首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
左明雪 《动物学报》1997,43(2):146-150
应用神经示踪物PHAL和BDA对环鸽丘脑听区的传入神经投射进行了研究。结果发现中脑外侧核背部和丘间核交界内缘区的神经元发出纤维投射至丘脑卵形核周围形成卵形壳;尾部Ov壳和Ov交界面区域接受前峡核浅区的投射;尾部Ov壳不但接受ICM神经元的传出投射,而且有神经发出的传出纤维参与了Ov壳的形成。  相似文献   

3.
研究用荧光金(FG)逆行追踪与免疫荧光组化染色相结合的双标技术对大鼠脑干向延髓网状背侧亚核(SRD)的5┐羟色胺(5┐HT)能、P物质(SP)能和亮氨酸┐脑啡肽(L┐ENK)能投射进行了观察。将FG注入SRD后,FG逆标神经元主要见于中脑导水管周围灰质、脑干中缝核簇(中缝背核、中缝正中核、中缝桥核、中缝大核、中缝隐核和中缝苍白核)、巨细胞网状核α部、延髓网状结构的内侧部和外侧部、延髓外侧网状核、三叉神经脊束核尾侧亚核和孤束核。5┐羟色胺(5┐HT)样、P物质(SP)样和亮氨酸脑啡肽(L┐ENK)样阳性神经元主要见于中脑导水管周围灰质、脑干中缝核簇和巨细胞网状核α部;此外,SP样和L┐ENK样阳性神经元还见于臂旁核、背外侧被盖核和孤束核。FG逆标并呈5┐HT样、SP样或L┐ENK样阳性的双标神经元也主要见于中脑导水管周围灰质、脑干中缝核簇和巨细胞网状核α部,尤其是位于延髓中缝核团内的双标神经元数量较多。本研究的结果说明SRD内的5┐HT样、SP样和L┐ENK样阳性终末主要来自中脑导水管周围灰质、脑干中缝核簇和巨细胞网状核α部,向SRD发出5┐HT能、SP能和L┐ENK能投射的上述核团对SRD发挥“弥漫性伤害抑  相似文献   

4.
The present study examines the coexistence of neurons in the same cardiovascular point of the pontomedulla that integrates urinary bladder (UB) motility, and pelvic nerve activity (PNA). Microinjection of monosodium L-glutamate (Glu) into the locus coeruleus (LC), the gigantocellular tegmental field (FTG), the rostral ventrolateral medulla (RVLM), and the dorsomedial medulla (DM) produced pressor responses, whereas injection into the lateral tegmental field (FTL), the nucleus of tractus solitarii (NTS), and the caudal ventrolateral medulla (CVLM) produced depressor responses. However, microinjection of Glu into the dorsomotor nucleus of the vagus (DMV) and the ambiguus nucleus (AN), where the vagus nerve originates, produced marked bradycardia. Many of these cardiovascular responses were accompanied by increased, or decreased parasympathetic PNA. In six animals, sympathetic renal nerve activity (RNA) and PNA also increased simultaneously during the pressor response. The present study also examines the connection between the DMV-AN and the sacral intermediolateral column (IML), where parasympathetic preganglionic neurons (PGNs) of the pelvic nerve located. Biotinylated dextran amine (BDA), an anterograde tracer, was iontophoretically injected into the DMV or AN. No labelled terminal or neuron was detected in the sacral IML, but labelled terminals were observed in the bilateral LC, and also in the bilateral sides of the FTG, FTL, RVLM, DM, and CVLM. These results suggest that neurons of the DMV and/or AN may indirectly regulate the sacral parasympathetic PGNs through the LC for supraspinal control of the pelvic nerve. Furthermore, these results also suggest the coexistence of multiple autonomic integrating mechanisms of different kinds within various cardiovascular areas of the pontomedulla.  相似文献   

5.
Summary Localization of -aminobutyric acid (GABA) in the ventrolateral medulla oblongata of the rat was studied, using antisera directed against GABA molecule fixed to bovine serum albumin. Within the rostral portion of the ventrolateral medulla, GABA-like immunoreactive neurons were found in the lateral wing of the raphe magnus and in the region of the paragigantocellular reticular nucleus. In the caudal portion of the ventrolateral medulla, a lesser number of GABA-stained neurons were found in the region around the nucleus reticularis lateralis. GABA-like immunoreactive punctate structures were also found throughout the ventrolateral medulla. These results provide further evidence for the existence of GABAergic neurons in the ventrolateral medulla oblongata of the rat.  相似文献   

6.
Hypertonic saline (HTS; 1.7 M) infused intravenously into conscious rats increases the production of Fos, a marker of cell activation, in the hypothalamic paraventricular nucleus (PVN). The parvocellular PVN contains subpopulations of neurons. However, which subpopulations are activated by HTS is unknown. We determined whether PVN neurons that innervate the rostral ventrolateral medulla (RVLM) or the spinal cord (important autonomic sites) expressed Fos following HTS. Experiments were performed 24-96 h after chronic implantation of an intravenous cannula. HTS significantly increased the number of Fos-positive cells. In the parvocellular PVN, the maximum number of Fos-positive cells occurred rostral of the anterior-posterior level at which the number of neurons that projected to the medulla or spinal cord peaked. Compared with controls, HTS did not significantly increase the number of double-labeled neurons. These findings demonstrate that an elevation in plasma osmolality activates PVN neurons but not the subgroups of PVN neurons with projections to the RVLM or to the spinal cord.  相似文献   

7.
Utilizing cyto-, myelo-, and chemoarchitecture as well as connectional criteria, the present study reveals the interstitial system of the spinal trigeminal tract (InSy-SVT) in the rat to be composed of five morphologically and functionally distinct components that are distributed within spatially restricted regions of the lateral medulla. The first component is represented by scattered interstitial cells and neuropil, which extend laterally into SVT from the superficial laminae of the medullary dorsal horn (MDH). The second component, the dorsal paramarginal nucleus (PaMd), consists of a small group of marginal (lamina I)-like neurons and neuropil situated within the dorsolateral part of SVT at the rostral pole of MDH. The third component represents a trigeminal extension of the parvocellular reticular formation (V-Rpc) into the ventromedial aspect of SVT at levels extending from rostral MDH to the caudal part of trigeminal nucleus interpolaris (Vi). The fourth component, the paratrigeminal nucleus (PaV), consists of a large accumulation of neurons and neuropil situated within the dorsal part of SVT throughout the caudal half of Vi. The fifth component is the insular trigeminal-cuneatus lateralis nucleus (iV-Cul), which is a discontinuous collection of neurons and neuropil interspersed among fibers of SVT as well as wedged between it and the spinocerebellar tract. Thalamic projection neurons are located in PaMd and V-Rpc, whereas cerebellar projecting neurons are confined to iV-Cul.  相似文献   

8.
Summary The distribution and interconnections of brainstem catecholamine cell groups thought to be important in cardiovascular control were studied using histochemical and ultrastructural techniques in the rabbit. Lesions and microinjections of horseradish peroxidase (HRP) were made in the nucleus tractus solitarii in the dorsomedial medulla, and in the ventrolateral medulla. After lesions of the dorsomedial medulla the fluorescence intensity of the Al-group of catecholamine neurons was increased, and swollen axons could be seen coursing from the ventrolateral medulla toward the lesions on the same side, but not the opposite side. Most of these axons ran in a band about 2 mm in width, centered at the level of the obex. Electron microscopically, specific cells, identified as A1-catecholamine neurons, showed evidence of chromatolysis after the dorsomedial lesions. Following injection of HRP into the nucleus tractus solitarii, A1-catecholamine cells in the ventrolateral medulla on the same side contained the reaction product. Lesions of the ventrolateral medulla did not produce evidence of a reciprocal projection of A2-catecholamine neurons toward the ventrolateral medulla.Thus axons of the A1-group of catecholamine neurons in the ventrolateral medulla project toward the ipsilateral nucleus tractus solitarii in a relatively compact band at the level of the obex. On the other hand, the A2-group of catecholamine neurons in the dorsomedial medulla does not appear to send projections toward the A1-group.These studies were supported by grants from the National Heart Foundation of Australia and The Life Insurance Medical Research Fund of Australia and New Zealand, and Merck Sharp and Dohme (Australia) Pty Limited  相似文献   

9.
Dong YL  Wang W  Li H  Li ZH  Zhang FX  Zhang T  Lu YC  Li JL  Wu SX  Li YQ 《PloS one》2012,7(3):e34435
The brainstem premotor neurons of the facial nucleus (VII) and hypoglossal (XII) nucleus can integrate orofacial nociceptive input from the caudal spinal trigeminal nucleus (Vc) and coordinate orofacial nociceptive reflex (ONR) responses. However, the synaptoarchitectures of the ONR pathways are still unknown. In the current study, we examined the distribution of GABAergic premotor neurons in the brainstem local ONR pathways, their connections with the Vc projections joining the brainstem ONR pathways and the neurochemical properties of these connections. Retrograde tracer fluoro-gold (FG) was injected into the VII or XII, and anterograde tracer biotinylated dextran amine (BDA) was injected into the Vc. Immunofluorescence histochemical labeling for inhibitory/excitatory neurotransmitters combined with BDA/FG tracing showed that GABAergic premotor neurons were mainly distributed bilaterally in the ponto-medullary reticular formation with an ipsilateral dominance. Some GABAergic premotor neurons made close appositions to the BDA-labeled fibers coming from the Vc, and these appostions were mainly distributed in the parvicellular reticular formation (PCRt), dorsal medullary reticular formation (MdD), and supratrigeminal nucleus (Vsup). We further examined the synaptic relationships between the Vc projecting fibers and premotor neurons in the VII or XII under the confocal laser-scanning microscope and electron microscope, and found that the BDA-labeled axonal terminals that made asymmetric synapses on premotor neurons showed vesicular glutamate transporter 2 (VGluT2) like immunoreactivity. These results indicate that the GABAergic premotor neurons receive excitatory neurotransmission from the Vc and may contribute to modulating the generation of the tonic ONR.  相似文献   

10.
Intersubnuclear connections within the rat trigeminal brainstem complex   总被引:1,自引:0,他引:1  
Prior intracellular recording and labeling experiments have documented local-circuit and projection neurons in the spinal trigeminal (V) nucleus with axons that arborize in more rostral and caudal spinal trigeminal subnuclei and nucleus principalis. Anterograde tracing studies were therefore carried out to assess the origin, extent, distribution, and morphology of such intersubnuclear axons in the rat trigeminal brainstem nuclear complex (TBNC). Phaseolus vulgaris leucoagglutinin (PHA-L) was used as the anterograde marker because of its high sensitivity and the morphological detail provided. Injections restricted to TBNC subnucleus caudalis resulted in dense terminal labeling in each of the more rostral ipsilateral subnuclei. Subnucleus interpolaris projected ipsilaterally and heavily to magnocellular portions of subnucleus caudalis, as well as subnucleus oralis and nucleus principalis. Nucleus principalis, on the other hand, had only a sparse projection to each of the caudal ipsilateral subnuclei. Intersubnuclear axons most frequently traveled in the deep bundles within the TBNC, the V spinal tract, and the reticular formation. They gave rise to a number of circumscribed, highly branched arbors with many boutons of the terminal and en passant types. Retrograde single- or multiple-labeling experiments assessed the cells giving rise to TBNC intersubnuclear collaterals. Horseradish peroxidase (HRP) and/or fluorescent tracer injections into the thalamus, colliculus, cerebellum, nucleus principalis, and/or subnucleus caudalis revealed large numbers of neurons in subnuclei caudalis, interpolaris, and oralis projecting to the region of nucleus principalis. Cells projecting to more caudal spinal trigeminal regions were most numerous in subnuclei interpolaris and oralis. Some cells in lamina V of subnucleus caudalis and in subnuclei interpolaris and oralis projected to thalamus and/or colliculus, as well as other TBNC subnuclei. Such collateral projections were rare in nucleus principalis and more superficial laminae of subnucleus caudalis. TBNC cells labeled by cerebellar injections were not double-labeled by tracer injections into the thalamus, colliculus, or TBNC. These findings lend generality to currently available data obtained with intracellular recording and HRP labeling methods, and suggest that most intersubnuclear axons originate in TBNC local-circuit neurons, though some originate in cells that project to midbrain and/or diencephalon.  相似文献   

11.
鸽丘脑听觉中继核团传出神经投射的研究   总被引:4,自引:0,他引:4  
左明雪 《动物学报》1998,44(1):35-40
应用神经示踪物生物素标记的葡聚糖对环鸽丘脑听觉中继核团的传出神经投射进行了研究。结果发现:(1)丘脑卵圆核的传出纤维投射至端脑新纹状体内侧的L2听区;(2)卵圆核壳的传出纤维投射至L1、L3和部分L2听区,在L区周围亦存在许多标记终末;(3)尾侧卵圆核壳的传出投射参与了卵圆核壳的形成并发出二束纤维分别投射至下丘脑腹内侧核和端脑新纹状体L区外侧的旁听区。本实验结果首次揭示在鸟类丘脑听中继核团、端脑新  相似文献   

12.
Prior intracellular recording and labeling experiments have documented local-circuit and projection neurons in the spinal trigeminal (V) nucleus with axons that arborize in more rostral and caudal spinal trigeminal subnuclei and nucleus principalis. Anterograde tracing studies were therefore carried out to assess the origin, extent, distribution, and morphology of such intersubnuclear axons in the rat trigeminal brainstem nuclear complex (TBNC). Phaseolus vulgaris leucoagglutinin (PHA-L) was used as the anterograde marker because of its high sensitivity and the morphological detail provided. Injections restricted to TBNC subnucleus caudalis resulted in dense terminal labeling in each of the more rostral ipsilateral subnuclei. Subnucleus interpolaris projected ipsilaterally and heavily to magnocellular portions of subnucleus caudalis, as well as subnucleus oralis and nucleus principalis. Nucleus principalis, on the other hand, had only a sparse projection to each of the caudal ipsilateral subnuclei. Intersubnuclear axons most frequently traveled in the deep bundles within the TBNC, the V spinal tract, and the reticular formation. They gave rise to a number of circumscribed, highly branched arbors with many boutons of the terminal and en passant types.

Retrograde single- or multiple-labeling experiments assessed the cells giving rise to TBNC intersubnuclear collaterals. Horseradish peroxidase (HRP) and/or fluorescent tracer injections into the thalamus, colliculus, cerebellum, nucleus principalis, and/or subnucleus caudalis revealed large numbers of neurons in subnuclei caudalis, interpolaris, and oralis projecting to the region of nucleus principalis. Cells projecting to more caudal spinal trigeminal regions were most numerous in subnuclei interpolaris and oralis. Some cells in lamina V of subnucleus caudalis and in subnuclei interpolaris and oralis projected to thalamus and/or colliculus, as well as other TBNC subnuclei. Such collateral projections were rare in nucleus principalis and more superficial laminae of subnucleus caudalis. TBNC cells labeled by cerebellar injections were not double-labeled by tracer injections into the thalamus, colliculus, or TBNC.

These findings lend generality to currently available data obtained with intracellular recording and HRP labeling methods, and suggest that most intersubnuclear axons originate in TBNC local-circuit neurons, though some originate in cells that project to midbrain and/or diencephalon.  相似文献   

13.
M Kihara  T Kubo 《Histochemistry》1989,91(4):309-314
Localization of gamma-aminobutyric acid (GABA) in the ventrolateral medulla oblongata of the rat was studied, using antisera directed against GABA molecule fixed to bovine serum albumin. Within the rostral portion of the ventrolateral medulla, GABA-like immunoreactive neurons were found in the lateral wing of the raphe magnus and in the region of the paragigantocellular reticular nucleus. In the caudal portion of the ventrolateral medulla, a lesser number of GABA-stained neurons were found in the region around the nucleus reticularis lateralis. GABA-like immunoreactive punctate structures were also found throughout the ventrolateral medulla. These results provide further evidence for the existence of GABAergic neurons in the ventrolateral medulla oblongata of the rat.  相似文献   

14.
P物质(SP)能神经元及其轴突末和受体广泛分布于很多心血管中枢。外侧下丘脑含SP能神经元,外侧下丘脑投射的升压区内又存在SP能纤维及SP受体;因此本工作检验SP在外侧下丘脑升压反应中的作用。实验显示:(1)L-谷氨酸兴奋外侧下天脑的穹窿周围区(LH/PF)或将SP分别注入各LH投射区,蓝斑(LC)、臂旁核(NPB)或 导不管周围灰质(PAG)均引起升压反应;(2)「D-Pro^2,D-Phe^7,  相似文献   

15.
It is well established that histaminergic neurons in the posterior hypothalamus make connections with whole brain areas and regulate several functions. Recent evidence indicates that histaminergic neurons are heterogeneous cell group and organized into distinct circuits. However, functional circuits of histaminergic neurons have not been fully mapped so far. To address this issue, we have investigated antihistamine-sensitive neuronal activation in the hypothalamus to determine the hypothalamic region primarily innervated by histaminergic neurons. Here we review our recent findings showing the existence of the heterogeneous subpopulations of histaminergic neurons in the TMN that innervated distinct regions to regulate particular functions. We have identified the caudal part of the arcuate nucleus of hypothalamus (cARC) as a target region of histaminergic neurons in food-restricted rats by assessing suppression of c-Fos expression by pretreatment with antihistamines. Histaminergic neurons in the tuberomammillary nucleus (TMN) are morphologically subdivided into five groups (E1–E5). Among the subdivisions, the E3 group was found to be activated corresponding to the activation of cARC neurons. Our findings suggest that this subpopulation selectively innervate cARC neurons. Accumulating reports have also described c-Fos expression in other TMN subpopulations. Various stress challenge induced c-Fos expression primarily in E4 and E5 subpopulations. Motivation- and drug-induced arousal elicited in common activation of ventrolateral part of the TMN containing E1 and E2 subdivisions, which receive projections from wake-active orexin neurons and sleep-active GABA neurons. These lines of evidence support the hypothesis that there are heterogeneous subpopulations in the TMN that innervated distinct regions to regulate particular functions.  相似文献   

16.
Orexin A (or hypocretin 1)-immunoreactive neurons in the rat lateral hypothalamus project to several areas of the medulla oblongata that are closely associated with cardiovascular regulation. The present study was undertaken to further strengthen the hypothesis that orexin A accelerates cardiovascular response by activating sympathoexcitatory neurons in the rat rostral ventrolateral medulla (RVLM). First, immunohistochemical studies revealed the presence of orexin A-immunoreactive fibers in the RVLM. Double labeling the sections with orexin A- and tyrosine hydroxylase (TH)-antisera further showed that orexin A-immunoreactive fibers are in close proximity with TH-immunoreactive neurons, some of which may be barosensitive, bulbospinal neurons in the RVLM. Second, microinjection of orexin A (6.35, 12.7 and 38.1 microM) into the RVLM, which was verified later by histological examination, caused a significant increase of mean arterial pressure (MAP) and a moderate increase of heart rate (HR) in awake rats. L-glutamate (33.3 mM) injected into the same sites, caused a larger increase in MAP, but a decrease in HR; whereas, saline injection was without significant effect. Results from this study suggest that orexin A, which may be released from the nerve fibers originating from the neurons in the lateral hypothalamus, acting on RVLM neurons in the medulla, increases sympathetic outflow targeted to the heart and blood vessels in awake animals.  相似文献   

17.
18.
辣椒素对大鼠延髓腹外侧头端区神经元电活动的影响   总被引:5,自引:3,他引:2  
Xue BJ  He RR 《生理学报》1999,(6):687-691
在35只切断两侧缓冲神经的麻醉大鼠,应用细胞外记录的电生理学方法,观察颈总动脉注射辣椒素(capsaicin)对延髓腹外侧头端区(RVLM)巨细胞旁外侧核(PGL)自发电活动的影响。所得结果如下:(1)颈动脉注射辣椒素(10μmol,01ml),MAP由1074±013升至1256±021kPa(P<0001);HR由374±4增至395±5bpm(P<0001);30个PGL神经元自发放电单位的放电频率由126±07增至209±11spikes/s(P<0001)。(2)在10个放电单位,应用辣椒素受体阻断剂钌红(rutheniumred;200mmol,01ml)后,明显抑制辣椒素的上述效应。以上结果提示,辣椒素可能通过激活RVLM神经元上的辣椒素受体,进而兴奋PGL神经元  相似文献   

19.
Horseradish peroxidase histochemical studies of afferent and efferent projections of the trigeminal nerve in two species of chondrostean fishes revealed medial, descending and ascending projections. Entering fibers of the trigeminal sensory root project medially to terminate in the medial trigeminal nucleus, located along the medial wall of the rostral medulla. Other entering sensory fibers turn caudally within the medulla, forming the trigeminal spinal tract, and terminate within the descending trigeminal nucleus. The descending trigeminal nucleus consists of dorsal (DTNd) and ventral (DTNv) components. Fibers of the trigeminal spinal tract descend through the lateral alar medulla and into the dorsolateral cervical spinal cord. Fibers exit the spinal tract throughout its length, projecting to the ventral descending trigeminal nucleus (DTNv) in the medulla and to the funicular nucleus at the obex. Retrograde transport of HRP through sensory root fibers also revealed an ascending bundle of fibers that constitutes the neurites of the mesencephalic trigeminal nucleus, cell bodies of which are located in the rostral optic tectum. Retrograde transport of HRP through motor root fibers labeled ipsilateral cells of the trigeminal motor nucleus, located in the rostral branchiomeric motor column.  相似文献   

20.
Lateral cortex is the most laterally placed of the four cortical areas in snakes. Earlier studies suggest that it is composed of several subdivisions but provide no information on their organization. This paper first investigates the structure of lateral cortex in boa constrictors (Constrictor constrictor), garter snakes (Thamnophis sirtalis), and banded water snakes (Natrix sipedon) using Nissl and Golgi preparations; and secondly examines the relation of main olfactory bulb projections to the subdivisions of lateral cortex using Fink-Heimer and electron microscopic preparations. Lateral cortex is divided on cytoarchitectonic grounds into two major parts called rostral and caudal lateral cortex. Each part is further divided into dorsal and ventral subdivisions so that lateral cortex has a total of four subdivisions: dorsal rostral lateral cortex (drL), ventral rostral lateral cortex (vrL), dorsal caudal lateral cortex (dcL) and ventral caudal lateral cortex (vcL). Systematic analyses of Golgi preparations indicate that the rostral and caudal parts each contain distinct populations of neurons. Rostral lateral cortex contains bowl cells whose dendrites arborize widely in the outer cortical layer (layer 1). The axons of some bowl cells can be traced medially into dorsal cortex, dorsomedial cortex and medial cortex. Caudal lateral cortex contains pyramidal cells whose somata occur in layers 2 and 3 and whose dendrites extend radially up to the pial surface. In addition, three populations of neurons occur in both rostral and caudal lateral cortex. Stellate cells occur in all three layers and have dendrites which arborize in all directions. Double pyramidal cells occur primarily in layer 2 and have dendrites which form two conical fields whose long axes are oriented radially. Horizontal cells occur in layer 3 and have dendrites oriented concentric with the ependyma. Fink-Heimer preparations of snakes which underwent lesions of the main olfactory bulb show that the primary olfactory projections to cortex are bilateral and restricted precisely to rostral lateral cortex. Electron microscopic degeneration experiments indicate that the olfactory bulb fibers end as terminals which have clear, spherical vesicles and asymmetric active zones. The majority are presynaptic to dendritic spines in outer layer 1. These studies establish that lateral cortex in snakes is heterogeneous and contains two major parts, each containing two subdivisions. The rostral and caudal parts have characteristic neuronal populations. Primary olfactory input is restricted to rostral lateral cortex and seems to terminate heavily on the distal dendrites of bowl cells. Axons of some of these cells leave lateral cortex, so that the rostral lateral cortex forms a direct route by which olfactory information reaches other cortical areas. The functional role of caudal lateral cortex is not clear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号