首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Probiotic supplements induce immunological responses in the host, and dietary fructooligosaccharides (FOS) stimulate the growth of selected intestinal microflora. In this study we investigated the immunological influences of orally administrated FOS. BALB/c mice were orally administered 0-7.5% FOS for 6 weeks, and the intestinal mucosal immune responses were measured. In the 2.5%-FOS group, fecal IgA was significantly increased. IgA secretion by Peyer's patch (PP) cells was upregulated in a dose-dependent way in response to FOS and CD4+ T cells from PP showed a dose-dependent increase in production of interferon-gamma and interleukin (IL) 10, and a high response in production of IL-5 and IL-6. In contrast, FOS suppressed serum IgG1. Our findings suggest that FOS supplementation changes the intestinal environment of microflora, and leads to upregulation of IgA secretion in CD4+ PP cells in intestinal mucosa, and to suppression of the systemic immune response to type 2 helper T (Th2) dominant.  相似文献   

2.
In addition to being instrumental to the protection of mucosal epithelia, secretory IgA (SIgA) adheres to and is transported by intestinal Peyer's patch (PP) M cells. The possible functional reason for this transport is unknown. We have thus examined in mice the outcome of SIgA delivered from the intestinal lumen to the cells present in the underlying organized mucosa-associated lymphoreticular tissue. We show selective association of SIgA with dendritic cells and CD4(+) T and B lymphocytes recovered from PP in vitro. In vivo, exogenously delivered SIgA is able to enter into multiple PP lining the intestine. In PP, SIgA associates with and is internalized by dendritic cells in the subepithelial dome region, whereas the interaction with CD4(+) T cells is limited to surface binding. Interaction between cells and SIgA is mediated by the IgA moiety and occurs for polymeric and monomeric molecular forms. Thus, although immune exclusion represents the main function of SIgA, transport of the Ab by M cells might promote Ag sampling under neutralizing conditions essential to the homeostasis of mucosal surfaces.  相似文献   

3.
Recent studies have shown that purified IL-5 from T cell lines and clones enhances IgA synthesis in LPS-triggered splenic B cell cultures, and that this effect is augmented by IL-4. In this study we have examined the ability of rIL-5 and rIL-4 to support spontaneous Ig synthesis in normal Peyer's patch (PP) B cell cultures. The rIL-4 supported proliferation of the HT-2 and in vivo adapted BCL-1 cell lines, increased Ia expression on normal spleen B cells, co-stimulated splenic B cell proliferation in the presence of anti-mu and enhanced IgG1 synthesis in LPS triggered splenic B cell cultures. The rIL-5 supported BCL-1 proliferation, co-stimulated splenic B cell proliferation in the presence of dextran sulfate, and increased IgA synthesis in LPS-stimulated splenic B cell cultures. Markedly enhanced IgA responses occurred in PP B cell, but not splenic B cell cultures supplemented with rIL-5 in the absence of an added B cell trigger. However, rIL-4 alone did not enhance IgA synthesis or increase the IgA synthesis of PP B cell cultures stimulated with rIL-5. The rIL-5 receptive PP B cells were present in the blast cell subpopulation, inasmuch as a low density fraction isolated on Percoll gradients accounted for the enhanced IgA synthesis. Further, cell cycle analysis of whole PP B cells using propidium iodide in conjunction with staining for surface B220, demonstrated that approximately 12 to 16% of the B cells were in the S and G2/M stages of cell cycle, the remainder being in Go + G1. The surface IgM+ B cells were predominantly in Go + G1, whereas the sIgA+ B cell subpopulation was enriched for cells in the S and G2/M compartments. The PP B cell subset responsible for enhanced IgA synthesis in the presence of rIL-5 was sIgA-positive because FACS-depletion of the sIgA+ B cells resulted in the total loss of rIL-5 enhanced IgA synthesis. Further, when PP B cells were enriched for sIgA+ B cells by cell sorting, these cells responded to rIL-5 with increased IgA synthesis in a dose-dependent manner. When the actual numbers of IgA secreting cells were assessed in PP B cell cultures with supplemental rIL-5, no significant increase in total IgA-producing cells was noted when compared with B cells cultured without rIL-5.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
5.
6.
The effects of feeding the dietary protein antigen, ovalbumin (OVA), on OVA-specific IgG and IgA immune responses involving Peyer's patches (PP) and mesenteric lymph nodes (MLN) were examined. Mice were administered soluble OVA by gastric intubation. One to 3 days later, PP, MLN, or spleen cells from these donor mice were adoptively transferred into normal syngeneic recipients. After two subsequent immunizations, spleens from the recipient mice were assayed for IgA and IgG anti-OVA plaque-forming cell (PFC) responses. None of the tissues from normal (unfed) mice had the inherent ability to alter recipients' IgG or IgA PFC responses. Within 1 day of OVA feeding, however, cells were generated in the PP that could augment recipients' IgA anti-OVA PFC responses and suppress IgG PFC responses. Three days after OVA feeding, these cells were present in MLN as well, and whereas the IgG suppressor cell also appeared to migrate to spleen, the IgA helper cell did not. The cells mediating antigen-specific IgG suppression and IgA help were both T cells but could be distinguished by surface phenotype. We therefore conclude that protein feeding induces differential, isotype-specific immunoregulation in gut-associated lymphoid tissues, part of which is mediated by an antigen-specific IgA helper T cell.  相似文献   

7.
Binding and transport of polymeric Igs (pIgA and IgM) across epithelia is mediated by the polymeric Ig receptor (pIgR), which is expressed on the basolateral surface of secretory epithelial cells. Although an Fc receptor for IgA (FcalphaR) has been identified on myeloid cells and some cultured mesangial cells, the expression of an FcalphaR on epithelial cells has not been described. In this study, binding of IgA to a human epithelial line, HT-29/19A, with features of differentiated colonic epithelial cells, was examined. Radiolabeled monomeric IgA (mIgA) showed a dose-dependent, saturable, and cation-independent binding to confluent monolayers of HT-29/19A cells. Excess of unlabeled mIgA, but not IgG or IgM, competed for the mIgA binding, indicating that the binding was IgA isotype-specific and was not mediated by the pIgR. The lack of competition by asialoorosomucoid and the lack of requirement for divalent cations excluded the possibility that IgA binding to HT-29/19A cells was due to the asialoglycoprotein receptor or beta-1, 4-galactosyltransferase, previously described on HT-29 cells. Moreover, the FcalphaR (CD89) protein and message were undetectable in HT-29/19A cells. FACS analysis of IgA binding demonstrated two discrete populations of HT-29/19 cells, which bound different amounts of mIgA. IgA binding to other colon carcinoma cell lines was also demonstrated by FACS analysis, suggesting that an IgA receptor, distinct from the pIgR, asialoglycoprotein receptor, galactosyltransferase, and CD89 is constitutively expressed on cultured human enterocytes. The function of this novel IgA receptor in mucosal immunity remains to be elucidated.  相似文献   

8.
In this study, we demonstrate the role of M cells in uptake of poly(D-L-lactic-co-glycolic acid) (PLGA) microspheres and transport into rabbit Peyer's patches. Microspheres 1 to 10 m in diameter composed of 50:50 lactic acid:glycolic acid were instilled into in-testinal segments containing jejunal or ileal Peyer's patches, and uptake by M cells was examined by electron microscopy. PLGA microspheres visualized as electron-lucent, spherical particles were taken up by M cells by pseudopod-like extensions of the M cell apical membrane and translocated to the pocket region containing mononuclear leukocytes within 60 min. These results indicate that PLGA microspheres can be directed to M cell apical surfaces for delivery to immunocompetent cells in gut-associated lymphoid tissues.  相似文献   

9.
Summary M cells in Peyer's patch epithelium conduct transepithelial transport of luminal antigens to cells of the mucosal immune system. To determine the distribution of specific lectin-binding sites on luminal membranes of living M cells and to follow the transport route of membranebound molecules, lectin-ferritin conjugates and cationized ferritin were applied to rabbit Peyer's patch mucosa in vivo and in vitro. The degree to which binding enhances transport was estimated by comparing quantitatively the transport of an adherent probe, wheat germ agglutinin-ferritin, to that of a nonadherent BSA-colloidal gold probe. When applied to fixed tissue, the lectins tested bound equally well to M cells and columnar absorptive cells. On living mucosa, however, ferritin conjugates of wheat germ agglutinin and Ricinus communis agglutinins I and II bound more avidly to M cells. Absorptive cells conducted little uptake and no detectable transepithelial transport. Lectins on M cell membranes were endocytosed from coated pits, rapidly transported in a complex system of tubulocisternae and vesicles, and remained adherent to M cell basolateral membranes. Cationized ferritin adhered to anionic sites and was similarly transported, but was released as free clusters at M cell basolateral surfaces. When applied simultaneously to Peyer's patch mucosa, wheat germ agglutinin-ferritin was transported about 50 times more efficiently than was bovine serum albumin-colloidal gold.  相似文献   

10.
Beta1 integrins are anchored on the basal membrane of enterocytes, but little is known about their localization in M cells, which are the main entry route into the intestinal mucosa for many bacterial pathogens. In particular, it has been suggested that adhesion of enteropathogenic Yersinia to M cells is mediated by interaction of the bacterial protein invasin and apical beta1 integrins. Using a novel in vitro model of M cells, we demonstrate an augmented apical and basolateral targeting of beta1 integrins in M cells associated with increased total alpha chain synthesis. The alpha3 and alpha6 subunits were targeted to the basal pole, but alpha2 subunit was targeted at both poles. No other alpha subunit was found associated with apical beta1 integrins on M cells. Interestingly, Y. enterocolitica still adhered to the apical surface of M cells, despite the fact that alpha2beta1 is not a receptor for invasin. We therefore studied the adhesive properties of invasin-mutant Y. enterocolitica and invasin-expressing Escherichia coli on the apical surface of M cells. We show that it is not invasin, but the product of an as yet unidentified bacterial chromosomal gene, that is involved in the adhesion of Y. enterocolitica to the apical membrane of M cells.  相似文献   

11.
IL-5 has been shown to specifically enhance IgA secretion in LPS-stimulated splenic B cell cultures. Maximum enhancement of IgA in such cultures, however, requires IL-4 in addition to IL-5. Because the Peyer's patches (PP), compared with spleen and lymph nodes, are enriched for precursors of IgA-secreting cells, we tested whether IL-4 and IL-5 would have a more profound effect on IgA secretion by polyclonally stimulated PP cells than spleen cells. The combination of IL-4 and IL-5 causes a comparable enhancement of IgA secretion in both LPS-stimulated PP and splenic B cell cultures. The majority of IgA secreted in LPS-stimulated PP cell cultures is derived from the sIgA- population. Furthermore, the binding high level of peanut agglutinin, germinal center subpopulation of PP cells is essentially nonresponsive to LPS, even in the presence of lymphokines; the majority of secreted IgA in these cultures is derived from the binding low level of peanut agglutinin population. In contrast to LPS-stimulated cultures, PP B cells secrete considerably more IgA than splenic B cells when polyclonally stimulated by a clone of autoreactive T cells in the presence of IL-4 and IL-5. The majority of IgA made by T cell-stimulated PP cell cultures is derived from the sIgA+ population. In these cultures, sIgA- PP cells and spleen cells secrete comparable levels of IgA and other non-IgM isotypes suggesting that sIgA- PP B cells are similar to splenic B cells in their potential to switch to IgA. In T cell-stimulated cultures the majority of IgA as well as of all other isotypes is also derived from the nongerminal center, binding low level of peanut agglutinin population.  相似文献   

12.
The specificity and properties of a novel IgA receptor expressed on the surface of a tissue culture-adapted B cell lymphoma, T560, that originated in murine gut-associated lymphoid tissue, have been explored. Like the IgA receptors of murine T and splenic B cells studied by others, the T560 IgA receptor is trypsin sensitive and neuraminidase resistant and is up-regulated on T560 cells by exposing them overnight to high concentrations of polymeric IgA. Unlike them, the T560 IgA receptor is inhibited by low concentrations of IgM and high concentrations of IgG2a and IgG2b, binds at pH 4.0 but not at pH 8.0, is down-regulated by activation of protein kinase C and is sensitive to phosphatidylinositol-specific phospholipase C, indicating that it is glycosyl phosphatidylinositol-linked to the cell membrane. It is not a cell-bound form of galactosyl transferase, does not appear to bind to Ig through carbohydrate residues and does not react specifically with antibody to secretory component. It may be a completely new, cross-reactive receptor, perhaps related in some way to the polymeric Ig receptor or to the receptor for IgA expressed on the apical surface of Peyer's patch M cells, which is known to cross-react with IgG. Alternatively, it may be homologous to the highly IgA-specific Fc alpha R of T cells but, perhaps because of its glycosyl phosphatidylinositol linker, may have an ability to move and interact with other Ig receptors on the cell surface such that Ig bound to them are cross-inhibitory.  相似文献   

13.
Previous studies have demonstrated that the sensory neuropeptide substance P (SP) can modulate immune responses in vitro. Work from this laboratory has shown that SP enhances immunoglobulin synthesis by murine splenic and Peyer's patch lymphocytes stimulated with concanavalin A. One mechanism underlying these effects is the binding of SP to specific receptors on lymphocytes. We examined the distribution of SP receptors on murine T and B lymphocytes and their subsets by one and two color fluorescence-activated cell sorter analysis. The specificity and nature of binding was examined using radiolabeled SP, and competitive inhibition experiments were performed with cold SP. In cytofluorimetry experiments, both T and B lymphocytes from Peyer's patches and spleen were bound to SP, with those from Peyer's patches having a higher proportion than lymphocytes from the spleen. The majority of T cells from both organs bound SP with binding being evenly distributed between Lyt-1+ and Lyt-2+ cells. Similarly, the majority of B lymphocytes from spleen and Peyer's patches showed SP binding. There were no significant isotype-specific differences within any organ. Studies using 125I-labeled SP showed specific binding to all lymphocyte subpopulations examined. SP receptors were fewer in number on cells isolated from spleen than on cells from Peyer's patches although the dissociation constants were similar for all populations examined. These studies demonstrated that SP receptors are present both on murine T and B lymphocytes from Peyer's patches and spleen. There is no evidence for differential SP receptor expression on distinct lymphocyte subsets in spleen or Peyer's patches.  相似文献   

14.
Because the gut-associated lymphoreticular tissue (GALT), e.g., Peyer's patches (PP), of X-linked immunodeficient (xid) mice possesses a subpopulation of mature B cells, we have characterized the ability of xid mice to respond to the thymic-dependent antigen sheep erythrocytes (SRBC) given by the oral route. Gastric intubation of SRBC to xid (CBA/N X DBA/2) F1 male or CBA/N mice, followed by the in vitro culture of dissociated PP cells with SRBC, resulted in IgM, IgG1, IgG2, and high IgA anti-SRBC plaque-forming cell (PFC) responses. The addition of unprimed PP but not splenic T cells to splenic xid B cell cultures resulted in IgM anti-SRBC PFC responses, suggesting the importance of GALT T cells for support of the immune responses to SRBC by splenic B cells from xid mice. Furthermore, purified PP T cells from SRBC orally primed xid mice supported in vitro IgA anti-SRBC PFC responses in B cell cultures from either the PP or the spleens of nonprimed xid mice. Higher IgA responses, however, occurred in PP, when compared with splenic B cell cultures. Additional evidence that the GALT of xid mice contains functional IgA precursor cells was provided by the finding that cloned H-2k PP T helper cells (PP Th A) supported IgA responses in PP B cell cultures derived from (CBA/N X C3H/HeN) F1 male (xid) mice. On the other hand, splenic B cells from these xid mice, in the presence of PP Th A cells, did not support in vitro responses. These results suggest that unique subpopulations of T cells occur in the GALT of xid and normal mice; one T cell subpopulation may induce immature B cells to become precursor IgA cells in the PP. A separate GALT T cell subpopulation, e.g., isotype-specific helper T cells, effectively collaborates with mature IgA B cells for the induction of IgA responses to orally administered antigen. When xid mice were gastric intubated with SRBC, followed by i.p. injection of SRBC, good splenic IgA anti-SRBC PFC responses were seen. Salivary and serum IgA antibodies were also detected in these xid mice. Nevertheless, the magnitude of the anti-SRBC response in xid mice was lower than that seen in similarly treated normal mice. These studies indicate that the GALT of both xid and normal mice possess unique populations of T cells that support in vitro responses in xid B cell cultures from either the spleen or the PP, which direct the mature B cell populations present toward IgA isotype-specific responses.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Separate populations of M cells have been detected in the follicle-associated epithelium of Peyer's patches (PPs) and the villous epithelium of the small intestine, but the traits shared by or distinguishing the two populations have not been characterized. Our separate study has demonstrated that a potent mucosal modulator cholera toxin (CT) can induce lectin Ulex europaeus agglutinin-1 and our newly developed M cell-specific mAb NKM 16-2-4-positive M-like cells in the duodenal villous epithelium. In this study, we determined the gene expression of PP M cells, CT-induced villous M-like cells, and intestinal epithelial cells isolated by a novel approach using FACS. Additional mRNA and protein analyses confirmed the specific expression of glycoprotein 2 and myristoylated alanine-rich C kinase substrate (MARCKS)-like protein by PP M cells but not CT-induced villous M-like cells. Comprehensive gene profiling also suggested that CT-induced villous M-like cells share traits of both PP M cells and intestinal epithelial cells, a finding that is supported by their unique expression of specific chemokines. The genome-wide assessment of gene expression facilitates discovery of M cell-specific molecules and enhances the molecular understanding of M cell immunobiology.  相似文献   

16.
Peyer's patch (PP) dendritic cells (DCs) have been shown to exhibit a distinct capacity to induce cytokine secretion from CD4(+) T cells compared with DCs in other lymphoid organs such as the spleen (SP). In this study, we investigated whether PP DCs are functionally different from DCs in the SP in their ability to induce Ab production from B cells. Compared with SP DCs, freshly isolated PP DCs induced higher levels of IgA secretion from naive B cells in DC-T cell-B cell coculture system in vitro. The IgA production induced by PP DCs was attenuated by neutralization of IL-6. In addition, the induction of IgA secretion by SP DCs, but not PP DCs, was further enhanced by the addition of exogenous IL-6. Finally, we demonstrated that only PP CD11b(+) DC subset secreted higher levels of IL-6 compared with other DC subsets in the PP and all SP DC populations, and that PP CD11b(+) DC induced naive B cells to produce higher levels of IgA compared with SP CD11b(+) DC. These results suggest a unique role of PP CD11b(+) DCs in enhancing IgA production from B cells via secretion of IL-6.  相似文献   

17.
In this study, we investigated whether Peyer's patch-derived T-cell subsets participate in vitro in self major histocompatibility (MHC) class II antigen (Ag)-mediated immunoregulatory circuits for gut-mucosal IgA isotype selection in the presence of Peyer's patch (PP)-derived syngeneic surface immunoglobulin M (sIgM)-bearing B cells. When fresh (in vitro unstimulated) sIgM-bearing B cells were cocultured with fresh, PP-derived L3T4+ Vicia villosa-nonadherent (VV-) T cells (T helper (Th) cells), the production of all class-specific immunoglobulins (Ig), but, in particular, IgA, was enhanced two- to sixfold. This augmented Ig production was, however, reduced by nearly 50% when fresh PP-derived Lyt2+ VV-T cells (suppressor T cells) were added. Furthermore, addition of PP-derived L3T4+ VV+ and Lyt 2+ VV+ T cells abrogated, by nearly 100%, the suppression induced by the Lyt 2+ VV-T cells (contrasuppression). When lipopolysaccharide (LPS)-stimulated, PP-derived sIgM-bearing B cells were cocultured with the Th cells, the production of each class-specific Ig was similarly enhanced, but Ig levels exceeded those obtained with cultures of the unstimulated B cells (P less than 0.001). Anti-I-A or anti-I-E monoclonal antibody (mAb) inhibited the induction of each immunoregulatory T-cell effector activity (P less than 0.001), and anti-I-A/E inhibited it synergistically. Thus, unstimulated fresh PP-derived T cells appear to be activated and then to exert T-cell effector functions in the sequential development of helper, suppressor, and contrasuppressor immunoregulatory networks in the presence of PP-derived sIgM B cells and, particularly, LPS-preactivated sIgM B cells. Based on the blocking effect of anti-I-A and/or anti-I-E mAb on the induction of each T-cell-mediated immunoregulatory function in class-specific Ig production, it appears that the autoreactive (self MHC class II Ag-reactive) activation of PP T cells evoked by Ia Ag on PP sIgM B cells largely controls mucosal IgA production by the latter cells. Furthermore, this immunoregulation by autoreactive effector T cells, especially the L3T4+ VV- helper T cell, may play a significant role in vivo in gut-mucosal IgA isotype production.  相似文献   

18.
M cells in the Peyer's patches may facilitate transport of pathogens such as Campylobacter jejuni from the intestine. We evaluated this hypothesis by using electron microscopy to examine Peyer's patches in ligated adult rabbit ileal loops inoculated with 5-mL suspensions of 10(9) cfu/mL of Campylobacter jejuni. Peyer's patches taken at intervals from 15 min to 2 h after inoculation of loops in anaesthetized rabbits provided evidence that Campylobacter jejuni selectively adhered to M cells as opposed to absorptive epithelial cells and was transported, apparently intact, into the M cell follicle. Although intercellular organisms were seen within the follicle, many others were phagocytosed by lymphoid cells. The proximity of the lymphatic and blood circulatory systems to the M cell follicle makes this a probable route for systemic spread of Campylobacter jejuni.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号