首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rate of dissolution and dehydration of CO2 in a liquid model system was investigated. Components in the model system established the main conditions which may exist, in the extracellular space of a microbiological culture liquid. The charge in voltage of a glass electrode was measured which indicated the formation of H+ ions in the H2CO3 ? HCO H+ reaction. The rate of CO2 hydration increased with the increase of temperature from 0 to 40°C. Likewise the equilibrium of the reaction was shifted towards the forward reaction. Similar results were observed when the tip velocity of the impeller was increased. Data suggest that agitation promotes the dissolution of CO2 in the culture liquid through the reduction of gas-liquid film resistance in the diffusion of this gas. The rate of hydration of CO2 into the bulk of the liquid was independent of pCO2 above the surface of the liquid but depended on pCO2 in the gas bubble within the liquid. The concentration of HCO was, furthermore, influenced by the buffer components, buffer capacity, and the viscosity of the system. Since pCO2 and the HCO concentration in the extracellular space depend on both physical and chemical factors, the ventilation of a culture liquid necessitates both exhaust of CO2 from the gas bubbles of the culture broth and shift of the H2CO3 ? HCO + H+ reaction towards the backward direction.  相似文献   

2.
A novel sulfur‐utilizing perchlorate reducing bacterial consortium successfully treated perchlorate (ClO) in prior batch and bench‐scale packed bed reactor (PBR) studies. This study examined the scale up of this process for treatment of water from a ClO and RDX contaminated aquifer in Cape Cod Massachusetts. A pilot‐scale upflow PBR (~250‐L) was constructed with elemental sulfur and crushed oyster shell packing media. The reactor was inoculated with sulfur oxidizing ClO reducing cultures enriched from a wastewater seed. Sodium sulfite provided a good method of dissolved oxygen removal in batch cultures, but was found to promote the growth of bacteria that carry out sulfur disproportionation and sulfate reduction, which inhibited ClO reduction in the pilot system. After terminating sulfite addition, the PBR successfully removed 96% of the influent ClO in the groundwater at an empty bed contact time (EBCT) of 12 h (effluent ClO of 4.2 µg L?1). Simultaneous ClO and NO reduction was observed in the lower half of the reactor before reactions shifted to sulfur disproportionation and sulfate reduction. Analyses of water quality profiles were supported by molecular analysis, which showed distinct groupings of ClO and NO degrading organisms at the inlet of the PBR, while sulfur disproportionation was the primary biological process occurring in the top potion of the reactor. Biotechnol. Bioeng. 2012; 109:637–646. © 2011 Wiley Periodicals, Inc.  相似文献   

3.
Purple non‐sulfur (PNS) bacteria produce hydrogen by photofermentation of organic acids in wastewater. However, NH in wastewater may inhibit hydrogen synthesis by repressing the expression and activity of nitrogenase, the enzyme catalyzing hydrogen production in PNS bacteria. In this study, the Rhodobacter sphaeroides 6016 glnA gene encoding glutamine synthetase (GS) was knocked out by homologous recombination, and the effects on hydrogen production and nitrogenase activity were examined. Using 3 mM glutamine as the nitrogen source, hydrogen production (1,245–1,588 mL hydrogen/L culture) and nitrogenase activity were detected in the mutant in the presence of relatively high NH concentrations (15–40 mM), whereas neither was detected in the wild‐type strain under the same conditions. Further analysis indicated that high NH concentrations greatly inhibited the expression of nifA and nitrogenase gene in the wild‐type strain but not in the glnA1? mutant. These observations suggest that GS is essential to NH repression of nitrogenase and that deletion of glnA1 results in the complete derepression of nitrogenase by preventing NH assimilation in vivo, thus relieving the inhibition of nifA and nitrogenase gene expression. Knocking out glnA1 therefore provides an efficient approach to removing the inhibitory effects of ammonium ions in R. sphaeroides and possibly in other hydrogen‐producing PNS bacteria. Biotechnol. Bioeng. 2010;106: 564–572. © 2010 Wiley Periodicals, Inc.  相似文献   

4.
Biofilms are known to be robust biocatalysts. Conventionally, they have been mainly applied for wastewater treatment, however recent reports about their employment for chemical synthesis are increasingly attracting attention. Engineered Pseudomonas sp. strain VLB120ΔC biofilm growing in a tubular membrane reactor was utilized for the continuous production of (S)‐styrene oxide. A biofilm specific morphotype appeared in the effluent during cultivation, accounting for 60–80% of the total biofilm irrespective of inoculation conditions but with similar specific activities as the original morphotype. Mass transfer of the substrate styrene and the product styrene oxide was found to be dependent on the flow rate but was not limiting the epoxidation rate. Oxygen was identified as one of the main parameters influencing the biotransformation rate. Productivity was linearly dependent on the specific membrane area and on the tube wall thickness. On average volumetric productivities of 24 g L day?1 with a maximum of 70 g L day?1 and biomass concentrations of 45 gBDW L have been achieved over long continuous process periods (≥50 days) without reactor downtimes. Biotechnol. Bioeng. 2010. 105: 705–717. © 2009 Wiley Periodicals, Inc.  相似文献   

5.
The influence of proline cis-trans isomerization on the kinetics of lysozyme unfolding was examined carefully according to the theory of Hagerman and Baldwin [(1976) Biochemistry 15, 1462–1473]. As a result, the kinetics of lysozyme unfolding was found to follow the two-state transition model well. The temperature dependencies of kuf and kf over a wide temperature range showed that ΔC = 0 and ΔC = ?6.7 kJ K?1 mol?1 in solutions of different concentrations of GuHCl. The data observed in solutions containing other denaturants also supported the conclusion that ΔC is nearly equal to zero. The activation enthalpies of unfolding (ΔH) were observed at various concentrations of several kinds of denaturants. They were independent of species and concentrations of denaturants ΔH = 200 kJ mol?1). These facts indicate that the aspect of interaction between protein and different kinds of solvent molecules varies only slightly during the unfolding to the transition state, that is, the transition state is at compact as the native one. Therefore, it is also suggested that ΔH of 200 kJ mol?1 is primarily required for the disruption of long-range interactions among different structural domains through a subtle conformational change. We compared the effects of several kinds of denaturants on the unfolding rate. The addition of PrOH more remarkably increases the unfolding rate than do other hydrophilic denaturants. This is probably because PrOH molecules can penetrate into the hydrophobic core of lysozyme, but hydrophilic reagents cannot because of the compactness of the transition state.  相似文献   

6.
The kinetics of ethidium's intercalative binding to DNA packaged in bacteriophage T7 and two T7 deletion mutants have been determined, using enhancement of fluorescence to quantitate binding. At a constant ethidium concentration, the results can be described as first-order binding with two different rate constants, k (= k1 + k?1) and k (= k2 + k?2). The larger rate constant (k) was at least four orders of magnitude smaller than the comparable first-order forward rate constant for binding to DNA released from its capsid. At 25°C values of k decreased as the amount of DNA packaged per internal volume increased. This latter observation indicates that the rate of ethidium's binding to packaged T7 DNA is limited by an event that occurs inside of the DNA-containing region of T7, not by the crossing of T7 capsid's outer shell. Arrhenius plots of kM are biphasic, indicating a transition for packaged DNA at a temperature of 20°C. The data indicate that k s are limited by either sieving of ethidium during its passage through the packaged DNA or subsequent hindered intercalation.  相似文献   

7.
Quasi-elastic light scattering studies on some polyelectrolyte systems exhibit a somewhat “bizarre” behavior in the profile of the apparent diffusion coefficient Dapp as a function of the salt concentration Cs. As Cs is decreased, Dapp first increases in accordance with polyelectrolyte theories, and then undergoes a precipitous drop in value by over an order of magnitude at a well-defined critical value Cs = C. This “transition” from Cs > C (ordinary) to Cs < C (extraordinary) is referred to as the “ordinary-extraordinary” (o-e) transition. Ghosh, Peitzsch, and Reed [(1992) Biopolymers, Vol. 32, pp. 1105–1122] proposed a “filterable aggregate” (FA) and “other particle” interpretation for the o-e transition and its reversibility in regard to ionic strength changes. The present communication examines in detail the FA model as applied to the o-e transition. It is shown that the FA model fails to account of the established characteristics of the o-e transition. © 1993 John Wiley & Sons, Inc.  相似文献   

8.
Glucose-limited chemostat cultures of Candida utilis were cultivated at various pH levels (3.0–7.5), temperatures (15–37.5°C), dilution rates (0.06–0.42 hr?1), and with different nitrogen sources (NH and NO). The ratio of total nucleic acid to protein increased with increase in dilution rate at constant temperature and decreased with increase in temperature at constant dilution rate. The pattern of these variations is consistent with the hypothesis that the nucleic acid to protein ratio is a function of the ratio of the actual dilution rate to the critical dilution rate corresponding to each one of the cultivation temperatures. This ratio is called “reduced dilution rate.” A basis is proposed on which various microorganisms may be compared with respect to the ratios of cell protein to nucleic acid, RNA, ribosomal RNA, and polysomes.  相似文献   

9.
There is increasing evidence showing that ammonia‐oxidizing bacteria (AOB) are major contributors to N2O emissions from wastewater treatment plants (WWTPs). Although the fundamental metabolic pathways for N2O production by AOB are now coming to light, the mechanisms responsible for N2O production by AOB in WWTP are not fully understood. Mathematical modeling provides a means for testing hypotheses related to mechanisms and triggers for N2O emissions in WWTP, and can then also become a tool to support the development of mitigation strategies. This study examined the ability of four mathematical model structures to describe two distinct mechanisms of N2O production by AOB. The production mechanisms evaluated are (1) N2O as the final product of nitrifier denitrification with NO as the terminal electron acceptor and (2) N2O as a byproduct of incomplete oxidation of hydroxylamine (NH2OH) to NO. The four models were compared based on their ability to predict N2O dynamics observed in three mixed culture studies. Short‐term batch experimental data were employed to examine model assumptions related to the effects of (1) NH concentration variations, (2) dissolved oxygen (DO) variations, (3) NO accumulations and (4) NH2OH as an externally provided substrate. The modeling results demonstrate that all these models can generally describe the NH, NO, and NO data. However, none of these models were able to reproduce all measured N2O data. The results suggest that both the denitrification and NH2OH pathways may be involved in N2O production and could be kinetically linked by a competition for intracellular reducing equivalents. A unified model capturing both mechanisms and their potential interactions needs to be developed with consideration of physiological complexity. Biotechnol. Bioeng. 2013; 110: 153–163. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
For a balanced one-way classification, where the normally distributed observations obey a random model yij=μ+bi+cij with two variance components var (bi) = δ and var (cij) = δ, the probability is given that the analysis of variance estimate of δ will be negative. This probability depends on δ/δ and the degrees of freedom in the ANOVA table. Tables for this probability are given. If the normally distributed observations obey an intra-class correlation model, the probability that the Mean Square between groups is smaller than the Mean Square within groups can also be evaluated from the given tables.  相似文献   

11.
The conformational transition of poly(L -agrignine) by binding with various mono-, di-, and polyvalent anions, especially with SO, was studied by CD measurements. The intramolecular random coil-to-α-helix conformational transition and the subsequent transition to the β-turn-like structure was caused by binding with SO. The binding data obtained from equilibrium dialysis experiments showed that the α-helical conformation of poly(L -arginine) is stabilized at a 1:3 stoichiometric ratio of bound SO to arginine residue; at higher free SO concentrations, the α-helix converts to the β-turn-like structure accompanied by a decrease in amount of bound SO. The same conformaitonal transition of poly(L -arginine) also occurred in the solutions of other divalent anions (SO, CO, and HPO) and polyvalent anions (P2O, P3O). Among the monovalent anions examined, CIO and dodecyl sulfate were effective in including α-helical conformation, while the other monovalent anions (OH?, Cl?, F?, H2PO, HCO and CIO) failed to induce poly(L -arginine) to assume the α-helical conformation. Thus, we noticed that, except for dodecyl sufate, the terahedral structure is common to the α-helix-forming anions. A well-defined model to the α-helical poly(L -arginine)/anion complex was proposed, in which both the binding stoichiometry of anions to the arginine residue and the tetrahedral structure of anions were taken into consideration. Based on these results, it was concluded that the tetrahedral-type anions stabilize the α-helical conformation of poly(L -arginine) by crosslinking between two guanidinium groups of nearby side chains on the same α-helix through the ringed structures stabilized by hydrogen bonds as well as by electrostatic interaction. Throughout the study it was noticed that the structural behavior of poly(L -arginine) toward anions is distinct from that of poly(L -lysine).  相似文献   

12.
Trichoderma QM 9414 was aerobically grown on glucose as the sole carbon and energy sources in a chemostat culture. The specific rates of glucose consumption (QG), oxygen consumption (Q), and carbon dioxide production (Q) at the steady state were measured to estimate the growth and maintenance requirements. From the results it was estimated that 2 mol adenosine triphosphate (ATP) were produced when1 mol NADH was oxidized through the respiratory chain of this microorganism. The true growth yield for ATP (YATP) and specific ATP consumption rate for maintenance (Q) calculated with this value were 0.0106 g dry cell/mmol ATP and 5.2 mmol ATP/g dry cell/hr, respectively. Using the relationships between specific growth rate (μ) and (Q) and between μ and QG obtained from chemostat-culture data, cell and glucose concentration histories were estimated from the carbon dioxide production rate during the batch culture. The estimated cell concentrations agreed with the experimentally measured values. Glucose concentration were slightly overestimated.  相似文献   

13.
In this paper it is shown that if N= \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop \sum \limits_{i = 1}^{S_h} $\end{document} cihNih, where cih are some non-negative integer numbers and Nih are such incidence matrices that Ah = \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop \sum \limits_{i = 1}^{S_h} $\end{document} i Nih is a balanced matrix defined by SHAH (1959), for h = 1, 2,…, p, then a block design with an incidence matrix Ñ = [N, N,…,N] is an equi-replicated balanced block design. Here the balance of a block design is defined in terms of the matrix M0 introduced by CALI?SKI (1971).  相似文献   

14.
Conformation and folding in histones H1 and H5   总被引:1,自引:0,他引:1  
Denatured histones H1 and H5 can be readily refolded on salt addition. Their digestion by trypsin leads to limit peptides of about 80 residues having the same nmr and CD spectra as those of the intact parent histones. Scanning microcalorimetry shows that (1) the folded structures of H1 and H5 are located entirely in their limit peptides; (2) both have values of the specific denaturation enthalpy typical for small globular proteins; and that (3) both exhibit a classic “2-state” transition (ΔH = ΔH). The heat-denaturation profiles of H5 measured using intrinsic and extrinsic Cotton effect and side-chain nmr peaks do not coincide at all. Only the intrinsic Cotton effects give a Tm and ΔH close to that from microcalorimetry. We conclude that these proteins exhibit large-scale side-chain motions that precede the macroscopic cooperative transition.  相似文献   

15.
In this note it is shown that the block design with incidence matrix Ñ = [NNN], where N = c1hNh + coh (11′–Nh). coh and c1h are any non-negative integers and Nh,h = 1, 2,…,p, are incidence matrices of balanced incomplete block designs with the same number of treatments t, is a balanced block design with the block sizes exceeding the number of treatments. In derivation the matrix M0, introduced by CALIński (1971) is utilized.  相似文献   

16.
The relationship between cytosolic concentrations of Ca2+ (Ca) and Na+ (Na) were studied in preparations of rat submandibular and pancreatic acini loaded with the Ca2+-sensitive dye Fura-2 or the Na+-sensitive dye SBFI. Pancreatic acini showed no changes in Na during either transient or persistent changes in Ca. Increases in Ca produced by exposure of submandibular gland acini to carbachol, a muscarinic cholinergic agonist, were followed by an increase in Na after a delay of 5–10 s. When Ca2+ stores were mobilized without Ca2+ influx Na also increased, but in acini loaded with BAPTA, a nonfluorescent Ca2+ chelator, the transient increase in Ca2+ caused by mobilization of stored Ca2+ was virtually abolished, as was the increase in Na. In the presence of ionomycin, increases in Ca were followed by increases in Na. Ca2+-dependent increases in Na were abolished in Na+-free buffer and by the presence of furosemide, a blocker of Na+-K+-2Cl cotransport. In other studies, extracellular ATP (ATPo) produced an increase in Ca and Na. The steady-state increase in Ca was reduced by increasing extracellular Na+ concentrations (Na) in dose-dependent fashion (IC50 = 16.4 ± 4.7 mM Na+). Likewise, increasing Na reduced ATPo-stimulated 45Ca2+ uptake at steady state (IC50 = 15.8 ± 9.2 mM Na+). Changing Na had no effect on carbachol-stimulated increases in Ca. We conclude that, in rat submandibular gland acini, ATPo promotes an increase in Ca and Na via a common influx pathway and that, under physiologic conditions, Na+ significantly limits the ATPo-stimulated increase in Ca. In the presence of carbachol, however, Na rises in Ca-dependent fashion in submandibular gland acini via stimulation of Na+-K+-2Cl cotransport. © 1996 Wiley-Liss, Inc.  相似文献   

17.
Four fundamental Raman lines were observed at 159, 111, 55 and 27 cm-1 corresponding to the I bound (I) in amyloses with DP from 20 to 100, regardless of the degree of polymerization of I and the excitation wavelength. The spectral resolution was based on the molar extinction coefficient and molar ellipticity spectra of I. Eight bands, named, S1, S2, ?, S8 from long to short wavelength, were isolated. These were found regardless of the DP. By a resonance excitation Raman study, the characteristics of S3 and S4, comprising the shoulder around 480 nm, were found to be different from those of S1 and S2, comprising the blue band. The assignment of the spectra was based on the electronic states of the monomeric I in the exciton-coupled dimeric unit. It was concluded that the blue band (S1,S2) belonged to the long-axis transitions and the shoulder band (S3,S4) to the short-axis ones on the monmeric coordinate system.  相似文献   

18.
Empirical force-field calculations and ir and 1H-nmr spectra indicate that five-membered (C5) and seven-membered (C) hydrogen-bonded rings are the preferred conformations of acetyl-L -Phe p-acetyl and p-valeryl anilides in nonpolar media. The C5/C ratio was found to be dependent on the dryness of the solute and the solvent. This fact and the results from conformational-energy calculations suggest that a molecule of water participates in the stabilization of the C conformation.  相似文献   

19.
A Cabani  A Paci  V Rizzo 《Biopolymers》1976,15(1):113-129
Using the formalism of nearest-neighbor Ising model and assuming that the allowed states for a monomeric unity of a polypeptide chain in solutions containing strong acids are E (helix), C (coil), and CS (solvent-bonded coil), the partition function of the system was deduced analytically. Equations were obtained which permitted the prediction of the characteristic thermodynamic behavior of the helix–coil transition under these conditions. These equations were used to examine critically the possible correlations between experimental data obtained using different techniques. Particular attention was devoted to quantities called “transition enthalpies,” obtained from the slope of the transition curves at the point where the helix fraction is one-half (ΔH), or for measurements of the heat of solution of the polymer over the total range of solvent composition (ΔH), or from heat capacity measurements taken at various temperatures (ΔH). Literature data of ΔH(j = opt, sol, cal) for the system poly-γ-benzyl-L -glutamate in mixtures of dichloroacetic acid and 1,2-dichloroethane were carefully analyzed.  相似文献   

20.
Growth of Methanobacterium thermoautotrophicum, an anaerobic archaebacterium using methanogenesis as the catabolic pathway, is characterized by large heat production rates, up to 13 W g−1, and low biomass yields, in the order of 0.02 C‐mol mol−1 H2 consumed. These values, indicating a possibly “inefficient” growth mechanism, warrant a thermodynamic analysis to obtain a better understanding of the growth process. The growth‐associated heat production (ΔrH) and the growth‐associated Gibbs energy dissipation per mol biomass formed (ΔrG) were −3730 kJ C‐mol−1 and −802 kJ C‐mol−1, respectively. The Gibbs energy change found in this study is indeed unusually high as compared to aerobic methylotrophes, but not untypical for methanogens grown on CO2. It explains the low biomass yield. Based on the information available on the energetic metabolism and on an ATP balance, the biomass yield can be predicted to be approximately in the range of the experimentally determined value. The fact that the exothermicity exceeds vastly even the Gibbs energy change can be explained by a dramatic entropy decrease of the catabolic reaction. Microbial growth characterized by entropy reduction and correspondingly by unusually large heat production may be called entropy‐retarded growth. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 64: 74–81, 1999.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号