首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
LAURENCE PERBAL 《Bioethics》2013,27(7):382-387
The ‘gene of’ is a teleosemantic expression that conveys a simplistic and linear relationship between a gene and a phenotype. Throughout the 20th century, geneticists studied these genes of traits. The studies were often polemical when they concerned human traits: the ‘crime gene’, ‘poverty gene’, ‘IQ gene’, ‘gay gene’ or ‘gene of alcoholism’. Quite recently, a controversy occurred in 2006 in New Zealand that started with the claim that a ‘warrior gene’ exists in the Mãori community. This claim came from a geneticist working on the MAOA gene. This article is interested in the responsibility of that researcher regarding the origin of the controversy. Several errors were made: overestimation of results, abusive use of the ‘gene of’ kind of expression, poor communication with the media and a lack of scientific culture. The issues of the debate were not taken into account sufficiently, either from the political, social, ethical or even the genetic points of view. After more than 100 years of debates around ‘genes of’ all kinds (here, the ‘warrior gene’), geneticists may not hide themselves behind the media when a controversy occurs. Responsibilities have to be assumed.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
1. The retarding effect of plasma on the action of trypsin can be measured quantitatively. 2. The nature of the reaction involved in effecting the retardation has been subjected to an experimental study. 3. Evidence is presented which indicates that the equilibrium between the inhibitive agent and trypsin is reached practically instantaneously and is rapidly and completely reversible. 4. This equilibrium has been studied by experiments in which we have observed (1) the effect of adding increasing amounts of plasma to a constant amount of trypsin, (2) the effect of varying the amount of trypsin while the plasma was constant, (3) the effect of dilution on the trypsin-plasma mixture. 5. The results of these experiments are discussed and it is stated that they are in quantitative agreement with the law of mass action. 6. An equation was found which fits the curves for the experiments mentioned in (4). This equation was developed from the assumption that 1 molecule of trypsin combined with 1 molecule of inhibitor to form 1 molecule of trypsin-inhibitor compound. The agreement between the results calculated by this equation and the observed results is satisfactory. It is pointed out that the equation contains two arbitrary constants and the bearing this fact may have on the calculated results is discussed. 7. We conclude from the results of our study that we have adduced evidence which suggests the following statement regarding the so called "antitryptic" property of blood. The inhibitive agent and trypsin combine to form an inactive but dissociable compound. The reaction in equilibrium is expressed by the equation Trypsin + inhibitor ⇌ trypsin-inhibitor The conditions of equilibrium are apparently governed by the law of mass action. The behavior of the equilibrium is therefore similar to the behavior of other equilibria between different inhibitive agents and enzymes discussed in the paper.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号