首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article considers the relationship between patenting and plant variety rights protection, through a detailed analysis of the recent determination by the Extended Board of Appeal of the European Patent Office that methods for breeding broccoli and tomatoes were not patentable. It concludes that the right to patent agricultural innovations is increasingly located within a political context.  相似文献   

2.
Top 10 plant viruses in molecular plant pathology   总被引:4,自引:0,他引:4  
Many scientists, if not all, feel that their particular plant virus should appear in any list of the most important plant viruses. However, to our knowledge, no such list exists. The aim of this review was to survey all plant virologists with an association with Molecular Plant Pathology and ask them to nominate which plant viruses they would place in a 'Top 10' based on scientific/economic importance. The survey generated more than 250 votes from the international community, and allowed the generation of a Top 10 plant virus list for Molecular Plant Pathology. The Top 10 list includes, in rank order, (1) Tobacco mosaic virus, (2) Tomato spotted wilt virus, (3) Tomato yellow leaf curl virus, (4) Cucumber mosaic virus, (5) Potato virus Y, (6) Cauliflower mosaic virus, (7) African cassava mosaic virus, (8) Plum pox virus, (9) Brome mosaic virus and (10) Potato virus X, with honourable mentions for viruses just missing out on the Top 10, including Citrus tristeza virus, Barley yellow dwarf virus, Potato leafroll virus and Tomato bushy stunt virus. This review article presents a short review on each virus of the Top 10 list and its importance, with the intent of initiating discussion and debate amongst the plant virology community, as well as laying down a benchmark, as it will be interesting to see in future years how perceptions change and which viruses enter and leave the Top 10.  相似文献   

3.
Uptake of isolated plant chromosomes by plant protoplasts   总被引:1,自引:0,他引:1  
L. Szabados  Gy. Hadlaczky  D. Dudits 《Planta》1981,151(2):141-145
For mass isolation of plant metaphase chromosomes, cultured cells of wheat (Triticum monococcum) and parsley (Petroselinum hortense) were synchronized by hydroxyurea and colchicine treatment. This synchronization procedure resulted in high mitotic synchrony, especially in suspension cultures of parsley in which 80% of the cells were found to be at the metaphase stage. Mitotic protoplasts isolated from these synchronized cell cultures served as a source for isolation of chromosomes. The described isolation and purification method yielded relatively pure chromosome suspension. The uptake of the isolated plant chromosomes into recipient wheat, parsley, and maize protoplasts was induced by polyethylene-glycol treatment. Cytological studies provided evidences for uptake of plant chromosomes into plant protoplasts.Abbreviations PEG polyethylene glycol - HU hydroxyruea - C colchicine - HUC hydroxyurea and colchicine - CIM chromosome isolation medium - TCM Tris chromosome medium  相似文献   

4.
Role of plant hormones in plant defence responses   总被引:13,自引:0,他引:13  
Plant hormones play important roles in regulating developmental processes and signaling networks involved in plant responses to a wide range of biotic and abiotic stresses. Significant progress has been made in identifying the key components and understanding the role of salicylic acid (SA), jasmonates (JA) and ethylene (ET) in plant responses to biotic stresses. Recent studies indicate that other hormones such as abscisic acid (ABA), auxin, gibberellic acid (GA), cytokinin (CK), brassinosteroids (BR) and peptide hormones are also implicated in plant defence signaling pathways but their role in plant defence is less well studied. Here, we review recent advances made in understanding the role of these hormones in modulating plant defence responses against various diseases and pests.  相似文献   

5.
6.
7.
Top 10 plant pathogenic bacteria in molecular plant pathology   总被引:7,自引:0,他引:7  
Many plant bacteriologists, if not all, feel that their particular microbe should appear in any list of the most important bacterial plant pathogens. However, to our knowledge, no such list exists. The aim of this review was to survey all bacterial pathologists with an association with the journal Molecular Plant Pathology and ask them to nominate the bacterial pathogens they would place in a 'Top 10' based on scientific/economic importance. The survey generated 458 votes from the international community, and allowed the construction of a Top 10 bacterial plant pathogen list. The list includes, in rank order: (1) Pseudomonas syringae pathovars; (2) Ralstonia solanacearum; (3) Agrobacterium tumefaciens; (4) Xanthomonas oryzae pv. oryzae; (5) Xanthomonas campestris pathovars; (6) Xanthomonas axonopodis pathovars; (7) Erwinia amylovora; (8) Xylella fastidiosa; (9) Dickeya (dadantii and solani); (10) Pectobacterium carotovorum (and Pectobacterium atrosepticum). Bacteria garnering honourable mentions for just missing out on the Top 10 include Clavibacter michiganensis (michiganensis and sepedonicus), Pseudomonas savastanoi and Candidatus Liberibacter asiaticus. This review article presents a short section on each bacterium in the Top 10 list and its importance, with the intention of initiating discussion and debate amongst the plant bacteriology community, as well as laying down a benchmark. It will be interesting to see, in future years, how perceptions change and which bacterial pathogens enter and leave the Top 10.  相似文献   

8.
Ask the plant: investigating and teaching plant structure   总被引:1,自引:0,他引:1  
The discipline of comparative plant morphology can play an important role in both teaching and research at a comprehensive university. Natural variation can be used as the basis for studies that begin with the simple premise of 'ask the plant'. Research questions from a variety of disciplines can be examined using the unique methods and perspectives of comparative morphology. In addition to its common application in clarifying developmental relationships and processes, comparative morphology is naturally and has been historically suited to examining the adaptations of plants to their environments. Two examples (one from grasses and another from native Utah shrubs) of studies relating plant form to patterns of growth and competition will be used to illustrate this interface between morphology and ecology. The potential role of comparative morphology in teaching will be described for three different levels in the university curriculum: Biology I (an introductory course for first-year students); Plant Structure (an elective for third- or fourth-year students); and Ecological Plant Morphology and Anatomy (post-baccalaureate or postgraduate level). Describing and explaining plant diversity and variation in the context of common structural adaptations, rather than from a strictly taxonomic perspective, has been an effective 'hook' to interest students in plants in the introductory course. In the more advanced courses it has provided a useful framework for understanding how plant diversity reflects adaptive value as well as common descent and has provided a broader perspective for student research projects in the basic and applied plant sciences.  © 2006 The Linnean Society of London, Botanical Journal of the Linnean Society , 2006, 150 , 73–78.  相似文献   

9.
To effectively manage plant populations for conservation, there is a need to provide reliable information on the conditions required for maintaining viable populations. This is particularly true for the management of populations of rare plant taxa. Western Australia contains over 45% of Australia’s gazetted rare or threatened flora, 80% of which are found within the highly fragmented southwest region. Resources do not exist to undertake comprehensive studies on the population dynamics and demographics for every rare plant of this diverse region. Here, we describe a method of classifying rare plant taxa into functional groups as a basis for guiding rare flora conservation and management. Data on four floral and two life-history traits were collected for each of the 351 declared rare flora taxa of Western Australia. A hierarchical, agglomerative clustering method was applied to the resulting taxa by traits matrix to extract emergent groupings of plant taxa. The resulting polythetic groups were analysed to determine the variation in traits, including response to disturbance and recorded flower visitors, and how these may affect population persistence in a fragmented landscape. Multivariate methods were used to define emergent groups based on a combination of floral structure and life-history traits of the declared rare flora of Western Australia. Seven emergent functional groups were identified and were largely differentiated by flower shape and life form. These seven functional groupings varied significantly in their response to disturbance. By deriving these functional groups, we plan to develop models for each group on how rates of pollination, seed production and seed fitness are affected by population size and landscape context. The rationale would be to use these profiles to determine whether there are thresholds in population size or position in the landscape at which reproductive rates severely decline. General management guidelines could then be developed for each functional group. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Nomenclature Paczkowska and Chapman (2000).  相似文献   

10.
Summary The UV-B radiation (e.g. 337 nm) induced blue fluorescence (BF) and red chlorophyll fluorescence spectra (RF) of green leaves from plants with different leaf structure were determined and the possible nature and candidates of the blue fluorescence emission investigated. The blue fluorescence BF is characterized by a main maximum in the 450 nm region and in most cases by a second maximum/shoulder in the 530 nm region. The latter has been termed green fluorescence GF. The red chlorophyll fluorescence RF, in turn, exhibits two maxima in the 690 and 730 nm region. In general, the intensity of BF, GF and RF emission is significantly higher in the lower than the upper leaf side. The ratio of BF to RF emission (F450/F690) seems to vary from plant species to plant species. BF and GF emission spectra appear to be a mixed signal composed of the fluorescence emission of several substances of the plant vacuole and cell wall, which may primarily arise in the epidermis. Leaves with removed epidermis and chlorophyll-free leaves, however, still exhibit a BF and GF emission. Candidates for the blue fluorescence emission ( max near 450 nm) are phenolic substances such as chlorogenic acid, caffeic acid, coumarins (aesculetin, scopoletin), stilbenes (t-stilbene, rhaponticin), the spectra of which are shown. GF emission ( max near 530 nm) seems to be caused by substances like the alkaloid berberine and quercetin. Riboflavine, NADPH and phyllohydroquinoneK 1 seem to contribute little to the BF and GF emission as compared to the other plant compounds. Purified natural-carotene does not exhibit any blue fluorescence.  相似文献   

11.
Interactions among species determine local‐scale diversity, but local interactions are thought to have minor effects at larger scales. However, quantitative comparisons of the importance of biotic interactions relative to other drivers are rarely made at larger scales. Using a data set spanning 78 sites and five continents, we assessed the relative importance of biotic interactions and climate in determining plant diversity in alpine ecosystems dominated by nurse‐plant cushion species. Climate variables related with water balance showed the highest correlation with richness at the global scale. Strikingly, although the effect of cushion species on diversity was lower than that of climate, its contribution was still substantial. In particular, cushion species enhanced species richness more in systems with inherently impoverished local diversity. Nurse species appear to act as a ‘safety net’ sustaining diversity under harsh conditions, demonstrating that climate and species interactions should be integrated when predicting future biodiversity effects of climate change.  相似文献   

12.
13.
14.
Plant–herbivore–entomopathogen tri-trophic interactions and biodiversity are relatively understudied topics in ecology. Particularly, the effects of entomopathogens on herbivore-induced plant volatiles and plant volatile diversity on the defensive function of plants have not been studied in detail. We used soybean (Glycine max), beet armyworm larvae (Spodoptera exigua), and nucleopolyhedrovirus (NPV) as a tri-trophic system to determine whether NPV infection can promote the emission and diversity of volatiles from plants. We also investigated whether NPV infection affects the attraction of Microplitis pallidipes, an important endoparasitoid of larval S. exigua. Uninfested soybean plants released 7 detectable volatile compounds while plants fed upon by healthy and NPV-infected S. exigua larvae released 12 and 15 volatiles, respectively. Female parasitoids were more attracted to the volatiles from plants that were fed upon by NPV-infected larvae than healthy larvae, and more attracted to the volatiles from plants that were fed upon by healthy larvae than no larvae. The selective responses of parasitoids to plant odours increased as plant volatile diversity increased. Our study suggests that the NPV infection facilitates the release of plant volatiles and enhances the defensive function of plants by increasing plant volatile diversity which in turn attracts more parasitoids. Also, this work reveals that plants might accrue two indirect benefits from NPV infection, cessation of herbivore feeding and more parasitisation.  相似文献   

15.
Plant community productivity generally increases with biodiversity, but the strength of this relationship exhibits strong empirical variation. In meta-food-web simulations, we addressed if the spatial overlap in plants' resource access and animal space-use can explain such variability. We found that spatial overlap of plant resource access is a prerequisite for positive diversity–productivity relationships, but causes exploitative competition that can lead to competitive exclusion. Space-use of herbivores causes apparent competition among plants, resulting in negative relationships. However, space-use of larger top predators integrates sub-food webs composed of smaller species, offsetting the negative effects of exploitative and apparent competition and leading to strongly positive diversity–productivity relationships. Overall, our results show that spatial overlap of plants' resource access and animal space-use can greatly alter the strength and sign of such relationships. In particular, the scaling of animal space-use effects opens new perspectives for linking landscape processes without effects on biodiversity to productivity patterns.  相似文献   

16.
  相似文献   

17.
Light-activated plant defence   总被引:3,自引:3,他引:0  
  相似文献   

18.
19.
Biolistic plant transformation   总被引:7,自引:0,他引:7  
The biolistic process represents a completely new approach to the problem of how to deliver DNA into intact cells and tissues. High velocity microprojectiles are used to carry DNA or other substances past cell walls and membranes. Because DNA is being 'shot' into cells, it represents a type of biological ballistics, hence the term "biolistics".
There are several fundamental advantages to the biolistic process over other plant transformation techniques. The biolistic process appears to be effective regardless of species or tissue type, it is a rapid and very simple procedure, and it should facilitate the direct transformation of totipotent tissues such as pollen, embryos, meristems and morphogenic cell cultures. In addition, the biolistic process appears to be uniquely suitable for organelle transformation.
The disadvantages of the biolistic process are that it requires special instrumentation, and is still in the early stages of its development. Consequently, delivery efficiencies are still not as high as can be achieved in highly optimized transformation systems such as electroporation or agrobacterial-infection of tobacco. Furthermore, potential users should be prepared to spend some time adapting existing protocols to their specific species or tissue of interest.  相似文献   

20.
During the last decade it was unambiguously shown that plants synthesize minute amounts of carbohydrate-binding proteins upon exposure to stress situations like drought, high salt, hormone treatment, pathogen attack or insect herbivory. In contrast to the ‘classical’ plant lectins, which are typically found in storage vacuoles or in the extracellular compartment this new class of lectins is located in the cytoplasm and the nucleus. Based on these observations the concept was developed that lectin-mediated protein–carbohydrate interactions in the cytoplasm and the nucleus play an important role in the stress physiology of the plant cell. Hitherto, six families of nucleocytoplasmic lectins have been identified. This review gives an overview of our current knowledge on the occurrence of nucleocytoplasmic plant lectins. The carbohydrate-binding properties of these lectins and potential ligands in the nucleocytoplasmic compartment are discussed in view of the physiological role of the lectins in the plant cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号