首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 98 毫秒
1.
In this paper we demonstrate that a vacuolar-type H(+)-ATPase energizes secondary active transport in an insect plasma membrane and thus we provide an alternative to the classical concept of plasma membrane energization in animal cells by the Na+/K(+)-ATPase. We investigated ATP-dependent and -independent vesicle acidification, monitored with fluorescent acridine orange, in a highly purified K(+)-transporting goblet cell apical membrane preparation of tobacco hornworm (Manduca sexta) midgut. ATP-dependent proton transport was shown to be catalyzed by a vacuolar-type ATPase as deduced from its sensitivity to submicromolar concentrations of bafilomycin A1. ATP-independent amiloride-sensitive proton transport into the vesicle interior was dependent on an outward-directed K+ gradient across the vesicle membrane. This K(+)-dependent proton transport may be interpreted as K+/H+ antiport because it exhibited the same sensitivity to amiloride and the same cation specificity as the K(+)-dependent dissipation of a pH gradient generated by the vacuolar-type proton pump. The vacuolar-type ATPase is exclusively a proton pump because it could acidify vesicles independent of the extravesicular K+ concentration, provided that the antiport was inhibited by amiloride. Polyclonal antibodies against the purified vacuolar-type ATPase inhibited ATPase activity and ATP-dependent proton transport, but not K+/H+ antiport, suggesting that the antiporter and the ATPase are two different molecular entities. Experiments in which fluorescent oxonol V was used as an indicator of a vesicle-interior positive membrane potential provided evidence for the electrogenicity of K+/H+ antiport and suggested that more than one H+ is exchanged for one K+ during a reaction cycle. Both the generation of the K+ gradient-dependent membrane potential and the vesicle acidification were sensitive to harmaline, a typical inhibitor of Na(+)-dependent transport processes including Na+/H+ antiport. Our results led to the hypothesis that active and electrogenic K+ secretion in the tobacco hornworm midgut results from electrogenic K+/nH+ antiport which is energized by the electrical component of the proton-motive force generated by the electrogenic vacuolar-type proton pump.  相似文献   

2.
G E Dean  P J Nelson  G Rudnick 《Biochemistry》1986,25(17):4918-4925
The ATP-dependent H+ pump from adrenal chromaffin granules is, like the platelet-dense granule H+ pump, essentially insensitive to the mitochondrial ATPase inhibitors sodium azide, efrapeptin, and oligomycin and also insensitive to vanadate and ouabain, agents that inhibit the Na+,K+-ATPase. The chromaffin granule H+ pump is, however, sensitive to low concentrations of NEM (N-ethylmaleimide) and Nbd-Cl (7-chloro-4-nitro-2,1,3-benzoxadiazole). These transport ATPases may thus belong to a new class of ATP-dependent ion pumps distinct from F1F0-and phosphoenzyme-type ATPases. Comparisons of ATP hydrolysis with ATP-dependent serotonin transport suggest that approximately 80% of the ATPase activity in purified chromaffin granule membranes is coupled to H+ pumping. Most of the remaining ATPase activity is due to contaminating mitochondrial ATPase and Na+,K+-ATPase. When extracted with cholate and octyl glucoside, the H+ pump is solubilized in a monodisperse form that retains NEM-sensitive ATPase activity. When reconstituted into proteoliposomes with crude brain phospholipid, the extracted enzyme recovers ATP-dependent H+ pumping, which shows the same inhibitor sensitivity and nucleotide dependence as the native pump. These data demonstrate that the predominant ATP hydrolase of chromaffin granule membrane is also responsible for ATP-driven amine transport and granule acidification in both native and reconstituted membranes.  相似文献   

3.
Intercalated and inner medullary collecting duct (IMCD) cells of the kidney mediate the transport of H+ by a plasma membrane H+-ATPase. The rate of H+ transport in these cells is regulated by exocytic insertion of H+-ATPase-laden vesicles into the apical membrane. We have shown that the exocytic insertion of proton pumps (H+-ATPase) into the apical membrane of rat IMCD cells, in culture, involves SNARE proteins (syntaxin (synt), SNAP-23, and VAMP). The membrane fusion complex observed in IMCD cells with the induction of proton pump exocytosis not only included these SNAREs but also the H+-ATPase. Based on these observations, we suggested that the targeting of these vesicles to the apical membrane is mediated by an interaction between the H+-ATPase and a specific t-SNARE. To evaluate this hypothesis, we utilized a "pull-down" assay in which we identified, by Western analysis, the proteins in a rat kidney medullary homogenate that complexed with glutathione S-transferase (GST) fusion syntaxin isoforms attached to Sepharose 4B-glutathione beads. The syntaxin isoforms employed were 1A, 1B, 2, 4, 5, and also 1A that was truncated to exclude the H3 SNARE binding domain (synt-1ADeltaH3). All full-length syntaxin isoforms formed complexes with SNAP-23 and VAMP. Neither GST nor synt-1ADeltaH3 formed complexes with these SNAREs. H+-ATPase (subunits E, a, and c) bound to syntaxin-1A and to a lesser extent to synt-1B but not to synt-1ADeltaH3 or synt-2, -4, and -5. In cultured IMCD cells transfected to express syntaxin truncated for the membrane binding domain (synt-DeltaC), expression of synt-1ADeltaC, but not synt-4DeltaC, inhibited H+-ATPase exocytosis. In conclusion, because all full-length syntaxins examined bound VAMP-2 and SNAP-23, but only non-H3-truncated syntaxin-1 bound H+-ATPase, and synt-1ADeltaC expression by intact IMCD cells inhibited H+-ATPase exocytosis, it is likely that the H+-ATPase binds directly to the H3 domain of syntaxin-1 and not through VAMP-2 or SNAP-23. Interaction between the syntaxin-1A and H+-ATPase is important in the targeted exocytosis of the proton pump to the apical membrane of intercalated cells.  相似文献   

4.
Ion metabolism in malaria-infected erythrocytes   总被引:2,自引:0,他引:2  
K Tanabe 《Blood cells》1990,16(2-3):437-449
Malaria parasites of the genus Plasmodium spend much of their asexual life cycle inside the erythrocytes of their vertebrate hosts. Parasites presumably have to exploit metabolic and transport mechanisms to adapt themselves to the host erythrocyte's physicochemical environment. This review surveys the metabolism and transport of Ca2+, alkali cations, and H+ in malaria-infected erythrocytes. The Ca2+ content of Plasmodium-infected erythrocytes increases as the parasite matures. An increase in the influx of extracellular Ca2+ into infected erythrocytes is evident at later stages of parasite development. In infected erythrocytes, Ca2+ is almost exclusively localized in the parasite compartment and changes but little in the cytosol of the host cell. The importance of Ca2+ in supporting the growth of intraerythrocytic parasites and the invasion of erythrocytes by the merozoite has been assessed by depletion of extracellular Ca2+ with chelators, or by disturbance of the metabolism and transport of Ca2+ with a variety of Ca2+ modulators. Membranes of malaria-infected erythrocytes change their permeability to alkali cations. Hence, levels of K+ decrease and levels of Na+ increase in the cytosol of infected erythrocytes. Intraerythrocytic parasites maintain a high K+, low Na+ state, suggesting a mechanism for transporting K+ inward and Na+ outward against concentration gradients of the alkali cations across the parasite plasma membrane and/or the parasitophorous vacuole membrane (PVM). Concomitantly, P. falciparum can grow in Na(+)-enriched human erythrocytes. Experimental evidence suggests that Plasmodium possesses in its plasma membrane a proton pump which is very sensitive to orthovanadate, carbonylcyanide m-chlorophenylhydrazone, a protonophore, and dicyclohexylcarbodiimide, an inhibitor of H(+)-ATPase, but is only slightly sensitive to inhibitors of bacterial and mitochondrial respiration, such as antimycin A, CN-, or N3-, and ouabain, a Na+, K(+)-ATPase inhibitor. By operating this proton pump, parasites extrude H+ and thus generate an electrochemical gradient of protons (an internal negative membrane potential and a concentration gradient of protons) across the parasite plasma membrane. The electrochemical gradient apparently drives inward movement of Ca2+ and, possibly, glucose from the cytosol of infected erythrocytes. Little is known about the transport properties of the PVM. Recent sequence studies suggest that Plasmodium contains a cation-transporting ATPase which exhibits a high homology to the Ca2(+)-ATPase of rabbit skeletal muscle sarcoplasmic reticulum.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Vacuolar membrane vesicles of Saccharomyces cerevisiae accumulate Ca2+ ion in the presence of ATP, not in the presence of ADP or adenyl-5'-yl imidodiphosphate. Calcium transport showed saturation kinetics with a Km value of 0.1 mM and optimal pH of 6.4. Ca2+ ion incorporated in the vesicles was exchangeable and released completely by a protonophore uncoupler, 3,5-di-tert-butyl-4-hydroxybenzilidenemalononitrile (SF6847), or calcium-specific ionophore, A23187. The transport required Mg2+ ion but was inhibited by Cu2+ or Zn2+ ions, inhibitors of H+-ATPase of the vacuolar membrane. The transport activity was sensitive to the H+-ATPase inhibitor N,N'-dicyclohexylcarbodiimide, but not to oligomycin or sodium vanadate. SF6847 or nigericin blocked Ca2+ uptake completely, but valinomycin stimulated it 1.35-fold. These results indicate that an electrochemical potential difference of protons is a driving force for this Ca2+ transport. The ATP-dependent formation of the deltapH in the vesicles and its partial dissipation by CaCl2 were demonstrated by fluorescence quenching of quinacrine. This Ca2+ uptake by vacuolar membrane vesicles is suggested to be catalyzed by a Ca2+/H+ antiport system.  相似文献   

6.
The effect of the potent anticancer drug cisplatin, cis-diamminedichloroplatinum (II) (CDDP), on H+ -ATPase and Na+/H+ exchanger in rat renal brush-border membrane was examined. To measure H+ transport by vacuolar H+ -ATPase in renal brush-border membrane vesicles, we employed a detergent-dilution procedure, which can reorientate the catalytic domain of H+ -ATPase from an inward-facing configuration to outward-facing one. ATP-driven H+ pump activity decreased markedly in brush-border membrane prepared from rats two days after CDDP administration (5 mg/kg, i.p.). In addition, N-ethylmaleimide and bafilomycin A1 (inhibitors of vacuolar H+ -ATPase)-sensitive ATPase activity also decreased in these rats. The decrease in ATP-driven H+ pump activity was observed even at day 7 after the administration of CDDP. Suppression of ATP-driven H+ pump activity was also observed when brush-border membrane vesicles prepared from normal rats were pretreated with CDDP in vitro. In contrast with H+ -ATPase, the activity of Na+/H+ exchanger, which was determined by measuring acridine orange fluorescence quenching, was not affected by the administration of CDDP. These results provide new insights into CDDP-induced renal tubular dysfunctions, especially such as proximal tubular acidosis and proteinuria.  相似文献   

7.
Resting rat light gastric membranes prepared through 2H2O and Percoll gradient centrifugations were enriched not only with (H+-K+)-ATPase and K+ transport activity (Im, W. B., Blakeman, D. P., and Davis, J. P. (1985) J. Biol. Chem. 260, 9452-9460), but also with a K+-independent, ATP-dependent H+-pumping activity. This intravesicular acidification has been ascribed to an oligomycin-insensitive H+-ATPase which differed from (H+-K+)-ATPase in several respects. The H+-ATPase is electrogenic, apparently of lower capacity, required a lower optimal ATP concentration (4 microM for the H+-ATPase and 500 microM for (H+-K+)-ATPase), of lower sensitivity to vanadate and sulfhydryl agents such as p-chloromercuribenzoate and N-ethylmaleimide, and insensitive to SCH 28,080, a known competitive inhibitor of (H+-K+)-ATPase with respect to K+. Operation of the H+-ATPase, however, appeared to interfere with the K+ transport activity in the light gastric membranes, probably through development of intravesicular positive membrane potential; for example, micromolar levels of Mg2+-ATP fully inhibited K+ uptake and stimulated K+ efflux as measured with 86Rb+. Involvement of (H+-K+)-ATPase in the K+ transport is not likely, since the inhibitory effect of Mg2+-ATP continued even after removal of the nucleotide with an ATP-scavenging system. Moreover, nigericin, an electroneutral H+/K+ exchanger, could bypass the inhibitory effect of Mg2+-ATP and equilibrate the membrane vesicles with 86Rb+ while valinomycin, an electrogenic K+ ionophore, could not. Finally, the H+-ATPase could possibly be involved in the acid secretory process, since its H+-pumping activity was removed from the light gastric membrane fraction upon carbachol treatment, along with the K+ transport and (H+-K+)-ATPase activities. We have speculated that the H+-ATPase is responsible for maintaining the K+-permeable intracellular membrane vesicles acidic and K+ free during the resting state of acid secretion and may contribute to basal acid secretion.  相似文献   

8.
Experiments from other laboratories conducted with Leishmania donovani promastigote cells had earlier indicated that the plasma membrane Mg2+-ATPase of the parasite is an extrusion pump for H+. Taking advantage of the pellicular microtubular structure of the plasma membrane of the organism, we report procedures for obtaining sealed ghost and sealed everted vesicle of defined polarity. Rapid influx of H+ into everted vesicles was found to be dependent on the simultaneous presence of ATP (1 mm) and Mg2+ (1 mm). Excellent correspondence between rate of H+ entry and the enzyme activity clearly demonstrated the Mg2+-ATPase to be a true H+ pump. H+ entry into everted vesicle was strongly inhibited by SCH28080 (IC50 = approximately 40 microm) and by omeprazole (IC50 = approximately 50 microm), both of which are characteristic inhibitors of mammalian gastric H+,K+-ATPase. H+ influx was completely insensitive to ouabain (250 microm), the typical inhibitor of Na+,K+-ATPase. Mg2+-ATPase activity could be partially stimulated with K+ (20 mm) that was inhibitable (>85%) with SCH28080 (50 microm). ATP-dependent rapid efflux of 86Rb+ from preloaded vesicles was completely inhibited by preincubation with omeprazole (150 microm) and by 5,5'-dithiobis-(2-nitrobenzoic acid) (1 mm), an inhibitor of the enzyme. Assuming Rb+ to be a true surrogate for K+, an ATP-dependent, electroneutral stoichiometric exchange of H+ and K+(1:1) was established. Rapid and 10-fold active accumulation of [U-(14)C]2-deoxyglucose in sealed ghosts could be observed when an artificial pH gradient (interior alkaline) was imposed. Rapid efflux of [U-(14)C]d-glucose from preloaded everted vesicles could also be initiated by activating the enzyme, with ATP. Taken together, the plasma membrane Mg2+-ATPase has been identified as an electroneutral H+/K+ antiporter with some properties reminiscent of the gastric H+,K+-ATPase. This enzyme is possibly involved in active accumulation of glucose via a H+-glucose symport system and in K+ accumulation.  相似文献   

9.
The substituted benzimidazole, picoprazole, inhibited the gastric (H+ + K+)-ATPase in a concentration-and time-dependent manner. Half-maximal inhibition of the (H+ + K+)-ATPase activity was obtained at about 2 . 10(-6)M under standard conditions. In addition to the inhibition of ATPase activity, parallel inhibition of phosphoenzyme formation and the proton transport activity were achieved. Radiolabelled picoprazole was found to bind to 100 kDa peptide; this peptide was shown by phosphorylation experiments to contain the catalytic centre of the (H+ + K+)-ATPase. Studies on the (Na+ + K+)-ATPase indicated that this enzyme was unaffected by picoprazole. From the data presented and from other pharmacological studies, it is proposed that this compound inhibits acid secretion at the level of the parietal cell by its ability to inhibit the gastric proton pump, the (H+ + K+)-ATPase.  相似文献   

10.
This paper reports changes in ion transport and energy metabolism of plant cells during short- and long-term expositions, resp., to antibiotic nystatin, which is known to specifically bind with plasma membrane sterols to form channels. The excised roots of 5 days old wheat seedlings were used as a model system in this research. It has been shown that treatment of excised roots with nystatin leads to activation of energy metabolism expressed as an increase of respiration and heat production by root cells. Furthermore, in the presence of nystatin increased pH of incubation medium, plasma membrane depolarization and a significant loss of potassium ions were observed. Nystatin-induced stimulation of respiration was prevented by malonate, an inhibitor of succinate dehydrogenase, electron acceptor dichlorophenolindophenol, and AgNO3, an inhibitor of H(+)-ATPase. Based on the data obtained it can be suggested that nystatin-induced stimulation of respiration is related to electron transport activation via mitochondrial respiratory chain, and is connected with activation of plasmalemma proton pump. Moreover, nystatin-induced increase of oxygen consumption was prevented by cerulenin, an inhibitor of fatty acid and sterol synthesis. This indicates that additional sterols and phospholipids may be synthesized in root cells to "heal" nystatin-caused damage of plasma membrane. A supposed chain of events of cell response to nystatin action may by as following: formation of nystatin channels-influx of protons--depolarization of plasmalemma-efflux of potassium ions-disturbance of ion homeostasis--activation of H(+)-ATPase work-increase in energy "requests" for H(+)-ATPase function--increase in the rate of oxygen consumption and heat production. The increased energy production under the action of nystatin, may provide the work of proton pump and synthesis of sterols and phospholipids, which are necessary for membrane regeneration.  相似文献   

11.
The platelet and skeletal sarcoplasmic reticulum calcium-dependent adenosinetriphosphatases (Ca2+-ATPases) were functionally compared with respect to substrate activation by steady-state kinetic methods using the inhibitors quercetin and calmidazolium. Quercetin inhibited platelet and sarcoplasmic reticulum Ca2+-ATPase activities in a dose-dependent manner with IC50 values of 25 and 10 microM, respectively. Calmidazolium also inhibited platelet and sarcoplasmic reticulum Ca2+-ATPase activities, with half-maximal inhibition measured at 5 and 4 microM, respectively. Both inhibitors also affected the calcium transport activity of intact platelet microsomes at concentrations similar to those which reduced Ca2+-ATPase activity. These inhibitors were then used to examine substrate ligation by the platelet and sarcoplasmic reticulum calcium pump proteins. For both Ca2+-ATPase proteins, quercetin has an affinity for the E-Ca2 (fully ligated with respect to calcium at the exterior high-affinity calcium binding sites, unligated with respect to ATP) conformational state of the protein that is approximately 10-fold greater than for other conformational states in the hydrolytic cycle. Quercetin can thus be considered a competitive inhibitor of the calcium pump proteins with respect to ATP. In contrast to the effect of quercetin, calmidazolium interacts with the platelet and sarcoplasmic reticulum Ca2+-ATPases in an uncompetitive manner. The dissociation constants for this inhibitor for the different conformational states of the calcium pump proteins were similar, indicating that calmidazolium has equal affinity for all of the reaction intermediates probed. These observations indicate that the substrate ligation processes are similar for the two pump proteins. This supports the concept that the hydrolytic cycles of the two proteins are comparable.  相似文献   

12.
13.
The freeze-dry autoradiographic method devised originally by Stirling (J Cell Biol 53:704, 1972) to localize Na+ pump sites with (3H)ouabain is reviewed. Biochemical, physiological, and autoradiographic data are discussed which establish that ouabain binding to intact tissue conforms to rigid criteria for high Na+ pump specificity. Among these are that glycoside binding exhibits saturation kinetics, ligand dependence, and close correlation with degrees of inhibition of Na+-K+-ATPase and Na+ transport. Moreover, localization of Na+ pump sites by this technique shows a cell and membrane specificity which mirrors that obtained by cytochemical and immunocytochemical methods. In addition to resolving cell-specific patterns of localization in heterogeneous tissues, the demonstration of Na+-K+-ATPase by these techniques indicates that Na+ pumps are distributed uniformly along plasmalemmal surfaces and are restricted to the basolateral interface in reabsorptive and secretory epithelia despite the opposing polarity of net transepithelial electrolyte transport.  相似文献   

14.
We characterized Mg(2+)-dependent ATPase activity in membranes from the renal cortex, the outer and inner stripes of the outer medulla, and papillary vesicles. In all regions, there was Mg(2+)-dependent ATPase activity that was resistant to oligomycin and vanadate and sensitive to N,N'-dicyclohexylcarbodiimide (DCCD), N-ethylmaleimide, and filipin. DCCD-Sensitive Mg(2+)-ATPase activity was highest in the inner stripe of the outer medulla and lowest in the cortex, with intermediate values in the outer stripe of the outer medulla and papilla. The Km for ATP, however, was similar among the different regions of the kidney. DCCD-Sensitive Mg(2+)-ATPase activity was critically dependent upon chloride with Km for Cl- in the range of 2-5 mM. In the presence of ATP, this ATPase was capable of H+ translocation, as assessed by acridine orange quenching. Inhibitors of ATPase activity prevented H+ translocation, which suggests that the Mg(2+)-ATPase represents, at least in part, an H(+)-ATPase. H+ transport was likewise critically dependent upon chloride, with similar Km. The effect of chloride on H+ translocation was blocked by the chloride channel inhibitor, diphenylamine-2 carboxylic acid. In the absence of chloride, H+ transport was abolished, but it could be partially restored by the creation of a favorable electric gradient by K+ and valinomycin. These studies demonstrate that the renal H(+)-ATPase exhibits different activities in various regions of the kidney. The ATPase activity and H+ translocation are critically dependent upon the presence of chloride, which suggests that chloride influences H+ translocation by dissipating the H+ gradient and acting at the catalytic site of the ATPase.  相似文献   

15.
Physiological and biochemical studies have suggested that the plant plasma membrane H+-ATPase controls many important aspects of plant physiology, including growth, development, nutrient transport, and stomata movements. We have started the genetic analysis of this enzyme by isolating both genomic and cDNA clones of an H+-ATPase gene from Arabidopsis thaliana. The cloned gene is interrupted by 15 introns, and there is partial conservation of exon boundaries with respect to animal (Na+/K+)- and Ca2+-ATPases. In general, the relationship between exons and the predicted secondary and transmembrane structure of different ATPases with phosphorylated intermediate support a somewhat degenerate correspondence between exons and structural modules. The predicted amino acid sequence of the plant H+-ATPase is more closely related to fungal and protozoan H+-ATPases than to bacterial K+-ATPases or to animal (Na+/K+)-, (H+/K+)-, and Ca2+-ATPases. There is evidence for the existence of at least three isoforms of the plant H+-ATPase gene. These results open the way for a molecular approach to the structure and function of the plant proton pump.  相似文献   

16.
The Mg2+-dependent, K+-stimulated ATPase of microsomes from pig gastric mucosa has been studied in relation to observed active H+ transport into vesicular space. Uptake of fluorescent dyes (acridine orange and 9-aminoacridine) was used to monitor the generated pH gradient. Freeze-fracture electron microscopy showed that the vesicular gastric microsomes have an asymmetric distribution of intramembraneous particles (P-face was particulate; E-face was relatively smooth. Valinomycin stimulated both dye uptake and K+-ATPase (valinomycin-stimulated K+-ATPase); stimulation by valinomycin was due to increased K+ entry to some intravesicular activating site, which in turn depends upon the accompanying anion. Using the valinomycin-stimulated K+-ATPase and H+ accumulation as an index, the sequence for anion permeation was NO-3 greater than Br- greater than Cl- greater than I- greater than acetate approximately isethionate. When permeability to both K+ and H+ was increased (e.g using valinomycin plus a protonophore or nigericin), stimulation of K+-ATPase was much less dependent on the anion and the observed dissipation of the vesicular pH gradient was consistent with an 'uncoupling' of ATP hydrolysis from H+ accumulation. Thiocyanate interacts with valinomycin inhibiting the typical action of the K+ ionophore. But stimulation of ATPase activity was seen by adding 10 mM SCN- to membranes preincubated with valinomycin. From the relative activation of the valinomycin-stimulated K+-ATPase, it appears that SCN- is a very permeant anion which can be placed before NO-3 in the sequence of permeation. Valinomycin-stimulated ATPase and H+ uptake showed similar dependent correlations, including: dependence on [ATP] and [K+], pH optima, temperature activation, and selective inhibition by SH- or NH2-group reagents. These results are consistent with a pump-leak model for the gastric microsomal K+-ATPase which was simulated using Nernst-Planck conditions for passive pathways and simple kinetics for the pump. The pump is a K+/H+ exchange pump requiring K+ at an internal site. Rate of K+ entry would depend on permeability to K+ as well as the counterion, either (1) the anion to accompany K+ or (2) the H+ efflux path as an exchange ion. The former leads to net accumulation of H+ and anion, while the latter results in non-productive stimulation of ATP hydrolysis.  相似文献   

17.
磷饥饿提高了番茄幼苗质膜H+-ATP酶活性并促进了番茄幼苗根部的H+分泌。动力学分析表明,磷饥饿使番茄幼苗根部质膜H+-ATP酶的Km值明显降低,亦即提高了该酶对其底物的亲和力,但对该酶的Vmax影响不大。另外,磷饥饿并不改变ATP酶的最适pH值(最适pH值为6.5)。钒酸盐显著抑制番茄幼苗根部质膜ATP酶的活性以及H+分泌,也显著抑制番茄幼苗的Pi吸收。与对照相比,上述抑制作用在饥饿处理的植物中表现得更强。以上结果表明,磷饥饿时高亲和性Pi传递系统的诱导很可能包含质膜H+-ATP酶的参与。  相似文献   

18.
Na(+),K(+)-ATPase is inhibited by cardiac glycosides such as ouabain, and palytoxin, which do not inhibit gastric H(+),K(+)-ATPase. Gastric H(+),K(+)-ATPase is inhibited by SCH28080, which has no effect on Na(+),K(+)-ATPase. The goal of the current study was to identify amino acid sequences of the gastric proton-potassium pump that are involved in recognition of the pump-specific inhibitor SCH 28080. A chimeric polypeptide consisting of the rat sodium pump alpha3 subunit with the peptide Gln(905)-Val(930) of the gastric proton pump alpha subunit substituted in place of the original Asn(886)-Ala(911) sequence was expressed together with the gastric beta subunit in the yeast Saccharomyces cerevisiae. Yeast cells that express this subunit combination are sensitive to palytoxin, which interacts specifically with the sodium pump, and lose intracellular K(+) ions. The palytoxin-induced K(+) efflux is inhibited by the sodium pump-specific inhibitor ouabain and also by the gastric proton pump-specific inhibitor SCH 28080. The IC(50) for SCH 28080 inhibition of palytoxin-induced K(+) efflux is 14.3 +/- 2.4 microm, which is similar to the K(i) for SCH 28080 inhibition of ATP hydrolysis by the gastric H(+),K(+)-ATPase. In contrast, palytoxin-induced K(+) efflux from cells expressing either the native alpha3 and beta1 subunits of the sodium pump or the alpha3 subunit of the sodium pump together with the beta subunit of the gastric proton pump is inhibited by ouabain but not by SCH 28080. The acquisition of SCH 28080 sensitivity by the chimera indicates that the Gln(905)-Val(930) peptide of the gastric proton pump is likely to be involved in the interactions of the gastric proton-potassium pump with SCH 28080.  相似文献   

19.
Using a coupled transport assay which detects only those ATPase molecules functionally inserted into the platelet dense granule membrane, we have characterized the inhibitor sensitivity, substrate specificity, and divalent cation requirements of the granule H+ pump. Under identical assay conditions, the granule ATPase was insensitive to concentrations of NaN3, oligomycin, and efrapeptin which almost completely inhibit ATP hydrolysis by mitochondrial membranes. The granule ATPase was inhibited by dicyclohexylcarbodiimide but only at concentrations much higher than those needed to maximally inhibit mitochondrial ATPase. Vanadate (VO3-) ion and ouabain also failed to inhibit granule ATPase activity at concentrations which maximally inhibited purified Na+,K+-ATPase. Two alkylating agents, 7-chloro-4-nitrobenz-2-oxa-1,3-diazole and N-ethylmaleimide both completely inhibited H+ pumping by the granule ATPase under conditions where ATP hydrolysis by mitochondrial membranes or Na+,K+-ATPase was hardly affected. These results suggest that the H+-pumping ATPase of platelet granule membrane may belong to a class of ion-translocating ATPases distinct from both the phosphoenzyme-type ATPases present in plasma membrane and the F1F0-ATPases of energy-transducing membranes.  相似文献   

20.
The plasma membrane potential (deltapsi) of procyclic and bloodstream trypomastigotes of Trypanosoma brucei was studied using the potentiometric fluorescent dye bisoxonol. Our results suggest that a proton pump plays a significant role in the regulation of deltapsi in procyclic and bloodstream forms, as evidenced by depolarization of the plasma membrane by H(+)-ATPase inhibitors (e.g. dicyclohexylcarbo-diimide, N-ethylmaleimide, diethylstilbestrol, and bafilomycin A1). In bloodstream stages the plasma membrane was significantly depolarized by ouabain only when the cells were incubated in sodium-rich buffers indicating that a sodium pump was being inhibited. In contrast, ouabain had no effect on the deltapsi of the procyclic stages in a sodium-rich buffer. However, it induced an additional significant depolarization in these stages when their plasma membrane was already partially depolarized by the H(+)-ATPase inhibitor dicyclohexylcarbo-diimide, indicating the presence of an ouabain-sensitive sodium pump whose activity is masked by the H(+)-ATPase. Unlike procyclic forms, the deltapsi of bloodstream-stage trypomastigotes was markedly sensitive to extracellular Na+ and K+ concentrations. Thus, there are significant differences between procyclic and bloodstream forms in the maintenance of the deltapsi and in their permeability to cations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号