首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic and biochemical analyses showed that hexokinase PII is mainly responsible for glucose repression in Saccharomyces cerevisiae, indicating a regulatory domain mediating glucose repression. Hexokinase PI/PII hybrids were constructed to identify the supposed regulatory domain and the repression behavior was observed in the respective transformants. The hybrid constructs allowed the identification of a domain (amino acid residues 102-246) associated with the fructose/glucose phosphorylation ratio. This ratio is characteristic of each isoenzyme, therefore this domain probably corresponds to the catalytic domain of hexokinases PI and PII. Glucose repression was associated with the C-terminal part of hexokinase PII, but only these constructs had high catalytic activity whereas opposite constructs were less active. Reduction of hexokinase PII activity by promoter deletion was inversely followed by a decrease in the glucose repression of invertase and maltase. These results did not support the hypothesis that a specific regulatory domain of hexokinase PII exists which is independent of the hexokinase PII catalytic domain. Gene disruptions of hexokinases further decreased repression when hexokinase PI was removed in addition to hexokinase PII. This proved that hexokinase PI also has some function in glucose repression. Stable hexokinase PI overproducers were nearly as effective for glucose repression as hexokinase PII. This showed that hexokinase PI is also capable of mediating glucose repression. All these results demonstrated that catalytically active hexokinases are indispensable for glucose repression. To rule out any further glycolytic reactions necessary for glucose repression, phosphoglucoisomerase activity was gradually reduced. Cells with residual phosphoglucoisomerase activities of less than 10% showed reduced growth on glucose. Even 1% residual activity was sufficient for normal glucose repression, which proved that additional glycolytic reactions are not necessary for glucose repression. To verify the role of hexokinases in glucose repression, the third glucose-phosphorylating enzyme, glucokinase, was stably overexpressed in a hexokinase PI/PII double-null mutant. No strong effect on glucose repression was observed, even in strains with 2.6 U/mg glucose-phosphorylating activity, which is threefold increased compared to wild-type cells. This result indicated that glucose repression is only associated with the activity of hexokinases PI and PII and not with that of glucokinase.  相似文献   

2.
The relationship between the xylose induced decrease in hexokinase PII activity and the derepression of invertase synthesis in yeast is described. When xylose was added to cells growing in a chemostat under nitrogen limitation, the catabolic repression was supressed as shown by the large increase on invertase levels even if glucose remained high. The glucose phosphorylating-enzymes were separated by hydroxylapatite chromatography and it is shown that the treatment with xylose is accompanied by a loss of 98% hexokinase PII and a 50% of the PI isoenzyme, whereas the levels of glucokinase as well as those of glucose-6-phosphate, fructose-6-phosphate, pyruvate and ATP remained unaffected.The analysis of the enzymes present in cells grown in ethanol, limiting glucose and high glucose, shows that hexokinase PII predominates in cells under catabolic repression, the opposite is true for glucokinase, whereas hexokinase PI remains unaffected.  相似文献   

3.
Saccharomyces cerevisiae mutants containing different point mutations in the HXK2 gene were used to study the relationship between phosphorylation by hexokinase II and glucose repression in yeast cells. Mutants showing different levels of hexokinase activity were examined for the degree of glucose repression as indicated by the levels of invertase activity. The levels of hexokinase activity and invertase activity showed a strong inverse correlation, with a few exceptions attributable to very unstable hexokinase II proteins. The in vivo hexokinase II activity was determined by measuring growth rates, using fructose as a carbon source. This in vivo hexokinase II activity was similarly inversely correlated with invertase activity. Several hxk2 alleles were transferred to multicopy plasmids to study the effects of increasing the amounts of mutant proteins. The cells that contained the multicopy plasmids exhibited less invertase and more hexokinase activity, further strengthening the correlation. These results strongly support the hypothesis that the phosphorylation activity of hexokinase II is correlated with glucose repression.  相似文献   

4.
Mutants of Saccharomyces cerevisiae resistant to carbon catabolite repression.   总被引:26,自引:0,他引:26  
Summary Mutants with defective carbon catabolite repression have been isolated in the yeast Saccharomyces cerevisiae using a selective procedure. This was based on the fact that invertase is a glucose repressible cell wall enzyme which slowly hydrolyses raffinose to yield fructose and that the inhibitory effects of 2-deoxyglucose can be counteracted by fructose. Repressed cells were plated on a raffinose-2-deoxyglucose medium and the resistant cells growing up into colonies were tested for glucose non-repressible invertase and maltase. The yield of regulatory mutants was very high. All were equally derepressed for invertase and maltase, no mutants were obtained with only non-repressible invertase synthesis which was the selected function. A total of 61 mutants isolated in different strains were allele tested and could be attributed to three genes. They were all recessive. Mutants in one gene had reduced hexokinase activities, the other class, located in a centromere linked gene, had elevated hexokinase levels and was inhibited by maltose. Mutants in a third gene were isolated on a 2-deoxyglucose galactose medium and had normal hexokinase levels. A partial derepression was observed for malate dehydrogenase in all mutants. Isocitrate lyase, however, was still fully repressible.  相似文献   

5.
Summary A mutant of Saccharomyces cerevisiae with reduced hexokinase activity and deficient in carbon catabolite inactivation is described. The reason for this lack of inactivation is not a lowered concentration of glycolysis metabolites or other low molecular effectors such as glucose, and ATP. The results point to the hexose phosphorylation step as initiator for carbon catabolite inactivation. It appears that one of the hexokinase isoenzymes, altered in the mutant, initiates the inactivation by conformational change. Repression of enzymes that are subject to carbon catabolite inactivation, is normal in the mutant. This indicates that inactivation and repression of those enzymes proceed in different ways, even though they may share common intermediate reactions.  相似文献   

6.
The HXK2 gene product has an important role in controlling carbon catabolite repression in Saccharomyces cerevisiae. We have raised specific antibodies against the hexokinase PII protein and have demonstrated that it is a 58 kDa phosphoprotein with protein kinase activity. The predicted amino acid sequence of the HXK2 gene product has significant homology to the conserved catalytic domain of mammalian and yeast protein kinases. Protein kinase activity was located in a different domain of the protein from the hexose-phosphorylating activity. The hexokinase PII protein level remained unchanged in P2T22D mutant cells (hxk1 HXK2 glk1) growing in a complex medium with glucose. The protein kinase activity of hexokinase PII is regulated by the glucose concentration of the culture medium. Exit from the carbon catabolite repression phase and entry into derepression phase may be controlled, in part, by modulation of the 58 kDa protein kinase activity by changes in cyclic AMP concentration.  相似文献   

7.
Abstract Hexose phosphorylation was studied in Aspergillus nidulans wild-type and in a fructose non-utilising mutant ( frA ). The data indicate the presence of at least one hexokinase and one glucokinase in wild-type A. nidulans , while the fr A1 mutant lacks hexokinase activity. The A. nidulans gene encoding hexokinase was isolated by complementation of the fr A1 mutation. The absence of hexokinase activity in the fr A1 mutant did not interfere with glucose repression of the enzymes involved in alcohol and l-arabinose catabolism. This suggests that, unlike the situation in yeast where mutation of hexokinase PII abolishes glucose repression, the A. nidulans hexokinase might not be involved in glucose repression.  相似文献   

8.
An electrophoretic method has been devised to investigate the changes in the enzymes and isoenzymes of carbohydrate metabolism, upon adding glucose to derepressed yeast cells. (i) Of the glycolytic enzymes tested, enolase II, pyruvate kinase and pyruvate decarboxylase were markedly increased. This increase was accompanied by an overall increase in glycolytic activity and was prevented by cycloheximide, an inhibitor of protein synthesis. (ii) In contrast, respiratory activity decreased after adding glucose. This decrease was clearly shown to be the result of repression of respiratory enzymes. A rapid decrease within a few minutes of adding glucose, by analogy with the so-called ' Crabtree effect', was not observed in yeast. (iii) The gluconeogenic enzymes, fructose-1,6-bisphosphatase and malate dehydrogenase, which are inactivated after adding glucose, showed no significant changes in electrophoretic mobilities. Hence, there was no evidence of enzyme modifications, which were postulated as initiating degradation. However, it was possible to investigate cytoplasmic and mitochondrial malate dehydrogenase isoenzymes separately. Synthesis of the mitochondrial isoenzyme was repressed, whereas only cytoplasmic malate dehydrogenase was subject to glucose inactivation.  相似文献   

9.
Three glucose-phosphorylating enzymes were separated from cell-free extracts of Saccharomyces cerevisiae by hydroxylapatite chromatography. Variations in the amounts of these enzymes in cells growing on glucose and on ethanol showed that hexokinase PI was a constitutive enzyme, whereas synthesis of hexokinase PII and glucokinase were regulated by the carbon source used. Glucokinase proved to be a glucomannokinase with Km values of 0.04 mM for both glucose and mannose. D-Xylose produced an irreversible inactivation of the three glucose-phosphorylating enzymes depending on the presence or absence of ATP. Hexokinase PI inactivation required ATP, while hexokinase PII was inactivated by D-xylose without ATP in the reaction mixture. Glucokinase was protected by ATP from this inactivation. D-Xylose acted as a competitive inhibitor of hexokinase PI and glucokinase and as a non-competitive inhibitor of hexokinase PII.  相似文献   

10.
Summary Hexokinase isoenzyme PI was cloned using a gene pool obtained from a yeast strain having only one functional hexokinase, isoenzyme PI. The gene was characterized using 20 restriction enzymes and located within a region of 2.0 kbp. The PI plasmid strongly hybridized with the PII plasmids isolated previously (Fröhlich et al. 1984). Hence there was a close relationship between the two genes, one of which must have been derived from the other by gene duplication. In conrrast, glucose repression was restored only in hexokinase PII transformants; PI transformants remained non-repressible. This observation provided additional evidence for the hypothesis of Entian (1980) that only hexokinase PII is necessary for glucose repression. Furthermore, glucose phosphorylating activity in PI transformants exceeded that of wild-type cells, giving clear evidence that the phosphorylating capacity is not important for glucose repression.  相似文献   

11.
The trehalose-degrading enzyme trehalase is activated upon addition of glucose to derepressed cells or in response to nitrogen source addition to nitrogen-starved glucose-repressed yeast (Saccharomyces cerevisiae) cells. Trehalase activation is mediated by phosphorylation. Inactivation involves dephosphorylation, as trehalase protein levels do not change upon multiple activation/inactivation cycles. Purified trehalase can be inactivated by incubation with protein phosphatase 2A (PP2A) in vitro. To test whether PP2A was involved in trehalase inactivation in vivo, we overexpressed the yeast PP2A isoform Pph22. Unexpectedly, the moderate (approximately threefold) overexpression of Pph22 that we obtained increased basal trehalase activity and rendered this activity unresponsive to the addition of glucose or a nitrogen source. Concomitant with higher basal trehalase activity, cells overexpressing Pph22 did not store trehalose efficiently and were heat sensitive. After the addition of glucose or of a nitrogen source to starved cells, Pph22-overexpressing cells showed a delayed exit from stationary phase, a delayed induction of ribosomal gene expression and constitutive repression of stress-regulated element-controlled genes. Deletion of the SCH9 gene encoding a protein kinase involved in nutrient-induced signal transduction restored glucose-induced trehalase activation in Pph22-overexpressing cells. Taken together, our results indicate that yeast PP2A overexpression leads to the activation of nutrient-induced signal transduction pathways in the absence of nutrients.  相似文献   

12.
An electrophoretic method has been devised to investigate the changes in the enzymes and isoenzymes of carbohydrate metabolism, upon adding glucose to derepressed yeast cell. (i) Of the glycolytic enzymes tested, enolase II, pyruvate kinase and pyruvate decarboxylase were markedly increased. This increase was accompanied by an overall increase in glycolytic activity and was prevented by cycloheximide, an inhibitor of protein synthesis. (ii) In contrast, respiratory activity decreased after adding glucose. This decrease was clearly shown to be the result of repression of respiratory enzymes. A rapid decrease within a few minutes of adding glucose, by analogy with the so-called ‘Crabtree effect’, was not observed in yeast. (iii) The gluconeogenic enzymes, fructose-1,6-bisphosphatase and malate dehydrogenase, which are inactivated after adding glucose, showed no significant changes in electrophoretic mobilities. Hence, there was no evidence of enzyme modifications, which were postulated as initiating degradation. However, it was possible to investigate cytoplasmic and mitochondrial malate dehydrogenase isoenzymes separately. Synthesis of the mitochondrial isoenzyme was repressed, whereas only cytoplasmic malate hydrogenase was subject to glucose inactivation.  相似文献   

13.
Metabolism of citrate, pyruvate and sugars by Enterococcus faecalis E-239 and JH2-2 and an isogenic, catabolite derepressed mutant of JH2-2, strain CL4, was investigated. The growth rates of E. faecalis E-239 on citrate and pyruvate were 0.58 and 0.63 h(-1), respectively, indicating that both acids were used as energy sources. Fructose and glucose prevented the metabolism of citrate until all the glucose or fructose had been metabolised. Diauxie growth was not observed but growth on glucose and fructose was much faster than on citrate. In contrast, citrate was co-metabolized with galactose or sucrose and pyruvate with glucose. When glucose was added to cells growing on citrate, glucose metabolism began immediately but inhibition of citrate utilisation did not begin for approximately 1.5 h. Growth rates of E. faecalis JH2-2 and its isogenic, catabolite derepressed mutant, strain CL4, on citrate, were 0.41 and 0.36 h(-1), respectively. The catabolite derepressed mutant was able to co-metabolise citrate and glucose at all concentrations of glucose tested (3-25 mM), while its parent, could only metabolise citrate once all the glucose had been consumed. In strains JH2-2 and E-239, the growth rate on citrate decreased as the glucose concentration increased and, in 25 mM glucose, consumption of citrate was inhibited for several hours after glucose had been consumed. These results indicate that catabolite repression by glucose and fructose occurs in enterococci.  相似文献   

14.
15.
16.
Glucose represses and inactivates maltose transport in Saccharomyces cerevisiae. The inactivation has been described as an irreversible process involving proteolysis. We have studied the inactivation of the maltose-H+ symport in this yeast and have observed that the mechanism of inactivation depends on the physiological conditions. In resting cells there was a decrease in transport capacity. The rate of decrease was enhanced nonspecifically by the presence of a sugar, glucose being more effective than maltose. In growing cells, glucose induced a decrease in affinity of the H+-symport which could be recovered by starvation, even in the presence of cycloheximide; there was no loss in capacity or, if present, this loss could be explained fully by the dilution due to repression during growth on glucose. We submit that in growing cells inactivation consists in a reversible modification of the permease not involving proteolysis.  相似文献   

17.
18.
Two glucose-phosphorylating enzymes, a hexokinase phosphorylating both glucose and fructose, and a glucose-specific glucokinase were electrophoretically separated in the methylotrophic yeastHansenula polymorpha. Hexokinase-negative mutants were isolated inH. polymorpha by using mutagenesis, selection and genetic crosses. Regulation of synthesis of the sugar-repressed alcohol oxidase, catalase and maltase was studied in different hexose kinase mutants. In the wild type and in mutants possessing either hexokinase or glucokinase, glucose repressed the synthesis of maltase, alcohol oxidase and catalase. Glucose repression of alcohol oxidase and catalase was abolished in mutants lacking both glucose-phosphorylating enzymes (i.e. in double kinase-negative mutants). Thus, glucose repression inH. polymorpha cells requires a glucose-phosphorylating enzyme, either hexokinase or glucokinase. The presence of fructose-phosphorylating hexokinase in the cell was specifically needed for fructose repression of alcohol oxidase, catalase and maltase. Hence, glucose or fructose has to be phosphorylated in order to cause repression of the synthesis of these enzymes inH. polymorpha suggesting that sugar repression in this yeast therefore relies on the catalytic activity of hexose kinases.  相似文献   

19.
The oxidized form of vitamin C (dehydroascorbic acid, DHA) completely and irreversibly inactivates recombinant human hexokinase type I, in a pseudo-first order fashion. The inactivation reaction occurs without saturation, indicating that DHA does not form a reversible complex with hexokinase. Further characterization of this response revealed that the inactivation does not require oxygen and that dithiothreitol, while able to prevent the DHA-mediated loss of enzyme activity, failed to restore the activity of the DHA-inhibited enzyme. Inactivation was not associated with cleavage of the peptide chain or cross-linking. The decay in enzymatic activity was however both dependent on deprotonation of a residue with an alkaline pKa and associated with covalent binding of DHA to the protein. In addition, inactivation of hexokinase decreased or increased, respectively, in the presence of the substrates glucose or MgATP. Finally, amino acid analysis of the DHA-modified hexokinase revealed a decrease of cysteine residues.Taken together, the above results are consistent with the possibility that covalent binding of the reagent with a thiol group of cysteine is a critical event for the DHA-mediated loss of hexokinase activity.  相似文献   

20.
The regulatory hexokinase PII mutants isolated previously (K.-D. Entian and K.-U. Fröhlich, J. Bacteriol. 158:29-35, 1984) were characterized further. These mutants were defective in glucose repression. The mutation was thought to be in the hexokinase PII structural gene, but it did not affect the catalytic activity of the enzyme. Hence, a regulatory domain for glucose repression was postulated. For further understanding of this regulatory system, the mutationally altered hexokinase PII proteins were isolated from five mutants obtained independently and characterized by their catalytic constants and bisubstrate kinetics. None of these characteristics differed from those of the wild type, so the catalytic center of the mutant enzymes remained unchanged. The only noticeable difference observed was that the in vivo modified form of hexokinase PII, PIIM, which has been described recently (K.-D. Entian and E. Kopetzki, Eur. J. Biochem. 146:657-662, 1985), was absent from one of these mutants. It is possible that the PIIM modification is directly connected with the triggering of glucose repression. To establish with certainty that the mutation is located in the hexokinase PII structural gene, the genes of these mutants were isolated after transforming a hexokinaseless mutant strain and selecting for concomitant complementation of the nuclear function. Unlike hexokinase PII wild-type transformants, glucose repression was not restored in the hexokinase PII mutant transformants. In addition mating experiments with these transformants followed by tetrad analysis of sporulated diploids gave clear evidence of allelism to the hexokinase PII structural gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号