首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peritransplant treatment with anti-CD3 immunotoxin plus deoxyspergualin induces tolerance to kidney allografts in most rhesus macaque recipients. Tolerant recipients maintain normal function for years without evidence of chronic rejection. Indirect alloantigen presentation is implicated in chronic rejection. Accordingly, we determined if anti-CD3 immunotoxin plus deoxyspergualin induced rejection-free tolerance associates with suppression of anti-donor indirect pathway responses. Tolerant recipients exhibited an early decrease in direct anti-donor responses with recovery to baseline levels by 3 years posttransplantation. In contrast, tolerant monkeys were unresponsive to donor antigens presented by the indirect pathway. Recipients that rejected their allografts retained vigorous direct and indirect anti-donor responses. Therefore, following temporary donor-specific hyporesponsiveness, direct responses recover in tolerant recipients >1.5 years after transplantation. However, tolerant recipients tested at 1.9-4 years posttransplant are specifically unresponsive to donor antigens presented by the indirect pathway. Thus, the rejection-free state of tolerant recipients may depend on mechanisms regulating indirect pathway responsiveness.  相似文献   

2.
Alloantibody is an important effector mechanism for allograft rejection. In this study, we tested the hypothesis that regulatory T cells with indirect allospecificity can prevent humoral rejection by using a rat transplant model in which acute rejection of MHC class I-disparate PVG.R8 heart grafts by PVG.RT1(u) recipients is mediated by alloantibody and is dependent upon help from CD4 T cells that can recognize the disparate MHC alloantigen only via the indirect pathway. Pretransplant treatment of PVG.RT1(u) recipients with anti-CD4 mAb plus donor-specific transfusion abrogated alloantibody production and prolonged PVG.R8 graft survival indefinitely. Naive syngeneic splenocytes injected into tolerant animals did not effect heart graft rejection, suggesting the presence of regulatory mechanisms. Adoptive transfer experiments into CD4 T cell-reconstituted, congenitally athymic recipients confirmed that regulation was mediated by CD4 T cells and was alloantigen-specific. CD4 T cell regulation could be broken in tolerant animals either by immunizing with an immunodominant linear allopeptide or by depleting tolerant CD4 T cells, but surprisingly this resulted in neither alloantibody generation nor graft rejection. These findings demonstrate that anti-CD4 plus donor-specific transfusion treatment results in the development of CD4 regulatory T cells that recognize alloantigens via the indirect pathway and act in an Ag-specific manner to prevent alloantibody-mediated rejection. Their development is associated with intrinsic tolerance within the alloantigen-specific B cell compartment that persists after T cell help is made available.  相似文献   

3.
Corneal transplantation represents an interesting model to investigate the contribution of direct vs indirect Ag recognition pathways to the alloresponse. Corneal allografts are naturally devoid of MHC class II+ APCs. In addition, minor Ag-mismatched corneal grafts are more readily rejected than their MHC-mismatched counterparts. Accordingly, it has been hypothesized that these transplants do not trigger direct T cell alloresponse, but that donor Ags are presented by host APCs, i.e., in an indirect fashion. Here, we have determined the Ag specificity, frequency, and phenotype of T cells activated through direct and indirect pathways in BALB/c mice transplanted orthotopically with fully allogeneic C57BL/6 corneas. In this combination, only 60% of the corneas are rejected, while the remainder enjoy indefinite graft survival. In rejecting mice the T cell response was mediated by two T cell subsets: 1) CD4+ T cells that recognize alloantigens exclusively through indirect pathway and secrete IL-2, and 2) IFN-gamma-producing CD8+ T cells recognizing donor MHC in a direct fashion. Surprisingly, CD8+ T cells activated directly were not required for graft rejection. In nonrejecting mice, no T cell responses were detected. Strikingly, peripheral sensitization to allogeneic MHC molecules in these mice induced acute rejection of corneal grafts. We conclude that only CD4+ T cells activated via indirect allorecognition have the ability to reject allogeneic corneal grafts. Although alloreactive CD8+ T cells are activated via the direct pathway, they are not fully competent and cannot contribute to the rejection unless they receive an additional signal provided by professional APCs in the periphery.  相似文献   

4.
CD4 T cells frequently help to activate CD8 T and B cells that effect transplant rejection. However, CD4 T cells alone can reject transplants, either directly or indirectly. The relative effectiveness of indirect CD4 immunity in rejecting different types of allogeneic grafts is unknown. To address this, we used a TCR transgenic mouse model in which indirect CD4 alloimmunity alone can be studied. We challenged transgenic recipients with hematopoietic cells and shortly thereafter skin transplants that could only be rejected indirectly, and observed Ag-specific indirect donor B cell and skin rejection, but not T cell elimination, reflecting a state of split tolerance. Deficiency of indirect CD4 alloimmunity in donor T cell rejection was also apparent when acute indirect rejection of donor islets occurred despite generation and maintenance of mixed T cell chimerism, due to migration of the few passenger T cells into recipient circulation. Although passenger lymphocytes delayed indirect islet rejection, they enhanced rejection by a full repertoire capable of both direct and indirect reactivity. Interestingly, the persistence of chimerism was associated with the eventual development of tolerance, as demonstrated by acceptance of donor skin grafts given late to hematopoietic cell recipients, and hyporesponsiveness of transgenic T cells from islet recipients in vitro. Mechanistically, tolerance was recessive and associated with progressive down-regulation of CD4. Collectively, our data indicate that indirect CD4 immunity is not equally destructive toward different types of allogeneic grafts, the deficiency of which generates split tolerance. The futility of these responses can convert immunity into tolerance.  相似文献   

5.
The durable alloantibody responses that develop in organ transplant patients indicate long-lived plasma cell output from T-dependent germinal centers (GCs), but which of the two pathways of CD4 T cell allorecognition is responsible for generating allospecific T follicular helper cells remains unclear. This was addressed by reconstituting T cell-deficient mice with monoclonal populations of TCR-transgenic CD4 T cells that recognized alloantigen only as conformationally intact protein (direct pathway) or only as self-restricted allopeptide (indirect pathway) and then assessing the alloantibody response to a heart graft. Recipients reconstituted with indirect-pathway CD4 T cells developed long-lasting IgG alloantibody responses, with splenic GCs and allospecific bone marrow plasma cells readily detectable 50 d after heart transplantation. Differentiation of the transferred CD4 T cells into T follicular helper cells was confirmed by follicular localization and by acquisition of signature phenotype. In contrast, IgG alloantibody was not detectable in recipient mice reconstituted with direct-pathway CD4 T cells. Neither prolongation of the response by preventing NK cell killing of donor dendritic cells nor prior immunization to develop CD4 T cell memory altered the inability of the direct pathway to provide allospecific B cell help. CD4 T cell help for GC alloantibody responses is provided exclusively via the indirect-allorecognition pathway.  相似文献   

6.
Hematopoietic chimerism is considered to generate robust allogeneic tolerance; however, tissue rejection by chimeras can occur. This "split tolerance" can result from immunity toward tissue-specific Ags not expressed by hematopoietic cells. Known to occur in chimeric recipients of skin grafts, it has not often been reported for other donor tissues. Because chimerism is viewed as a potential approach to induce islet transplantation tolerance, we generated mixed bone marrow chimerism in the tolerance-resistant NOD mouse and tested for split tolerance. An unusual multilevel split tolerance developed in NOD chimeras, but not chimeric B6 controls. NOD chimeras demonstrated persistent T cell chimerism but rejected other donor hematopoietic cells, including B cells. NOD chimeras also showed partial donor alloreactivity. Furthermore, NOD chimeras were split tolerant to donor skin transplants and even donor islet transplants, unlike control B6 chimeras. Surprisingly, islet rejection was not a result of autoimmunity, since NOD chimeras did not reject syngeneic islets. Split tolerance was linked to non-MHC genes of the NOD genetic background and was manifested recessively in F(1) studies. Also, NOD chimeras but not B6 chimeras could generate serum alloantibodies, although at greatly reduced levels compared with nonchimeric controls. Surprisingly, the alloantibody response was sufficiently cross-reactive that chimerism-induced humoral tolerance extended to third-party cells. These data identify split tolerance, generated by a tolerance-resistant genetic background, as an important new limitation to the chimerism approach. In contrast, the possibility of humoral tolerance to multiple donors is potentially beneficial.  相似文献   

7.
8.
Donor leukocytes play a dual role in rejection and acceptance of transplanted organs. They provide the major stimulus for rejection, and their removal from the transplanted organ prolongs its survival. Paradoxically, administration of donor leukocytes also prolongs allograft survival provided that they are administered 1 wk or more before transplantation. Here we show that administration of donor leukocytes immediately after transplantation induced long-term acceptance of completely MHC-mismatched rat kidney or liver transplants. The majority of long-term recipients of kidney transplants were tolerant of donor-strain skin grafts. Acceptance was associated with early activation of recipient T cells in the spleen, demonstrated by a rapid increase in IL-2 and IFN-gamma at that site followed by an early diffuse infiltrate of activated T cells and apoptosis within the tolerant grafts. In contrast, IL-2 and IFN-gamma mRNA were not increased in the spleens of rejecting animals, and the diffuse infiltrate of activated T cells appeared later but resulted in rapid graft destruction. These results define a mechanism of allograft acceptance induced by donor leukocytes that is associated with activation-induced cell death of recipient T cells. They demonstrate for the first time that posttransplant administration of donor leukocytes leads to organ allograft tolerance across a complete MHC class I plus class II barrier, a finding with direct clinical application.  相似文献   

9.
Alloantibodies can play a key role in acute and chronic allograft rejection. However, relatively little is known of factors that control B cell responses following allograft tolerance induction. Using 3-83 Igi mice expressing an alloreactive BCR, we recently reported that allograft tolerance was associated with the sustained deletion of the alloreactive B cells at the mature, but not the immature, stage. We have now investigated the basis for the long-term control of alloreactive B cell responses in a non-BCR-transgenic model of C57BL/6 cardiac transplantation into BALB/c recipients treated with anti-CD154 and transfusion of donor-specific spleen cells. We demonstrate that the long-term production of alloreactive Abs by alloreactive B cells is actively regulated in tolerant BALB/c mice through the dominant suppression of T cell help. Deletion of CD25(+) cells resulted in a loss of tolerance and an acquisition of the ability to acutely reject allografts. In contrast, the restoration of alloantibody responses required both the deletion of CD25(+) cells and the reconstitution of alloreactive B cells. Collectively, these data suggest that alloreactive B cell responses in this model of tolerance are controlled by dominant suppression of T cell help as well as the deletion of alloreactive B cells in the periphery.  相似文献   

10.
11.
Although the CD154-CD40 T cell costimulation pathway has been shown to mediate alloimmune responses in normal recipients, little is known about its role in sensitized hosts. In this work, by using novel models of cardiac allograft rejection in skin-sensitized CD154- and CD40-deficient mice, we reaffirm the key role of CD154-CD40 signaling in host sensitization to alloantigen in vivo. First, we identified CD8(+) T cells as principal effectors in executing accelerated rejection in our model. Disruption of CD154-CD40 signaling in recipients at the T cell side (CD154-deficient) but not at the APC side (CD40-deficient) abrogated accelerated (<2 days) rejection and resulted in long-term (>100 days) graft survival. This suggests that the CD154-dependent mechanism in host CD8(+) T cell sensitization operates via the direct Ag presentation. Then, in comparative studies of alloimmune responses in CD154-deficient and wild-type recipients, we showed that, although alloreactive B cell responses were inhibited, alloreactive T cell responses were down-regulated selectively in the CD8(+) T cell compartment, leaving CD4(+) T cells largely unaffected. This unique alteration in host alloreactivity, seen not only in peripheral lymphocytes but also in allograft infiltrate, may represent the key mechanism by which disruption of CD154-CD40 signaling prevents sensitization to alloantigen in vivo and leads to long-term allograft survival.  相似文献   

12.
Age-related decline in immunity can impair cell-mediated responses during an infection, malignancy, and acute allograft rejection. Although much research has been allocated to understand the immune responses that impact the former two conditions, the cellular mechanisms by which aging impacts the immune acceptance of organ allografts are not completely clear. In this study, we examined how recipient age impacts the efficacy of therapies that modulate immune recognition of allografts using an immunogenic murine skin transplant model. We found that costimulatory blockade-based treatment failed to extend allograft survival in older recipients to the same extent as that observed in younger recipients. CD8(+) T cells were critical for the inability of aged recipients to achieve maximal allograft survival. Although aged mice displayed a larger number of effector memory T cells prior to transplantation, these cells did not exhibit enhanced alloreactivity compared with young memory T cells. In contrast, naive aged CD8(+) T cells exhibited enhanced IFN-γ production to allostimulation compared with young naive T cells. Our results provide evidence that aging enhances CD8(+) T cell alloreactivity. This could impair the ability of costimulatory blockade-based therapies to prolong allograft survival. Thus, targeting CD8(+) T cells in humans may be a way to improve outcomes in older patients requiring immune modulatory therapy.  相似文献   

13.
Blockade of the CD28/CTLA4/B7 costimulatory pathway using CTLA4-Ig has great therapeutic potential, and has been shown to prolong allograft survival in a variety of animal models. To gain further insight into the mechanism by which costimulatory blockade prevents allograft rejection, we studied cardiac allograft survival in the complete absence of B7 costimulation using mice lacking B7-1 and B7-2 (B7-1/B7-2-/- mice). To determine the role of B7 on donor vs recipient cells, we used B7-1/B7-2-/- mice as either donors or recipients of allografts. Wild-type (WT) recipients acutely reject fully allogeneic hearts from both WT and B7-1/B7-2-/- mice. In contrast, B7-1/B7-2-/- recipients allow long-term survival of grafts from both WT and B7-1/B7-2-/- mice, with minimal histologic evidence of either acute or chronic rejection in grafts harvested after 90 days. The B7-1/B7-2-/- mice acutely reject B7-1/B7-2-/- allografts if CD28 stimulation is restored by the administration of Ab to CD28 and can mount an alloresponse in mixed lymphocyte reactions. Therefore, B7-1/B7-2-/- mice are capable of generating alloresponses both in vivo and in vitro. Our results demonstrate that in the alloresponse to mouse heterotopic cardiac transplantation, B7 molecules on recipient cells rather than donor cells provide the critical costimulatory signals. The indefinite survival of allografts into B7-1/B7-2-/- recipients further shows that the absence of B7 costimulation alone is sufficient to prevent rejection.  相似文献   

14.
T cell Ig domain and mucin domain (TIM)-3 has previously been established as a central regulator of Th1 responses and immune tolerance. In this study, we examined its functions in allograft rejection in a murine model of vascularized cardiac transplantation. TIM-3 was constitutively expressed on dendritic cells and natural regulatory T cells (Tregs) but only detected on CD4(+)FoxP3(-) and CD8(+) T cells in acutely rejecting graft recipients. A blocking anti-TIM-3 mAb accelerated allograft rejection only in the presence of host CD4(+) T cells. Accelerated rejection was accompanied by increased frequencies of alloreactive IFN-γ-, IL-6-, and IL-17-producing splenocytes, enhanced CD8(+) cytotoxicity against alloantigen, increased alloantibody production, and a decline in peripheral and intragraft Treg/effector T cell ratio. Enhanced IL-6 production by CD4(+) T cells after TIM-3 blockade plays a central role in acceleration of rejection. Using an established alloreactivity TCR transgenic model, blockade of TIM-3 increased allospecific effector T cells, enhanced Th1 and Th17 polarization, and resulted in a decreased frequency of overall number of allospecific Tregs. The latter is due to inhibition in induction of adaptive Tregs rather than prevention of expansion of allospecific natural Tregs. In vitro, targeting TIM-3 did not inhibit nTreg-mediated suppression of Th1 alloreactive cells but increased IL-17 production by effector T cells. In summary, TIM-3 is a key regulatory molecule of alloimmunity through its ability to broadly modulate CD4(+) T cell differentiation, thus recalibrating the effector and regulatory arms of the alloimmune response.  相似文献   

15.
The role of immune response to tissue-specific Ags in transplant rejection is poorly defined. We have previously reported that transplantation of cardiac allografts triggers a CD4(+) Th1 cell response to cardiac myosin (CM), a major contractile protein of the heart, and that pretransplant activation of proinflammatory CM-specific T cells accelerates rejection. In this study, we show that administration of CM together with IFA (CM/IFA) can prevent acute rejection of an allogeneic heart transplant. Prolongation of cardiac graft survival is associated with activation of CM- and allo-specific T cells secreting type 2 cytokines (IL-4, IL-5) and reduction of the frequency of proinflammatory IFN-gamma-secreting (type 1) alloreactive T cells. Blocking of IL-4 cytokine with Abs abrogates the prolongation. CM/IFA treatment prevents acute rejection of MHC class I-mismatched, but not fully mismatched grafts. However, if donor heart is devoid of MHC class II expression, CM-IFA administration delays rejection of fully allogeneic cardiac transplants. This finding suggests that the effect of CM modulation depends on the type (direct vs indirect) and strength of recipient's CD4(+) T cell alloresponse. Our results underscore the important role of host immunity to tissue-specific Ags in the rejection of an allograft. This study demonstrates that modulation of the immune response to a tissue-specific Ag can significantly prolong cardiac allograft survival, an observation that may have important implications for the development of novel selective immune therapies in transplantation.  相似文献   

16.
The study of human T lymphocyte biology often involves examination of responses to activating ligands. T cells recognize and respond to processed peptide antigens presented by MHC (human ortholog HLA) molecules through the T cell receptor (TCR) in a highly sensitive and specific manner. While the primary function of T cells is to mediate protective immune responses to foreign antigens presented by self-MHC, T cells respond robustly to antigenic differences in allogeneic tissues. T cell responses to alloantigens can be described as either direct or indirect alloreactivity. In alloreactivity, the T cell responds through highly specific recognition of both the presented peptide and the MHC molecule. The robust oligoclonal response of T cells to allogeneic stimulation reflects the large number of potentially stimulatory alloantigens present in allogeneic tissues. While the breadth of alloreactive T cell responses is an important factor in initiating and mediating the pathology associated with biologically-relevant alloreactive responses such as graft versus host disease and allograft rejection, it can preclude analysis of T cell responses to allogeneic ligands. To this end, this protocol describes a method for generating alloreactive T cells from naive human peripheral blood leukocytes (PBL) that respond to known peptide-MHC (pMHC) alloantigens. The protocol applies pMHC multimer labeling, magnetic bead enrichment and flow cytometry to single cell in vitro culture methods for the generation of alloantigen-specific T cell clones. This enables studies of the biochemistry and function of T cells responding to allogeneic stimulation.  相似文献   

17.
The features that determine whether graft-reactive T lymphocytes develop into effector cells capable of mediating organ destruction are not well understood. To investigate potential factors involved in this process, we first confirmed that female recipient mice acutely rejected minor Ag-disparate male skin, but not heart transplants. Despite this difference in outcome, heart and skin transplantation induced antidonor T cell responses of similar magnitude, specificity, and cytokine profile. The heart-graft-primed T cells transiently infiltrated the graft and ultimately induced the development of chronic transplant vasculopathy. Increasing the frequency of donor-reactive T cells by presensitization or by using TCR (CD8+ antimale)-transgenic recipients did not mediate acute rejection but accelerated the pace and severity of the vasculopathy. Surprisingly, decreasing the tissue mass of the donor heart by 50% resulted in acute rejection of these smaller grafts without increasing the frequency of antidonor effector T cells in the recipients. In complementary studies, placement of one or two male skin grafts on a single recipient did not affect the frequency or cytokine profile of the induced antimale T cell repertoire. Nonetheless, the recipients of single grafts acutely rejected the transplanted skin while the recipients of two skin grafts did not. These results provide new insight into the pathogenesis of transplant vasculopathy and provide an explanation for the difference in outcome between murine skin and heart transplants by highlighting the novel concept that the efficiency of transplant-reactive T cell immunity is heavily influenced by the tissue burden it encounters at the effector stage.  相似文献   

18.
Blockade of T cell costimulatory pathways can result in the prolongation of allograft survival through the suppression of Th1 responses; however, late allograft rejection is usually accompanied by an emerging allograft-specific humoral response. We have recently determined that intact active bone (IAB) fragments transplanted under the kidney capsule can synergize with transient anti-CD40 ligand (CD40L) treatment to induce robust donor-specific allograft tolerance and suppress the alloantibody response. In this study, we take advantage of the ability of galactosyltransferase-deficient knockout (GT-Ko) mice to respond to the carbohydrate epitope, galactose-alpha1,3-galactose (Gal), to investigate whether IAB plus transient anti-CD40L therapy directly tolerize B cell responses. GT-Ko mice tolerized to Gal-expressing C3H hearts and IAB plus transient anti-CD40L therapy were challenged with pig kidney membranes that express high levels of Gal. The anti-Gal IgM and IgG responses were significantly suppressed in IAB-tolerant mice compared with controls, while the non-Gal anti-pig Ab responses were comparable. The anti-pig T cell cytokine response (IFN-gamma and IL-4) was comparable in IAB-tolerant and control mice. The tolerant state for the anti-Gal IgM response could be reversed with repeated immunization, whereas the tolerant state for the IgG response was robust and resisted repeated immunization. These observations provide an important proof-of-concept that adjunct therapies can synergize with anti-CD40L Abs to tolerize B cell responses independent of their effects on T cells. This model, which does not require mixed chimerism, provides a unique opportunity for investigating the mechanism of peripheral tolerance in a clinically relevant population of carbohydrate-specific B cells.  相似文献   

19.
20.
Both humoral and cellular immune responses are involved in renal allograft rejection. Interleukin (IL)-6 is a regulatory cytokine for both B and Foxp3 (forkhead box P3)-expressing regulatory T (Treg) cells. This study was designed to investigate the impact of donor IL-6 production on renal allograft survival. Donor kidneys from IL-6 knockout (KO) vs. wild-type (WT) C57BL/6 mice (H-2(b)) were orthotopically transplanted to nephrotomized BALB/c mice (H-2(d)). Alloantibodies and Treg cells were examined by fluorescence-activated cell sorting analysis. Graft survival was determined by the time to graft failure. Here, we showed that a deficiency in IL-6 expression in donor kidneys significantly prolonged renal allograft survival compared with WT controls. IL-6 protein was upregulated in renal tubules and endothelium of renal allografts following rejection, which correlated with an increase in serum IL-6 compared with that in those receiving KO grafts or naive controls. The absence of graft-producing IL-6 or lower levels of serum IL-6 in the recipients receiving IL-6 KO allografts was associated with decreased circulating anti-graft alloantibodies and increased the percentage of intragraft CD4(+)CD25(+)Foxp3(+) Treg cells compared with those with WT allografts. In conclusion, the lack of graft-producing IL-6 significantly prolongs renal allograft survival, which is associated with reduced alloantibody production and/or increased intragraft Treg cell population, implying that targeting donor IL-6 may effectively prevent both humoral and cellular rejection of kidney transplants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号