首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Yu S  Mei FC  Lee JC  Cheng X 《Biochemistry》2004,43(7):1908-1920
Although individual structures of cAMP-dependent protein kinase (PKA) catalytic (C) and regulatory (R) subunits have been determined at the atomic level, our understanding of the effects of cAMP activation on protein dynamics and intersubunit communication of PKA holoenzymes is very limited. To delineate the mechanism of PKA activation and structural differences between type I and II PKA holoenzymes, the conformation and structural dynamics of PKA holoenzymes Ialpha and IIbeta were probed by amide hydrogen-deuterium exchange coupled with Fourier transform infrared spectroscopy (FT-IR) and chemical protein footprinting. Binding of cAMP to PKA holoenzymes Ialpha and IIbeta leads to a downshift in the wavenumber for both the alpha-helix and beta-strand bands, suggesting that R and C subunits become overall more dynamic in the holoenzyme complexes. This is consistent with the H-D exchange results showing a small change in the overall rate of exchange in response to the binding of cAMP to both PKA holoenzymes Ialpha and IIbeta. Despite the overall similarity, significant differences in the change of FT-IR spectra in response to the binding of cAMP were observed between PKA holoenzymes Ialpha and IIbeta. Activation of PKA holoenzyme Ialpha led to more conformational changes in beta-strand structures, while cAMP induced more apparent changes in the alpha-helical structures in PKA holoenzyme IIbeta. Chemical protein footprinting experiments revealed an extended docking surface for the R subunits on the C subunit. Although the overall subunit interfaces appeared to be similar for PKA holoenzymes Ialpha and IIbeta, a region around the active site cleft of the C subunit was more protected in PKA holoenzyme Ialpha than in PKA holoenzyme IIbeta. These results suggest that the C subunit assumes a more open conformation in PKA holoenzyme IIbeta. In addition, the chemical cleavage patterns around the active site cleft of the C subunit were distinctly different in PKA holoenzymes Ialpha and IIbeta even in the presence of cAMP. These observations provide direct evidence that the R subunits may be partially associated with the C subunit with the pseudosubstrate sequence docked in the active site cleft in the presence of cAMP.  相似文献   

2.
Catecholamines in adipose tissue promote lipolysis via cAMP, whereas insulin stimulates lipogenesis. Here we show that H(2)O(2) generated by insulin in rat adipocytes impaired cAMP-mediated amplification cascade of lipolysis. These micromolar concentrations of H(2)O(2) added before cAMP suppressed cAMP activation of type IIbeta cyclic AMP-dependent protein kinase (PKA) holoenzyme, prevented hormone-sensitive lipase translocation from cytosol to storage droplets, and inhibited lipolysis. Similarly, H(2)O(2) impaired activation of type IIalpha PKA holoenzyme from bovine heart and from that reconstituted with regulatory IIalpha and catalytic alpha subunits. H(2)O(2) was ineffective (a) if these PKA holoenzymes were preincubated with cAMP, (b) if added to the catalytic alpha subunit, which is active independently of cAMP activation, and (c) if the catalytic alpha subunit was substituted by its C199A mutant in the reconstituted holoenzyme. H(2)O(2) inhibition of PKA activation remained after H(2)O(2) elimination by gel filtration but was reverted with dithiothreitol or with thioredoxin reductase plus thioredoxin. Electrophoresis of holoenzyme in SDS gels showed separation of catalytic and regulatory subunits after cAMP incubation but a single band after H(2)O(2) incubation. These data strongly suggest that H(2)O(2) promotes the formation of an intersubunit disulfide bond, impairing cAMP-dependent PKA activation. Phylogenetic analysis showed that Cys-97 is conserved only in type II regulatory subunits and not in type I regulatory subunits; hence, the redox regulation mechanism described is restricted to type II PKA-expressing tissues. In conclusion, phylogenetic analysis results, selective chemical behavior, and the privileged position in holoenzyme lead us to suggest that Cys-97 in regulatory IIalpha or IIbeta subunits is the residue forming the disulfide bond with Cys-199 in the PKA catalytic alpha subunit. A new molecular point for cross-talk among heterologous signal transduction pathways is demonstrated.  相似文献   

3.
The functional significance of the presence of two major (types I and II) isoforms of the cAMP-dependent protein kinase (PKA) is still enigmatic. The present study showed that peptide substrate enhanced the activation of PKA type I at low, physiologically relevant concentrations of cAMP through competitive displacement of the regulatory RI subunit. The effect was similar whether the substrate was a short peptide or the physiological 60-kDa protein tyrosine hydroxylase. In contrast, substrate failed to affect the cAMP-sensitivity of PKA type II. Size exclusion chromatography confirmed that substrate acted to physically enhance the dissociation of the RIalpha and Calpha subunits of PKA type I, but not the RIIalpha and Calpha subunits of PKA type II. Substrate availability can therefore fine-tune the activation of PKA type I by cAMP, but not PKA type II. The cAMP-dissociated RII and C subunits of PKA type II reassociated much faster than the PKA type I subunits in the presence of substrate peptide. This suggests that only PKA type II is able to rapidly reverse its activation after a burst of cAMP when exposed to high substrate concentration. We propose this as a possible reason why PKA type II is preferentially found in complexes with substrates undergoing rapid phosphorylation cycles.  相似文献   

4.
The mouse wild type and four mutant regulatory type I (RI) subunits were expressed in Escherichia coli and subjected to kinetic analyses. The defective RI subunits had point mutations in either cAMP-binding site A (G200/E), site B (G324/D, R332/H), or in both binding sites. In addition, a truncated form of RI which lacked the entire cAMP-binding site B was generated. All of the mutant RI subunits which bound [3H]cAMP demonstrated more rapid rates of cAMP dissociation compared to the wild type RI subunit. Dissociation profiles showed only a single dissociation component, suggesting that a single nonmutated binding site was functional. The mutant RI subunits associated with purified native catalytic subunit to form chromatographically separable holoenzyme complexes in which catalytic activity was suppressed. Each of these holoenzymes could be activated but showed varying degrees of cAMP responsiveness with apparent Ka values ranging from 40 nM to greater than 5 microM. The extent to which the mutated cAMP-binding sites were defective was also shown by the resistance of the respective holoenzymes to activation by cAMP analogs selective for the mutated binding sites. Kinetic results support the conclusions that 1) Gly-200 of cAMP-binding site A and Gly-324 or Arg-332 of site B are essential to normal conformation and function, 2) activation of type I cAMP-dependent protein kinase requires that only one of the cAMP-binding sites be functional, 3) mutational inactivation of site B (slow exchange) has a much more drastic effect than that of site A on increasing the Ka of the holoenzyme for cAMP, as well as in altering the rate of cAMP dissociation from the remaining site of the free RI subunit. The strong dependence of one cAMP-binding site on the integrity of the other site suggests a tight association between the two sites.  相似文献   

5.
Homogeneous protein-protein interaction assays without the need of a separation step are an essential tool to unravel signal transduction events in live cells. We have established an isoform specific protein kinase A (PKA) subunit interaction assay based on bioluminescence resonance energy transfer (BRET). Tagging human Ralpha(I)-, Ralpha(II)-, as well as Calpha-subunits of PKA with Renilla luciferase (Rluc) as the bioluminescent donor or with green fluorescent protein (GFP2) as the energy acceptor, respectively, allows to directly probe PKA subunit interaction in living cells as well as in total cell extracts in order to study side by side PKA type I versus type II holoenzyme dynamics. Several novel, genetically encoded cAMP sensors and-for the first time PKA type I sensors-were generated. When C- and R-subunits are assembled to the respective holoenzyme complexes inside the cell, BRET occurs with a signal up to three times above the background. An increase of endogenous cAMP levels as well as treatment with the cAMP analog 8-Br-cAMP is reflected by a dose-dependent BRET signal reduction in cells expressing wild type proteins. In contrast to type II, the dissociation of the PKA type I holoenzyme complex was never complete in cells with maximally elevated cAMP levels. Both sensors dissociated completely upon treatment with 8-Br-cAMP after cell lysis, consistent with in vitro activation assays using holoenzymes assembled from purified PKA subunits. Interestingly, incubation of cells with the PKA antagonist Rp-8-Br-cAMPS leads to a significant BRET signal increase in cells expressing PKA type I or type II isoforms, indicating a stabilization of the holoenzyme complexes in vivo. Mutant RI subunits with reduced (hRIalpha-R210K) or abolished (hRIalpha-G200E/G324E) cAMP binding capability were studied to quantify maximal signal to noise ratios for the RI-BRET sensor. Utilizing BRET we demonstrate that PKA type II holoenzyme was rendered insensitive to beta-adrenergic receptor stimulation with isoproterenol when anchoring to the plasma membrane of COS-7 cells was disrupted by either using Ht31 peptide or by depletion of membrane cholesterol.  相似文献   

6.
Fluorescence intensity and anisotropy measurements using the fluorescent adenosine cyclic 3',5'-phosphate (cAMP) analogue 1,N6-ethenoadenosine cyclic 3',5'-phosphate (epsilon-cAMP) are sensitive to the dissociation of epsilon-cAMP which occurs when either the type I or the type II regulatory subunit (RI or RII) of cAMP-dependent protein kinase associates with the catalytic subunit. Studies using epsilon-cAMP show that MgATP has opposite effects on the reconstitution of both types of protein kinase: MgATP strongly stabilizes the type I holoenzyme while it slightly destabilizes the type II holoenzyme. The synthetic substrate Kemptide has a small inhibitory effect on the reconstitution of both holoenzymes when tested at 10 microM concentration. The protein kinase inhibitor has a larger effect which is especially pronounced in the reassociation of the type I enzyme. The diminished relative ability of the type I regulatory subunit to compete with the protein kinase inhibitor suggests that the combined effects of the two opposing equilibria (epsilon-cAMP and catalytic subunit binding) are different for the two types of regulatory subunits. Displacement experiments show that cAMP and epsilon-cAMP bind about equally well to the type I subunit. Slow conformational changes accompanying the binding of epsilon-cAMP by both regulatory subunits are greatly accelerated with the holoenzymes, suggesting that dissociation of the holoenzymes occurs via ternary complexes. The time courses of epsilon-cAMP binding also show the heterogeneity of binding characteristics of RII. The 37 000-dalton fragment of type II subunit retains the epsilon-cAMP binding properties of the native subunit. However, only a fraction of the fragment preparation (approximately 32% estimated from sedimentation measurements) binds the catalytic subunit well, suggesting heterogeneity of cleavage.  相似文献   

7.
Control of specificity in cAMP signaling is achieved by A-kinase anchoring proteins (AKAPs), which assemble cAMP effectors such as protein kinase A (PKA) into multiprotein signaling complexes in the cell. AKAPs tether the PKA holoenzymes at subcellular locations to favor the phosphorylation of selected substrates. PKA anchoring is mediated by an amphipathic helix of 14-18 residues on each AKAP that binds to the R subunit dimer of the PKA holoenzymes. Using a combination of bioinformatics and peptide array screening, we have developed a high affinity-binding peptide called RIAD (RI anchoring disruptor) with >1000-fold selectivity for type I PKA over type II PKA. Cell-soluble RIAD selectively uncouples cAMP-mediated inhibition of T cell function and inhibits progesterone synthesis at the mitochondria in steroid-producing cells. This study suggests that these processes are controlled by the type I PKA holoenzyme and that RIAD can be used as a tool to define anchored type I PKA signaling events.  相似文献   

8.
Molecular basis for isoform-specific autoregulation of protein kinase A   总被引:1,自引:0,他引:1  
Protein kinase A (PKA) isozymes are distinguishable by the inhibitory pattern of their regulatory (R) subunits with RI subunits containing a pseudophosphorylation P(0)-site and RII subunits being a substrate. Under physiological conditions, RII does not inhibit PrKX, the human X chromosome encoded PKA catalytic (C) subunit. Using a live cell Bioluminescence Resonance Energy Transfer (BRET) assay, Surface Plasmon Resonance (SPR) and kinase activity assays, we identified the P(0)-position of the R subunits as the determinant of PrKX autoinhibition. Holoenzyme formation only takes place with an alanine at position P(0), whereas RI subunits containing serine, phosphoserine or aspartate do not bind PrKX. Surprisingly, PrKX reversibly associates with RII when changing P(0) from serine to alanine. In contrast, PKA-Calpha forms holoenzyme complexes with all wildtype and mutant R subunits; however, holoenzyme re-activation by cAMP is severely affected. Only PKA type II or mutant PKA type I holoenzymes (P(0): Ser or Asp) are able to dissociate fully upon maximally elevated intracellular cAMP. The data are of particular significance for understanding PKA isoform-specific activation patterns in living cells.  相似文献   

9.
Protein kinase A (PKA) has long been recognized as playing a major role in many regulatory processes in cells through its activation by the ubiquitous second messenger cAMP. We show here a novel mode of activation of PKA type II that is independent of cAMP and is, instead, dependent on sphingosine. PKA type II is specifically activated by sphingosine and its analog, dimethylsphingosine, but not by sphingosine-1-phosphate or other lipids. Like cAMP, sphingosine activates PKA holoenzyme but not the catalytic subunit alone, suggesting that the activation is mediated by the regulatory subunits. However, sphingosine-activated PKA, but not cAMP-activated PKA, is inhibited by phosphatidylserine, suggesting a distinct mechanism of activation. Furthermore, unlike cAMP, sphingosine does not induce the dissociation of PKA holoenzyme into catalytic and regulatory subunits. Modulation of sphingosine levels in vivo results in alteration in basal membrane-associated PKA activity consistent with a direct effect of membrane sphingosine on PKA type II. Importantly, sphingosine-dependent but not cAMP-dependent activation of PKA specifically phosphorylates Ser58 of the multifunctional adapter protein 14-3-3zeta, promoting the conversion of dimeric 14-3-3 to a monomeric state, thus potentially modulating several biological functions. These results define a new mode of PKA activation that is sphingosine-dependent and mechanistically different from the classical cAMP-dependent activation of PKA. Furthermore, they suggest that stimuli that induce sphingosine accumulation and modulate phospholipid content at the cell membrane have the potential to activate PKA, thereby inducing the phosphorylation of distinct substrates and biological activities.  相似文献   

10.
A truncated regulatory subunit of cAMP-dependent protein kinase I was constructed which contained deletions at both the carboxyl terminus and at the amino terminus. The entire carboxyl-terminal cAMP-binding domain was deleted as well as the first 92 residues up to the hinge region. This monomeric truncated protein still forms a complex with the catalytic subunit, and activation of this complex is mediated by cAMP. The affinity of this mutant holoenzyme for cAMP and its activation by cAMP are nearly identical to holoenzyme formed with a regulatory subunit having only the carboxyl-terminal deletion and very similar to native holoenzyme. The off rate for cAMP from both mutant regulatory subunits, however, is monophasic and very fast relative to the biphasic off rate seen for the native regulatory subunit. The effects of NaCl, urea, and pH on cAMP binding are also very similar for the mutant and native holoenzymes. Like the native type I holoenzyme, both mutant holoenzymes bind ATP with a high affinity. The positive cooperativity seen for MgATP binding to the native holoenzyme, however, is abolished in the double deletion mutant. The Hill coefficient for ATP binding to this mutant holoenzyme is 1.0 in contrast to 1.6 for the native holoenzyme. The Kd (cAMP) is increased by approximately 1 order of magnitude for both mutant forms of the holoenzyme in the presence of MgATP. A similar shift is seen for the native holoenzyme. Further characterization of the MgATP-binding properties of the wild-type holoenzyme indicates that a binary complex containing catalytic subunit and MgATP is required, in particular, for reassociation with the cAMP-bound regulatory subunit. This binary complex is required for rapid dissociation of the bound cAMP and is probably responsible for the observed reduction in cAMP-binding affinity for the type I holoenzyme in the presence of MgATP.  相似文献   

11.
Regulatory (R) subunits and their association with catalytic subunits to form cAMP-dependent protein kinase holoenzymes were investigated in corpora lutea of pregnant rats. Following separation by DEAE-cellulose chromatography, R subunits were identified by labeling with 8-N3[32P]cAMP and autophosphorylation on one and two-dimensional gel electrophoresis and by reactivity with antisera. DEAE-cellulose elution of R subunits with catalytic subunits as holoenzymes or without catalytic subunits was determined by sedimentation characteristics on sucrose density gradient centrifugation and by cAMP-stimulated kinase activation characteristics on Eadie-Scatchard analysis. We identified the presence of a type I holoenzyme containing RI alpha (Mr 47,000) subunits, a prominent type II holoenzyme containing RII beta (Mr 52,000) subunits, and a second more acidic type II holoenzyme peak containing both RII beta and RII alpha (Mr 54,000) subunits. However, the majority of total R subunit activity was associated with a catalytic subunit-free peak of RI alpha protein which on elution from DEAE-cellulose was associated with cAMP. This report establishes the more basic elution position from DEAE-cellulose of the prominent rat luteal RII beta holoenzyme in very close proximity to free RI alpha and presents one of the few reports of a normal tissue containing a large percentage of catalytic subunit-free RI alpha.  相似文献   

12.
Anand G  Taylor SS  Johnson DA 《Biochemistry》2007,46(32):9283-9291
To better understand the molecular mechanism of cAMP-induced and substrate-enhanced activation of type-I A-kinase, we measured the kinetics of A-kinase regulatory subunit interactions using a stopped-flow spectrofluorometric method. Specifically, we conjugated fluorescein maleimide (FM) to two separate single cysteine-substituted and truncated mutants of the type Ialpha regulatory subunit of A-kinase, RIalpha (91-244). One site of cysteine substitution and conjugation was at R92 and the other at R239. Although the emission from both conjugates changed with catalytic subunit binding, only the FM-R92C conjugate yielded unambiguous results in the presence of cAMP and was therefore used to assess whether a pseudosubstrate perturbed the rate of holoenzyme dissociation. We found that cAMP selectively accelerates the rate of dissociation of the RIalpha (91-244):C-subunit complex approximately 700-fold, resulting in an equilibrium dissociation constant of 130 nM. Furthermore, excess amounts of the pseudosubstrate inhibitor, PKI(5-24), had no effect on the rate of RIalpha (91-244):C-subunit complex dissociation. The results indicate that the limited ability of cAMP to induce holoenzyme dissociation reflects a greatly reduced but still significant regulatory catalytic subunit affinity in the presence of cAMP. Moreover, the ability of the substrate to facilitate cAMP-induced dissociation results from the mass action effect of excess substrate and not from direct substrate binding to holoenzyme.  相似文献   

13.
Isoform diversity within the protein kinase A (PKA) family is achieved by catalytic (C) subunits binding to different isoforms of regulatory subunit homodimers (R2). In a previous small-angle X-ray scattering study, we showed that the type Ialpha R2 homodimer has a distinctive Y-shaped structure, while the IIalpha and IIbeta homodimers are highly flexible and extended in solution. Here we present the results of X-ray scattering experiments on different isoforms of the PKA holoenzyme (R2C2) and show that the type IIbeta R2 homodimer undergoes a dramatic compaction upon binding C subunits that involves a 10A reduction in radius of gyration (from 56 to 46 A) and a 35 A shortening of the maximum linear dimension (from 180-145 A). In contrast, the type IIalpha R2 homodimer shows very little change in these structural parameters and remains extended upon C-subunit binding. This large difference is surprising given the highly conserved sequence and domain organization for the different R isoforms. A mutant RIIbeta holoenzyme and an RIIalpha/RIIbeta chimera were used to explore the role of the sequence linking different functional domains within RIIbeta in the observed C subunit-induced compaction. Structural modeling was used to aid in interpreting the scattering results in terms of the role of inter-domain and inter-subunit contacts in determining the global conformations of the different isoforms. The results provide an important structural foundation for understanding isoform-specific PKA localization and signaling.  相似文献   

14.
The type I and type II regulatory subunits of cAMP-dependent protein kinase can be distinguished by autophosphorylation. The type II regulatory subunits have an autophosphorylation site at a proteolytically sensitive hinge region, while the type I regulatory subunits have a pseudophosphorylation site. Only holoenzyme formed with type I regulatory subunits has a high affinity binding site for MgATP. In order to determine the functional consequences of regulatory subunit phosphorylation on interaction with the catalytic subunit, an autophosphorylation site was introduced into the type I regulatory subunit using recombinant DNA techniques. When Ala97 at the hinge region of the type I regulatory subunit was replaced with Ser, the regulatory subunit became a good substrate for the catalytic subunit. Stoichiometric phosphorylation occurred exclusively at Ser97. Radioactivity was incorporated primarily into the recombinant regulatory subunit when catalytic subunit and [gamma-32P]ATP were added to the total bacterial extract. Phosphorylation of the mutant regulatory subunit also occurred readily following polyacrylamide gel electrophoresis and electrophoretic transfer to nitrocellulose. Phosphorylation occurred as an intramolecular event in the absence of cAMP indicating that the hinge region of the regulatory subunit occupies the substrate recognition site of the catalytic subunit in the holoenzyme complex. Holoenzyme formed with both the wild type and mutant regulatory subunits was susceptible to dissociation in the presence of high salt; however, only the native holoenzyme was stabilized by MgATP. In contrast to the wild type holoenzyme, the affinity of the mutant holoenzyme for cAMP was not reduced in the presence of MgATP. Holoenzyme formation also was not facilitated by MgATP.  相似文献   

15.
The catalytic subunit of cAMP-dependent protein kinase has served as a prototype for the protein kinase superfamily for many years while structures of the cAMP-bound regulatory subunits have defined the conserved cyclic nucleotide binding (CNB) motif. It is only structures of the holoenzymes, however, that enable us to appreciate the molecular features of inhibition by the regulatory subunits as well as activation by cAMP. These structures reveal for the first time the remarkable malleability of the regulatory subunits and the CNB domains. At the same time, they allow us to appreciate that the catalytic subunit is not only a catalyst but also a scaffold that mediates a wide variety of protein:protein interactions. The holoenzyme structures also provide a new paradigm for designing isoform-specific activators and inhibitors of PKA. In addition to binding to the catalytic subunits, the regulatory subunits also use their N-terminal dimerization/docking domain to bind with high affinity to A Kinase Anchoring Proteins using an amphipathic helical motif. This targeting mechanism, which localizes PKA near to its protein substrates, is also a target for therapeutic intervention of PKA signaling.  相似文献   

16.
Cyclic AMP-dependent protein kinase (PKA) is a holoenzyme that consists of a regulatory (R) subunit dimer and two catalytic (C) subunits that are released upon stimulation by cAMP. Immunoblotting and immunoprecipitation of T-cell protein extracts, immunofluorescence of permeabilized T cells and RT/PCR of T-cell RNA using C subunit-specific primers revealed expression of two catalytically active PKA C subunits C alpha1 (40 kDa) and C beta2 (47 kDa) in these cells. Anti-RI alpha and Anti-RII alpha immunoprecipitations demonstrated that both C alpha1 and C beta2 associate with RI alpha and RII alpha to form PKAI and PKAII holoenzymes. Moreover, Anti-C beta2 immunoprecipitation revealed that C alpha1 coimmunoprecipitates with C beta2. Addition of 8-CPT-cAMP which disrupts the PKA holoenzyme, released C alpha1 but not C beta2 from the Anti-C beta2 precipitate, indicating that C beta2 and C alpha1 form part of the same holoenzyme. Our results demonstrate for the first time that various C subunits may colocate on the same PKA holoenzyme to form novel cAMP-responsive enzymes that may mediate specific effects of cAMP.  相似文献   

17.
Kinetic constants for peptide phosphorylation by the catalytic subunit of the dimorphic fungus Mucor rouxii protein kinase A were determined using 13 peptides derived from the peptide containing the basic consensus sequence RRASVA, plus kemptide, S6 peptide, and protamine. As a whole, although with a greater Km, the order of preference of the peptides by the M. rouxii catalytic subunit was similar to the one displayed by mammalian protein kinase A. Particularly significant is the replacement of serine by threonine in the basic peptide RRATVA, which impaired its role as a substrate of M. rouxii catalytic subunit. Mucor rouxii protein kinase A is a good model in which to study the mechanism of activation since cAMP alone is not enough to promote activation and dissociation. Four peptides were selected for the study of holoenzyme activation under conditions in which the enzymatic activity was not proportional to the holoenzyme concentration: RRASVA, RRRRASVA, KRRRLSSRA (S6 peptide), and LRRASLG (kemptide); protamine was used as reference. Differential activation degree was observed depending on the peptide used and on cAMP concentration. Ratios of activity between different substrates displayed by the holoenzyme under the above conditions did not reflect the one expected for the free catalytic subunit. The degree of inhibition of the holoenzyme activity by an active peptide derived from the thermostable protein kinase inhibitor was dependent on the substrate used and on the holoenzyme concentration, while it was found to be independent of these two parameters for free catalytic subunit. Polycation modulation of holoenzyme activation by cAMP was also dependent on the polycation itself and on the peptide used as substrate. The observed kinetic differences between holoenzyme and free catalytic subunit were decreased or almost abolished when working at low enzyme or at high cAMP concentrations. Two hypotheses compatible with the results are discussed: substrate participation in the dissociation process and/or holoenzyme activation without dissociation.  相似文献   

18.
Abstract: We analyzed the expression and relative distribution of mRNA for the regulatory subunits (RIα, RIIα, and RIIβ) and of 150-kDa RIIβ-anchor proteins for cyclic AMP (cAMP)-dependent protein kinase (PKA) into discrete brain regions. The subcellular distribution of both holoenzyme and free catalytic subunit was evaluated in the same CNS areas. In the neocortex and corpus striatum high levels of RIIβ paralleled the presence of specific RII-anchoring proteins, high levels of membrane-bound PKA holoenzyme, and low levels of cytosolic free catalytic activity (C-PKA). Conversely, in brain areas showing low RIIβ levels (cerebellum, hypothalamus, and brainstem) we found an absence of RII-anchoring proteins, low levels of membrane-bound holoenzyme PKA, and high levels of cytosolic dissociated C-PKA. Response to cAMP stimuli was specifically evaluated in the neocortex and cerebellum, prototypic areas of the two different patterns of PKA distribution. We found that cerebellar holoenzyme PKA was highly sensitive to cAMP-induced dissociation, without, however, a consistent translocation of C-PKA into the nucleus. In contrast, in the neocortex holoenzyme PKA was mainly in the undissociated state and poorly sensitive to cAMP. In nuclei of cortical cells cAMP stimulated the import of C-PKA and phosphorylation of cAMP-responsive element binding protein. Taken together, these data suggest that RIIβ (whose distribution is graded throughout the CNS, reaching maximal expression in the neocortex) may represent the molecular cue of the differential nuclear response to cAMP in different brain areas, by controlling cAMP-induced holoenzyme PKA dissociation and nuclear accumulation of catalytic subunits.  相似文献   

19.
The types and subunit composition of cAMP-dependent protein kinases in soluble rat ovarian extracts were investigated. Results demonstrated that three peaks of cAMP-dependent kinase activity could be resolved using DEAE-cellulose chromatography. Based on the sedimentation of cAMP-dependent protein kinase and regulatory subunits using sucrose density gradient centrifugation, identification of 8-N3[32P]cAMP labeled RI and RII in DEAE-cellulose column and sucrose gradient fractions by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and Scatchard analysis of the cAMP-stimulated activation of the eluted peaks of kinase activity, the following conclusions were drawn regarding the composition of the three peaks of cAMP-dependent protein kinase activity: peak 1, eluting with less than or equal to 0.05 M potassium phosphate, consisted of the type I form of cAMP-dependent protein kinase; peak 2, eluting with 0.065-0.11 M potassium phosphate, consisted of free RI and a type II tetrameric holoenzyme; peak 3, eluting with 0.125 M potassium phosphate, consisted of an apparent RIIC trimer, followed by the elution with 0.15 M potassium phosphate of free RII. The regulatory subunits were confirmed as authentic RI and RII based upon their molecular weights and autophosphorylation characteristics. The more basic elution of the type II holoenzyme with free RI was not attributable to the ionic properties of the regulatory subunits, based upon the isoelectric points of photolabeled RI and RII and upon the elution location from DEAE-cellulose of RI and RII on dissociation from their respective holoenzymes by cAMP. This is the first report of a type II holoenzyme eluting in low salt fractions with free RI, and of the presence of an apparent RIIC trimer in a soluble tissue extract.  相似文献   

20.
cAMP-dependent protein kinase (PKA) plays a key role in intracellular signalling. cAMP antagonists, acting as suppressors of PKA activity by preventing PKA-holoenzyme dissociation, have received increasing attention because of their potential use in diagnostics as well as for therapeutic purposes. A large number of cAMP analogs have been described over the last three decades and methodology has been established to monitor cAMP agonists action by either following enzymatic activity or holoenzyme dissociation. This is not the case for cAMP antagonists, where only a few substances have been demonstrated to exhibit effects in the low micromolar range, for example, Rp-8-Br-cAMPS. A main drawback in the development of new compounds is the lack of technologies to assess antagonist action in an in vitro situation as well as in living cells. Here we quantify the effect of several cAMP analogs applying three different biochemical/biophysical assay setups and one in-cell assay. This includes two methods monitoring subunit dissociation in a test tube, namely AlphaScreen, a bead-based proximity assay, and surface plasmon resonance, determining the association and dissociation patterns of the two PKA subunits in real time in response to antagonists. BRET(2), performed in living cells in a 96-well format, allows testing for the efficacy of membrane-permeable cAMP analogs based on a genetically engineered cAMP sensor. Using novel and established experimental strategies side by side, the action of cAMP and cAMP analogs was tested on type Ialpha PKA holoenzyme, thus generating methodology to screen drug libraries for potential cAMP antagonists with high accuracy, reproducibility as well as potential for automation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号