首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondrial dysfunction and oxidative damage are highly involved in the pathogenesis of Parkinson's disease (PD). Some mitochondrial antioxidants/nutrients that can improve mitochondrial function and/or attenuate oxidative damage have been implicated in PD therapy. However, few studies have evaluated the preventative effects of a combination of mitochondrial antioxidants/nutrients against PD, and even fewer have sought to optimize the doses of the combined agents. The present study examined the preventative effects of two mitochondrial antioxidant/nutrients, R-α–lipoic acid (LA) and acetyl-L-carnitine (ALC), in a chronic rotenone-induced cellular model of PD. We demonstrated that 4-week pretreatment with LA and/or ALC effectively protected SK-N-MC human neuroblastoma cells against rotenone-induced mitochondrial dysfunction, oxidative damage and accumulation of α-synuclein and ubiquitin. Most notably, we found that when combined, LA and ALC worked at 100–1000-fold lower concentrations than they did individually. We also found that pretreatment with combined LA and ALC increased mitochondrial biogenesis and decreased production of reactive oxygen species through the up-regulation of the peroxisome proliferator-activated receptor-γ coactivator 1α as a possible underlying mechanism. This study provides important evidence that combining mitochondrial antioxidant/nutrients at optimal doses might be an effective and safe prevention strategy for PD.  相似文献   

2.
It has been suggested that release of cytochrome c (Cyt c) from mitochondria during apoptotic death is through opening of the mitochondrial permeability transition pore followed by swelling-induced rupture of the mitochondrial outer membrane. However, this remains controversial and may vary with cell type and model system. We determined that in mouse cerebellar granule neurons, Cyt c redistribution preceded the loss of mitochondrial membrane potential during the apoptotic process, suggesting that the pore did not open prior to release. Furthermore, when mitochondria were morphologically assessed by electron microscopy, they were not obviously swollen during the period of Cyt c release. This indicates that the pore mechanism of action, if any, is not through mitochondrial outer membrane rupture. While bongkrekic acid, an inhibitor of pore opening, modestly delayed apoptotic death, it also caused a significant (p < 0.05) suppression of protein synthesis. An equivalent suppression of protein synthesis by cycloheximide had a similar delaying effect, suggesting that bongkrekic acid was acting non-specifically. These findings suggest that mitochondrial permeability transition pore is not involved in Cyt c release from mitochondria during the apoptotic death of cerebellar granule neurons.  相似文献   

3.
4.
To assess the mechanism by which mitochondrial permeability transition (MPT) is induced by the nonpolar carboxylic acids, we investigated the effects of flufenamic acid (3-trifluoromethyl diphenylamine-2-carboxylic acid, FA) on mitochondrial respiration, electrical transmembrane potential difference (), osmotic swelling, Ca2+ efflux, NAD(P)H oxidation and reactive oxygen species (ROS) generation. Succinate-energized isolated rat liver mitochondria incubated in the absence or presence of 10 M Ca2+, 5 M ruthenium red (RR) or 1 M cyclosporin A (CsA) were used. The dose response-curves for both respiration release and dissipation were nearly linear, presenting an IC50 of approximately 10 M and reaching saturation within 25-50 M, indicating that FA causes mitochondrial uncoupling by a protonophoric mechanism. Within this same concentration range FA showed the ability to induce MPT in energized mitochondria incubated with 10 M Ca2+, followed by dissipation and Ca2+ efflux, and even in deenergized mitochondria incubated with 0.5 mM Ca2+. ADP, Mg2+, trifluoperazine (TFP) and N-ethylmaleimide (NEM) reduced the extent of FA-promoted swelling in energized mitochondria by approximately one half, whereas dithiothreitol (DTT) slightly enhanced it. NAD(P)H oxidation and ROS generation (H2O2 production) by mitochondria were markedly stimulated by FA; these responses were partly prevented by CsA, suggesting that they may be implicated as both a cause and effect of FA-induced MPT. FA incubated with mitochondria under swelling assay conditions caused a decrease of approximately 40% in the content of protein thiol groups reacting with 5,5-dithiobis(2-nitrobenzoic acid) (DTNB). The present results are consistent with a ROS-intermediated sensitization of MPT by a direct or indirect FA interaction with inner mitochondrial membrane at a site which is in equilibrium with the NAD(P)H pool, namely thiol groups of integral membrane proteins.  相似文献   

5.
Hyperstimulation with cholecystokinin analogue cerulein induces a mild edematous pancreatitis in rats. There is evidence for a diminished energy metabolism of acinar cells in this experimental model. The aim of this study was to demonstrate permeability transition of the mitochondrial inner membrane as an early change in mitochondrial function and morphology. As functional parameters, the respiration and membrane potential of mitochondria isolated from control and cerulein-treated animals were measured, and changes in volume and morphology were investigated by swelling experiments and electron microscopy. Five hours after the first injection of cerulein, the leak respiration was nearly doubled and the resting membrane potential was decreased by about 17 mV. These alterations were reversed by extramitochondrial ADP or did not occur when cyclosporin A was added to the mitochondrial incubation. A considerable portion of the mitochondria isolated from cerulein-treated animals was swollen and showed dramatic changes in morphology such as a wrinkled outer membrane and the loss of a distinct cristae structure. These data provide evidence for the opening of the mitochondrial permeability transition pore at an early stage of cerulein induced pancreatitis. This suggests that the permeability transition is an initiating event for lysis of individual mitochondria and the initiation of apoptosis and/or necrosis, as had been shown to occur in this experimental model.  相似文献   

6.
Mitochondrial damage has implicated a major contributor for ageing process. In the present study, we measured mitochondrial membrane swelling, mitochondrial respiration (state 3 and 4) by using oxygen electrode in skeletal muscle of young (3–4 months old) and aged rats (above 24 months old) with supplementation of l-carnitine and dl-α-lipoic acid. Our results shows that the mitochondrial membrane swelling and state 4 respiration were increased more in skeletal muscle mitochondria of aged rats than in young control rats, whereas the state 3 respiration, respiratory control ratio (RCR) and ADP:O ratio decreased more in aged rats than in young rats. After supplementation of carnitine and lipoic acid to aged rats for 30 days, the state 3 respiration and RCR were increased, whereas the state 4 and mitochondrial membrane swelling were decreased to near normal rats. From our results, we conclude that combined supplementation of carnitine and lipoic acids to aged rats increases the skeletal muscle mitochondrial respiration, thereby increasing the level of ATP. (Mol Cell Biochem xxx: 83–89, 2005)  相似文献   

7.
Mitochondrial inclusion bodies are often described in skeletal muscle of patients suffering diseases termed mitochondrial myopathies. A major component of these structures was discovered as being creatine kinase. Similar creatine kinase enriched inclusion bodies in the mitochondria of creatine depleted adult rat cardiomyocytes have been demonstrated. Structurally similar inclusion bodies are observed in mitochondria of ischemic and creatine depleted rat skeletal muscle. This paper describes the various methods for inducing mitochondrial inclusion bodies in rodent skeletal muscle, and compares their effects on muscle metabolism to the metabolic defects of mitochondrial myopathy muscle. We fed rats with a creatine analogue guanidino propionic acid and checked their soled for mitochondrial inclusion bodies, with the electron microscope. The activity of creatine kinase was analysed by measuring creatine stimulated oxidative phosphorylation in soleus skinned fibres using an oxygen electrode . The guanidino propionic acid-rat soleus mitochondria displayed no creatine stimulation, whereas control soleus did, even though the GPA soled had a five fold increase in creatine kinase protein per mitochondrial protein. The significance of these results in light of their relevance to human mitochondrial myopathies and the importance of altered muscle metabolism in the formation of these crystalline structures are discussed. (Mol Cell Biochem 174: 283–289, 1997)  相似文献   

8.
Poly(ADP-ribose) polymerase-1 (PARP-1) mediates neuronal cell death in a variety of pathological conditions involving severe DNA damage. Poly(ADP-ribose) (PAR) polymer is a product synthesized by PARP-1. Previous studies suggest that PAR polymer heralds mitochondrial apoptosis-inducing factor (AIF) release and thereby, signals neuronal cell death. However, the details of the effects of PAR polymer on mitochondria remain to be elucidated. Here we report the effects of PAR polymer on mitochondria in cells in situ and isolated brain mitochondria in vitro. We found that PAR polymer causes depolarization of mitochondrial membrane potential and opening of the mitochondrial permeability transition pore early after injury. Furthermore, PAR polymer specifically induces AIF release, but not cytochrome c from isolated brain mitochondria. These data suggest PAR polymer as an endogenous mitochondrial toxin and will further our understanding of the PARP-1-dependent neuronal cell death paradigm.  相似文献   

9.
Mitochondrial dysfunction due to oxidative stress and concomitant impaired beta-cell function may play a key role in type 2 diabetes. Preventing and/or ameliorating oxidative mitochondrial dysfunction with mitochondria-specific nutrients may have preventive or therapeutic potential. In the present study, the oxidative mechanism of mitochondrial dysfunction in pancreatic beta-cells exposed to sublethal levels of oleic acid (OA) and the protective effects of mitochondrial nutrients [R-alpha-lipoic acid (LA) and acetyl-L-carnitine (ALC)] were investigated. Chronic exposure (72 h) of insulinoma MIN6 cells to OA (0.2-0.8 mM) increased intracellular oxidant formation, decreased mitochondrial membrane potential (MMP), enhanced uncoupling protein-2 (UCP-2) mRNA and protein expression, and consequently, decreased glucose-induced ATP production and suppressed glucose-stimulated insulin secretion. Pretreatment with LA and/or ALC reduced oxidant formation, increased MMP, regulated UCP-2 mRNA and protein expression, increased glucose-induced ATP production, and restored glucose-stimulated insulin secretion. The key findings on ATP production and insulin secretion were verified with isolated rat islets. These results suggest that mitochondrial dysfunction is involved in OA-induced pancreatic beta-cell dysfunction and that pretreatment with mitochondrial protective nutrients could be an effective strategy to prevent beta-cell dysfunction.  相似文献   

10.
Addition of Pb2+ to rat kidney mitochondria is followed by induction of several reactions: inhibition of Ca2+ uptake, collapse of the transmembrane potential, oxidation of pyridine nucleotides, and a fast release of accumulated Ca2+. When the incubation media are supplemented with ruthenium red, the effect of Pb2+ on NAD(P)H oxidation, membrane , and Ca2+ release are not prevented if malate-glutamate are the oxidizing substrates; however, the latter two lead-induced reactions are prevented by ruthenium red if succinate is the electron donor. It is proposed that in mitochondria oxidizing NAD-dependent substrates, Pb2+ induces Ca2+ release by promoting NAD(P)H oxidation and a parallel drop in due to its binding to thiol groups, located in the cytosol side of the inner membrane. In addition, it is proposed that with succinate as substrate, the Ca2+-releasing effect of lead is due to the collapse of the transmembrane potential as a consequence of the uptake of Pb2+ through the calcium uniporter, since such effect is ruthenium red sensitive.  相似文献   

11.
12.
D-2-Hydroxyglutaric aciduria (DHGA) is a neurometabolic disorder biochemically characterized by tissue accumulation and excretion of high amounts of D-2-hydroxyglutaric acid (DGA). Although the affected patients have predominantly severe neurological findings, the underlying mechanisms of brain injury are virtually unknown. In previous studies we have demonstrated that DGA, at concentrations as low as 0.25 mM, significantly decreased creatine kinase activity and other parameters of energy metabolism in cerebral cortex of young rats. In the present study, we investigated the effect of DGA (0.25-5 mM) on total creatine kinase (tCK) activity, as well as on CK activity in cytosolic (Cy-CK) and mitochondrial (Mi-CK) preparations from cerebellum of 30-day-old Wistar rats in order to test whether the inhibitory effect of DGA on CK was tissue specific. We verified that tCK (22% inhibition) and Mi-CK (40% inhibition) activities were moderately inhibited by DGA at concentrations of 2.5 mM and higher, in contrast to Cy-CK, which was not affected by the acid. Kinetic studies revealed that the inhibitory effect of DGA was non-competitive in relation to phosphocreatine. We also observed that this inhibition was fully prevented by preincubation of the homogenates with reduced glutathione, suggesting that the inhibition of CK activity by DGA is possibly mediated by modification of essential thiol groups of the enzyme. Our present results therefore demonstrate a relatively weak inhibitory effect of DGA on cerebellum Mi-CK activity, as compared to that provoked in cerebral cortex, and may possibly be related to the neuropathology of DHGA, characterized by cerebral cortex abnormalities.  相似文献   

13.
As ascertained by freeze-fracture electron microscopy, imipramine prevents lateral phase separation from taking place in inner mitochondrial membranes at sub-zero temperatures. Electron spin resonance (ESR) measurements performed on mitochondrial membranes labeled with the N-oxyl-4′,4′-dimethyloxazolidine derivative of 16-ketostearic acid, show that the spin probe motion is markedly inhibited below 0°C and that 5 mM imipramine attenuates the temperature effect. These results are explained by supposing that imipramine is able to decrease the transition temperature of the inner mitochondrial membrane lipids as it does for simple lipid systems.  相似文献   

14.
15.
Dietary polyphenols are thought to be beneficial for human health by acting as antioxidants. Chlorogenic acid (CGA) is abundant in plant-based foods as an ester of caffeic acid and quinic acid. In this study, we investigated the effects of CGA on mitochondrial protection. Our results demonstrated that pretreatment with CGA ameliorated the intestinal mitochondrial injury induced by H2O2; membrane potential was increased, mitochondrial swelling, levels of reactive oxygen species, contents of 8-hydroxy-2-deoxyguanosine, and cytochrome c released were decreased. The beneficial effects of CGA were accompanied by an increase in antioxidant and respiratory-chain complex I, IV, and V activities. In trinitrobenzene-sulfonic acid-induced colitic rats indicated that CGA supplementation improved mitochondria ultrastructure and decreased mitochondrial injury. Our results suggest a promising role for CGA as a mitochondria-targeted antioxidant in combating intestinal oxidative injury. Daily intake of diets containing CGA, such as coffee and honeysuckle, may be useful for prevention of intestinal diseases.  相似文献   

16.
Swelling of isolated rat liver mitochondria is shown to be induced by metal-catalyzed 5-aminolevulinic acid (ALA) aerobic oxidation, a putative endogenous source of reactive species (ROS), at concentrations as low as 50–100 μM. In this concentration range, ALA is estimated to occur in the liver of acute intermittent porhyria patients. Removal of Ca2+ (10 μM) from the suspension of isolated rat liver mitochondria by added EGTA abolishes both the ALA-induced transmembrane-potential collapse and mitochondrial swelling. Prevention of the ALA-induced swellling by addition of ruthenium red prior to mitochondrial energization by succinate demonstrates the deleterious involvement of internal Ca2+. Addition of MgCl2 at concentrations higher than 2.5 mM, prevents the ALA-induced mitochondrial swelling, transmembrane potential collapse and Ca2+ efflux. This indicates that Mg2+ protects against the mitochondrial damage promoted by ALA-generated ROS. The ALA-induced mitochondrial damage might be a key event in the liver mitochondrial damage of acute intermittent porphyria patients reported elsewhere.  相似文献   

17.
The relationship between mitochondrial Ca2 transport and permeability transition pore (PTP) opening as well as the effects of mitochondrial energetic status on mitochondrial Ca2 transport and PTP opening were studied. The results showed that the calcium-induced calcium release from mitochondria (mClCR) induced PTP opening. Inhibitors for electron transport of respiratory chain inhibited mClCR and PTP opening. Partial recovery of electron transport in respiratory chain resulted in partial recovery of mClCR and PTP opening. mClCR and PTP opening were also inhibited by CCCP which eliminated transmembrane proton gradient. The results indicated that mitochondrial Ca2 transport and PTP opening are largely dependent on electron transport and energy coupling.  相似文献   

18.
Fatty acid transport proteins (FATPs) are integral membrane acyl-CoA synthetases implicated in adipocyte fatty acid influx and esterification. Whereas some FATP1 translocates to the plasma membrane in response to insulin, the majority of FATP1 remains within intracellular structures and bioinformatic and immunofluorescence analysis of FATP1 suggests the protein primarily resides in the mitochondrion. To evaluate potential roles for FATP1 in mitochondrial metabolism, we used a proteomic approach following immunoprecipitation of endogenous FATP1 from 3T3-L1 adipocytes and identified mitochondrial 2-oxoglutarate dehydrogenase. To assess the functional consequence of the interaction, purified FATP1 was reconstituted into phospholipid-containing vesicles and its effect on 2-oxoglutarate dehydrogenase activity evaluated. FATP1 enhanced the activity of 2-oxoglutarate dehydrogenase independently of its acyl-CoA synthetase activity whereas silencing of FATP1 in 3T3-L1 adipocytes resulted in decreased activity of 2-oxoglutarate dehydrogenase. FATP1 silenced 3T3-L1 adipocytes exhibited decreased tricarboxylic acid cycle activity, increased cellular NAD+/NADH, increased fatty acid oxidation, and increased lactate production indicative of altered mitochondrial energy metabolism. These results reveal a novel role for FATP1 as a regulator of tricarboxylic acid cycle activity and mitochondrial function.  相似文献   

19.
An elevated level of cholesterol in mitochondrial membranes of Niemann-Pick disease type C1 (NPC1) mouse brains and neural cells has been found to cause mitochondrial dysfunction. In this study, we demonstrate that inhibition of intracellular cholesterol trafficking in primary neurons by class 2 amphiphiles, which mimics the major biochemical and cellular feature of NPC1, led to not only impaired mitochondrial function but also activation of the mitochondrial apoptosis pathway. In activation of this pathway both cytochrome c and Smac/Diablo were released but apoptosis-inducing factor (AIF) was not involved. Treatment of the neurons with taurine, a caspase 9-specific inhibitor, could prevent the amphiphile-induced apoptotic cell death, suggesting that formation of apoptosome, followed by caspase 9 and caspase 3 activation, might play a critical role in the neuronal death pathway. Taken together, the mitochondria-dependent death cascade induced by blocking intracellular cholesterol trafficking was caspase dependent. The findings provide clues for both understanding the molecular basis of neurodegeneration in NPC1 disease and developing therapeutic strategies for treatment of this disorder.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号