secretion are tightly regulated by Ras-superfamily GTPases, members of the protein kinase D family and tethering complexes such as the exocyst.  相似文献   

3.
SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) are essential for vesicle docking and fusion. SNAP-25, syntaxin 1A, and synaptobrevin/vesicle-associated membrane protein (VAMP) are SNARE proteins that mediate fusion of synaptic vesicles with the plasma membrane. It has been proposed that interactions of SNAP-25 with syntaxin 1A are required for initial membrane attachment of SNAP-25 (Vogel, K., Cabaniols, J.-P., and Roche, P. (2000) J. Biol. Chem. 275, 2959-2965). However, we have shown previously that residues 85-120 of the SNAP-25 interhelical domain, which do not interact with syntaxin, are necessary and sufficient for palmitoylation and plasma membrane localization of a green fluorescent protein reporter molecule (Gonzalo, S., Greentree, W. K., and Linder, M. E. (1999) J. Biol. Chem. 274, 21313-21318). To clarify the role of syntaxin in membrane targeting of SNAP-25, we studied a SNAP-25 point mutant (G43D) that does not interact with syntaxin. SNAP-25 G43D/green fluorescent protein was palmitoylated and localized at the plasma membrane. Newly synthesized SNAP-25 G43D had the same kinetics of membrane association as the wild-type protein. Furthermore, expression of a cytosolic mutant syntaxin 1A did not interfere with SNAP-25 membrane interactions or palmitoylation in the neuronal cell line NG108-15. Exogenously expressed SNAP-25 targets efficiently to the plasma membrane in cells of neuronal origin but only partially in HeLa cells, a neurosecretion-incompetent line. This phenotype was not rescued when syntaxin 1A was co-expressed with SNAP-25. Our data support a syntaxin-independent mechanism of membrane targeting for SNAP-25.  相似文献   

4.
5.
We previously demonstrated, using fluorescence recovery after photobleaching, that clathrin in clathrin-coated pits at the plasma membrane exchanges with free clathrin in the cytosol, suggesting that clathrin-coated pits are dynamic structures. We now investigated whether clathrin at the trans-Golgi network as well as the clathrin adaptors AP2 and AP1 in clathrin-coated pits at the plasma membrane and trans-Golgi network, respectively, also exchange with free proteins in the cytosol. We found that when the budding of clathrin-coated vesicle is blocked without significantly affecting the structure of clathrin-coated pits, both clathrin and AP2 at the plasma membrane and clathrin and AP1 at the trans-Golgi network exchange rapidly with free proteins in the cytosol. In contrast, when budding of clathrin-coated vesicles was blocked at the plasma membrane or trans-Golgi network by hypertonic sucrose or K(+) depletion, conditions that markedly affect the structure of clathrin-coated pits, clathrin exchange was blocked but AP2 at the plasma membrane and both AP1 and the GGA1 adaptor at the trans-Golgi network continue to rapidly exchange. We conclude that clathrin-coated pits are dynamic structures with rapid exchange of both clathrin and adaptors and that adaptors are able to exchange independently of clathrin when clathrin exchange is blocked.  相似文献   

6.
The small GTPase rab6A but not the isoform rab6A' has previously been identified as a regulator of the COPI-independent recycling route that carries Golgi-resident proteins and certain toxins from the Golgi to the endoplasmic reticulum (ER). The isoform rab6A' has been implicated in Golgi-to-endosomal recycling. Because rab6A but not A', binds rabkinesin6, this motor protein is proposed to mediate COPI-independent recycling. We show here that both rab6A and rab6A' GTP-restricted mutants promote, with similar efficiency, a microtubule-dependent recycling of Golgi resident glycosylation enzymes upon overexpression. Moreover, we used small interfering RNA mediated down-regulation of rab6A and A' expression and found that reduced levels of rab6 perturbs organization of the Golgi apparatus and delays Golgi-to-ER recycling. Rab6-directed Golgi-to-ER recycling seems to require functional dynactin, as overexpression of p50/dynamitin, or a C-terminal fragment of Bicaudal-D, both known to interact with dynactin inhibit recycling. We further present evidence that rab6-mediated recycling seems to be initiated from the trans-Golgi network. Together, this suggests that a recycling pathway operates at the level of the trans-Golgi linking directly to the ER. This pathway would be the preferred route for both toxins and resident Golgi proteins.  相似文献   

7.
Polarized epithelial cells efficiently sort newly synthesized apical and basolateral proteins into distinct transport carriers that emerge from the trans-Golgi network (TGN), and this sorting is recapitulated in nonpolarized cells. While the targeting signals of basolaterally destined proteins are generally cytoplasmically disposed, apical sorting signals are not typically accessible to the cytosol, and the transport machinery required for segregation and export of apical cargo remains largely unknown. Here we investigated the molecular requirements for TGN export of the apical marker influenza hemagglutinin (HA) in HeLa cells using an in vitro reconstitution assay. HA was released from the TGN in intact membrane-bound compartments, and export was dependent on addition of an ATP-regenerating system and exogenous cytosol. HA release was inhibited by guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS) as well as under conditions known to negatively regulate apical transport in vivo, including expression of the acid-activated proton channel influenza M2. Interestingly, release of HA was unaffected by depletion of ADP-ribosylation factor 1, a small GTPase that has been implicated in the recruitment of all known adaptors and coat proteins to the Golgi complex. Furthermore, regulation of HA release by GTPgammaS or M2 expression was unaffected by cytosolic depletion of ADP-ribosylation factor 1, suggesting that HA sorting remains functionally intact in the absence of the small GTPase. These data suggest that TGN sorting and export of influenza HA does not require classical adaptors involved in the formation of other classes of exocytic carriers and thus appears to proceed via a novel mechanism.  相似文献   

8.
Newly synthesized lysosomal enzymes bind to mannose 6-phosphate receptors (MPRs) in the TGN, and are carried to prelysosomes, where they are released. MPRs then return to the TGN for another round of transport. Rab9 is a ras-like GTPase which facilitates MPR recycling to the TGN in vitro. We show here that a dominant negative form of rab9, rab9 S21N, strongly inhibited MPR recycling in living cells. The block was specific in that the rates of biosynthetic protein transport, fluid phase endocytosis and receptor-mediated endocytosis were unchanged. Expression of rab9 S21N was accompanied by a decrease in the efficiency of lysosomal enzyme sorting. Cells compensated for the presence of the mutant protein by inducing the synthesis of both soluble and membrane- associated lysosomal enzymes, and by internalizing lysosomal enzymes that were secreted by default. These data show that MPRs are limiting in the secretory pathway of cells expressing rab9 S21N and document the importance of MPR recycling and the rab9 GTPase for efficient lysosomal enzyme delivery.  相似文献   

9.
Kenyon TK  Cohen JI  Grose C 《Journal of virology》2002,76(21):10980-10993
Like all alphaherpesviruses, varicella-zoster virus (VZV) infection proceeds by both cell-cell spread and virion production. Virions are enveloped within vacuoles located near the trans-Golgi network (TGN), while in cell-cell spread, surface glycoproteins fuse cells into syncytia. In this report, we delineate a potential role for serine/threonine phosphorylation of the cytoplasmic tail of the predominant VZV glycoprotein, gE, in these processes. The fact that VZV gE (formerly called gpI) is phosphorylated has been documented (E. A. Montalvo and C. Grose, Proc. Natl. Acad. Sci. USA 83:8967-8971, 1986), although respective roles of viral and cellular protein kinases have never been delineated. VZV ORF47 is a viral serine protein kinase that recognized a consensus sequence similar to that of casein kinase II (CKII). During open reading frame 47 (ORF47)-specific in vitro kinase assays, ORF47 phosphorylated four residues in the cytoplasmic tail of VZV gE (S593, S595, T596, and T598), thus modifying the known phosphofurin acidic cluster sorting protein 1 domain. CKII phosphorylated gE predominantly on the two threonine residues. In wild-type-virus-infected cells, where ORF47-mediated phosphorylation predominated, gE endocytosed and relocalized to the TGN. In cells infected with a VZV ORF47-null mutant, internalized VZV gE recycled to the plasma membrane and did not localize to the TGN. The mutant virus also formed larger syncytia than the wild-type virus, linking CKII-mediated gE phosphorylation with increased cell-cell spread. Thus, ORF47 and CKII behaved as "team players" in the phosphorylation of VZV gE. Taken together, the results showed that phosphorylation of VZV gE by ORF47 or CKII determined whether VZV infection proceeded toward a pathway likely involved with either virion production or cell-cell spread.  相似文献   

10.
Members of the Rab family of small GTPases play important roles in membrane trafficking along the exocytic and endocytic pathways. The Rab11 subfamily consists of two highly conserved members, Rab11a and Rab11b. Rab11a has been localized both to the pericentriolar recycling endosome and to the trans-Golgi network and functions in recycling of transferrin. However, the localization and function of Rab11b are completely unknown. In this study green fluorescent protein (GFP)-tagged Rab11b was used to determine its subcellular localization. GFP-Rab11b colocalized with internalized transferrin, and using different mutants of Rab11b, the role of this protein in transferrin uptake and recycling was examined. Two of these mutants, Rab11b-Q/L (constitutively active) and Rab11b-S/N (constitutively inactive), strongly inhibited the recycling of transferrin. Interestingly, both of them had no effect on transferrin uptake. In contrast, the C-terminally altered mutant Rab11b-DeltaC, which cannot be prenylated and therefore cannot interact with membranes, did not interfere with wild-type Rab11b function. From these data we concluded that functional Rab11b is essential for the transport of internalized transferrin from the recycling compartment to the plasma membrane.  相似文献   

11.
The Niemann-Pick C1 (NPC1) protein regulates cholesterol transport from late endosomes-lysosomes to other intracellular compartments. In this article, cholesterol transport to caveolin-1 and caveolin-2 containing compartments, such as the trans-Golgi network (TGN) and plasma membrane caveolae, was examined in normal (NPC+/+), NPC heterozygous (NPC+/-), and NPC homozygous (NPC-/-) human fibroblasts. The expression and distribution of NPC1 in each cell type were similar, and characterized by a finely dispersed, granular staining pattern. The expression of caveolin-1 and caveolin-2 was increased in NPC+/- and NPC-/- fibroblasts, although the distribution in each cell type was similar and characterized by predominant staining of the TGN and plasma membrane. The TGN in NPC+/+ fibroblasts was relatively cholesterol-enriched, whereas the TGN in NPC+/- and NPC-/- fibroblasts was partially or completely cholesterol-deficient, respectively. Consistent with studies demonstrating the transport of cholesterol from the TGN to plasma membrane caveolae, the concentration of cholesterol in plasma membrane caveolae isolated from NPC+/- and NPC-/- fibroblasts was significantly decreased, even though the total concentration of plasma membrane cholesterol in each cell type was similar.These studies demonstrate that NPC1 regulates cholesterol transport to caveolin-1 and caveolin-2 containing compartments such as the TGN and plasma membrane caveolae.  相似文献   

12.
A yeast plasma membrane protein, Chs3p, transits to the mother-bud neck from a reservoir comprising the trans-Golgi network (TGN) and endosomal system. Two TGN/endosomal peripheral proteins, Chs5p and Chs6p, and three Chs6p paralogues form a complex that is required for the TGN to cell surface transport of Chs3p. The role of these peripheral proteins has not been clear, and we now provide evidence that they create a coat complex required for the capture of membrane proteins en route to the cell surface. Sec7p, a Golgi protein required for general membrane traffic and functioning as a nucleotide exchange factor for the guanosine triphosphate (GTP)-binding protein Arf1p, is required to recruit Chs5p to the TGN surface in vivo. Recombinant forms of Chs5p, Chs6p, and the Chs6p paralogues expressed in baculovirus form a complex of approximately 1 MD that binds synthetic liposomes in a reaction requiring acidic phospholipids, Arf1p, and the nonhydrolyzable GTPgammaS. The complex remains bound to liposomes centrifuged on a sucrose density gradient. Thin section electron microscopy reveals a spiky coat structure on liposomes incubated with the full complex, Arf1p, and GTPgammaS. We termed the novel coat exomer for its role in exocytosis from the TGN to the cell surface. Unlike other coats (e.g., coat protein complex I, II, and clathrin/adaptor protein complex), the exomer does not form buds or vesicles on liposomes.  相似文献   

13.
Two endosome populations involved in recycling of membranes and receptors to the plasma membrane have been described, the early and the recycling endosome. However, this distinction is mainly based on the flow of cargo molecules and the spatial distribution of these membranes within the cell. To get insights into the membrane organization of the recycling pathway, we have studied Rab4, Rab5, and Rab11, three regulatory components of the transport machinery. Following transferrin as cargo molecule and GFP-tagged Rab proteins we could show that cargo moves through distinct domains on endosomes. These domains are occupied by different Rab proteins, revealing compartmentalization within the same continuous membrane. Endosomes are comprised of multiple combinations of Rab4, Rab5, and Rab11 domains that are dynamic but do not significantly intermix over time. Three major populations were observed: one that contains only Rab5, a second with Rab4 and Rab5, and a third containing Rab4 and Rab11. These membrane domains display differential pharmacological sensitivity, reflecting their biochemical and functional diversity. We propose that endosomes are organized as a mosaic of different Rab domains created through the recruitment of specific effector proteins, which cooperatively act to generate a restricted environment on the membrane.  相似文献   

14.
TGN38, a transmembrane glycoprotein predominantly localized to the trans-Golgi network, is utilized to study both the structure and function of the trans-Golgi network (TGN). The effects of brefeldin A (BFA) on the TGN were studied in comparison to its documented effects on the Golgi cisternae. During the first 30 min of BFA treatment, the TGN loses its cisternal structure and extends as tubules throughout the cytoplasm. By 60 min, it condenses into a stable structure surrounding the microtubule-organizing center. By electron microscopy, this structure appears as a population of large vesicles, and by immunolabeling, most of these vesicles contain TGN38. TGN38 cycles to the plasma membrane and back, which is shown by addition of TGN38 luminal domain antibodies directly to cell culture media. This results in rapid uptake of antibodies which label the TGN within 30 min, both in its native and BFA-induced conformation. A number of transmembrane proteins have been shown to take this cycling pathway, but TGN38 is unique in that it is the only one predominantly localized to the TGN. To investigate the cycling of TGN38, the endocytic pathway was labeled by internalization of Lucifer Yellow, and in the presence of BFA there was partial colocalization with TGN38. Further studies were carried out in which microtubules were depolymerized, resulting in dispersal of Golgi elements and inhibition of transport from endosomes to lysosomes. TGN38 cycling continues in the absence of microtubules. Taken together, these studies indicate that TGN38 returns from the plasma membrane via the endocytic pathway. We conclude that the TGN is structurally and functionally distinct from the Golgi cisternae, indicating that different molecules control membrane traffic from the Golgi cisternae and from the TGN.  相似文献   

15.
A genetic screen for mutations synthetically lethal with fission yeast calcineurin deletion led to the identification of Ypt3, a homolog of mammalian Rab11 GTP-binding protein. A mutant with the temperature-sensitive ypt3-i5 allele showed pleiotropic phenotypes such as defects in cytokinesis, cell wall integrity, and vacuole fusion, and these were exacerbated by FK506-treatment, a specific inhibitor of calcineurin. Green fluorescent protein (GFP)-tagged Ypt3 showed cytoplasmic staining that was concentrated at growth sites, and this polarized localization required the actin cytoskeleton. It was also detected as a punctate staining in an actin-independent manner. Electron microscopy revealed that ypt3-i5 mutants accumulated aberrant Golgi-like structures and putative post-Golgi vesicles, which increased remarkably at the restrictive temperature. Consistently, the secretion of GFP fused with the pho1(+) leader peptide (SPL-GFP) was abolished at the restrictive temperature in ypt3-i5 mutants. FK506-treatment accentuated the accumulation of aberrant Golgi-like structures and caused a significant decrease of SPL-GFP secretion at a permissive temperature. These results suggest that Ypt3 is required at multiple steps of the exocytic pathway and its mutation affects diverse cellular processes and that calcineurin is functionally connected to these cellular processes.  相似文献   

16.
A large body of knowledge relating to the constitution of Rab GTPase/Rab effector complexes and their impact on both membrane domain organization and overall membrane trafficking has been built up in recent years. However in the context of the live cell there are still many questions that remain to be answered, such as where and when these complexes assemble and where they perform their primary function(s). We describe here the dynamic processes that take place in the final steps of the Rab11A dependent recycling pathway, in the context of the membrane platform constituted by Myosin Vb, Rab11A, and Rab11-FIP2. We first confirm that a series of previously reported observations obtained during the study of a number of trafficking cargoes also apply to langerin. Langerin is a cargo molecule that traffics through Rab11A-positive membrane domains of the endosomal recycling pathway. In order to explore the relative dynamics of this set of partners, we make extensive use of a combinatory approach of Live-FRET, fast FRAP video, fast confocal and TIRF microscopy modalities. Our data show that the Myosin Vb/Rab11A/Rab11-FIP2 platform is spatially involved in the regulation of langerin trafficking at two distinct sites within live cells, first at the sorting site in the endosomal recycling compartment (ERC) where transport vesicles are formed, and subsequently, in a strict time-defined order, at the very late stage of docking/tethering and fusion of these langerin recycling vesicles to the plasma membrane.  相似文献   

17.
Chlamydia trachomatis acquires C6-NBD-sphingomyelin endogenously synthesized from C6-NBD-ceramide and transported to the vesicle (inclusion) in which they multiply. Here we explore the mechanisms of this unusual trafficking and further characterize the association of the chlamydial inclusion with the Golgi apparatus. Endocytosed chlamydiae are trafficked to the Golgi region and begin to acquire sphingolipids from the host within a few hours following infection. The transport of NBD-sphingolipid to the inclusion is energy- and temperature-dependent with the characteristics of an active, vesicle-mediated process. Photo-oxidation of C5-DMB-ceramide, in the presence of diaminobenzidine, identified DMB-lipids in vesicles in the process of fusing to the chlamydial inclusion membrane. C6-NBD-sphingomyelin incorporated into the plasma membrane is not trafficked to the inclusion to a significant degree, suggesting the pathway for sphingomyelin trafficking is direct from the Golgi apparatus to the chlamydial inclusion. Lectins and antibody probes for Golgi-specific glycoproteins demonstrate the close association of the chlamydial inclusion with the Golgi apparatus but do not detect these markers in the inclusion membrane. Collectively, the data are consistent with a model in which C.trachomatis inhabits a unique vesicle which interrupts an exocytic pathway to intercept host sphingolipids in transit from the Golgi apparatus to the plasma membrane.  相似文献   

18.
ACRP30 is secreted from 3T3-L1 adipocytes via a Rab11-dependent pathway   总被引:1,自引:0,他引:1  
Adipocytes are now known to secrete a range of adipokines that exhibit distinct biological functions. Here, we sought to understand the secretory pathways utilised by ACRP30 to the surface of adipocytes. We find that ACRP30 overlaps with adipsin in intracellular compartments distinct from Glut4, but nonetheless exhibits insulin-stimulated secretion from cells. Both adipsin and ACRP30 overlap with transferrin receptor-positive membranes, implying that the pathway of secretion involves the transferrin receptor-positive endosomal system. Consistent with this, we show that ablation of endosomes significantly inhibited the secretion of ACRP30, as did treatment of cells with Brefeldin A. In order to further probe the role of recycling endosomes on the secretion of ACRP30, we over-expressed a mutant form of Rab11, Rab11-S25N, in 3T3-L1 adipocytes and found that expression of this mutant significantly reduced basal and insulin-stimulated secretion. We also demonstrate that Arf6 also plays a role in the secretion of ACRP30. Collectively, these data implicate both Arf6 and Rab11 as crucial mediators of constitutive and insulin-stimulated secretion of ACRP30 and further suggest that recycling endosomes may play a central role in this process.  相似文献   

19.
The regulation of hedgehog signaling by vesicular trafficking was exemplified by the finding that Rab23, a Rab-GTPase vesicular transport protein, is mutated in open brain mice. In this study, the localization of Rab23 was analyzed by light and immunoelectron microscopy after expression of wild-type (Rab23-GFP), constitutively active Rab23 (Rab23Q68L-GFP), and inactive Rab23 (Rab23S23N-GFP) in a range of mammalian cell types. Rab23-GFP and Rab23Q68L-GFP were predominantly localized to the plasma membrane but were also associated with intracellular vesicular structures, whereas Rab23S23N-GFP was predominantly cytosolic. Vesicular Rab23-GFP colocalized with Rab5Q79L and internalized transferrin-biotin, but not with a marker of the late endosome or the Golgi complex. To investigate Rab23 with respect to members of the hedgehog signaling pathway, Rab23-GFP was coexpressed with either patched or smoothened. Patched colocalized with intracellular Rab23-GFP but smoothened did not. Analysis of patched distribution by light and immunoelectron microscopy revealed it is primarily localized to endosomal elements, including transferrin receptor-positive early endosomes and putative endosome carrier vesicles and, to a lesser extent, with LBPA-positive late endosomes, but was excluded from the plasma membrane. Neither patched or smoothened distribution was altered in the presence of wild-type nor mutant Rab23-GFP, suggesting that despite the endosomal colocalization of Rab23 and patched, it is likely that Rab23 acts more distally in regulating hedgehog signaling.  相似文献   

20.
Palmitoylation is postulated to regulate Ras signaling by modulating its intracellular trafficking and membrane microenvironment. The mechanisms by which palmitoylation contributes to these events are poorly understood. Here, we show that dynamic turnover of palmitate regulates the intracellular trafficking of HRas and NRas to and from the Golgi complex by shifting the protein between vesicular and nonvesicular modes of transport. A combination of time-lapse microscopy and photobleaching techniques reveal that in the absence of palmitoylation, GFP-tagged HRas and NRas undergo rapid exchange between the cytosol and ER/Golgi membranes, and that wild-type GFP-HRas and GFP-NRas are recycled to the Golgi complex by a nonvesicular mechanism. Our findings support a model where palmitoylation kinetically traps Ras on membranes, enabling the protein to undergo vesicular transport. We propose that a cycle of depalmitoylation and repalmitoylation regulates the time course and sites of Ras signaling by allowing the protein to be released from the cell surface and rapidly redistributed to intracellular membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号