共查询到20条相似文献,搜索用时 0 毫秒
1.
Alavi Y Arai M Mendoza J Tufet-Bayona M Sinha R Fowler K Billker O Franke-Fayard B Janse CJ Waters A Sinden RE 《International journal for parasitology》2003,33(9):933-943
Knowledge of parasite-mosquito interactions is essential to develop strategies that will reduce malaria transmission through the mosquito vector. In this study we investigated the development of two model malaria parasites, Plasmodium berghei and Plasmodium gallinaceum, in three mosquito species Anopheles stephensi, Anopheles gambiae and Aedes aegypti. New methods to study gamete production in vivo in combination with GFP-expressing ookinetes were employed to measure the large losses incurred by the parasites during infection of mosquitoes. All three mosquito species transmitted P. gallinaceum; P. berghei was only transmitted by Anopheles spp. Plasmodium gallinaceum initiates gamete production with high efficiency equally in the three mosquito species. By contrast P. berghei is less efficiently activated to produce gametes, and in Ae. aegypti microgamete formation is almost totally suppressed. In all parasite/vector combinations ookinete development is inefficient, 500-100,000-fold losses were encountered. Losses during ookinete-to-oocyst transformation range from fivefold in compatible vector parasite combinations (P. berghei/An. stephensi), through >100-fold in poor vector/parasite combinations (P. gallinaceum/An. stephensi), to complete blockade (>1,500 fold) in others (P. berghei/Ae. aegypti). Plasmodium berghei ookinetes survive poorly in the bloodmeal of Ae. aegypti and are unable to invade the midgut epithelium. Cultured mature ookinetes of P. berghei injected directly into the mosquito haemocoele produced salivary gland sporozoites in An. stephensi, but not in Ae. aegypti, suggesting that further species-specific incompatibilities occur downstream of the midgut epithelium in Ae. aegypti. These results show that in these parasite-mosquito combinations the susceptibility to malarial infection is regulated at multiple steps during the development of the parasites. Understanding these at the molecular level may contribute to the development of rational strategies to reduce the vector competence of malarial vectors. 相似文献
2.
Gade D Theiss D Lange D Mirgorodskaya E Lombardot T Glöckner FO Kube M Reinhardt R Amann R Lehrach H Rabus R Gobom J 《Proteomics》2005,5(14):3654-3671
The marine bacterium Rhodopirellula baltica, a member of the phylum Planctomycetes, has distinct morphological properties and contributes to remineralization of biomass in the natural environment. On the basis of its recently determined complete genome we investigated its proteome by 2-DE and established a reference 2-DE gel for the soluble protein fraction. Approximately 1000 protein spots were excised from a colloidal Coomassie-stained gel (pH 4-7), analyzed by MALDI-MS and identified by PMF. The non-redundant data set contained 626 distinct protein spots, corresponding to 558 different genes. The identified proteins were classified into role categories according to their predicted functions. The experimentally determined and the theoretically predicted proteomes were compared. Proteins, which were most abundant in 2-DE gels and the coding genes of which were also predicted to be highly expressed, could be linked mainly to housekeeping functions in glycolysis, tricarboxic acid cycle, amino acid biosynthesis, protein quality control and translation. Absence of predictable signal peptides indicated a localization of these proteins in the intracellular compartment, the pirellulosome. Among the identified proteins, 146 contained a predicted signal peptide suggesting their translocation. Some proteins were detected in more than one spot on the gel, indicating post-translational modification. In addition to identifying proteins present in the published sequence database for R. baltica, an alternative approach was used, in which the mass spectrometric data was searched against a maximal ORF set, allowing the identification of four previously unpredicted ORFs. The 2-DE reference map presented here will serve as framework for further experiments to study differential gene expression of R. baltica in response to external stimuli or cellular development and compartmentalization. 相似文献
3.
The Nicotiana tabacum Bright‐Yellow‐2 (BY2) cell line is one of most commonly used plant suspension cell lines and offers interesting properties, such as fast growth, amenability to genetic transformation, and synchronization of cell division. To build a proteome reference map of BY2 cell proteins, we isolated the soluble proteins from N. tabacum BY2 cells at the end of the exponential growth phase and analyzed them by 2‐DE and MALDI TOF‐TOF. Of the 1422 spots isolated, 795 were identified with a significant score, corresponding to 532 distinct proteins. 相似文献
4.
Usami M Mitsunaga K Nakazawa K 《Birth defects research. Part B, Developmental and reproductive toxicology》2007,80(5):383-395
BACKGROUND: Proteomic analysis of cultured postimplantation rat embryos is expected to be useful for investigation into embryonic development. Here we analyzed protein expression in cultured postimplantation rat embryos by two-dimensional electrophoresis (2-DE) and mass-spectrometric protein identification. METHODS: Rat embryos were cultured from day 9.5 for 48 h or from day 10.5 for 24 h. Proteins of the embryo proper and yolk sac membrane were isolated by 2-DE and differentially analyzed with a 2-D analysis software. Selected protein spots in the 2-DE gels were identified by matrix-assisted laser desorption/ionization-time of flight tandem mass spectrometric analysis and protein database search. RESULTS: About 800 and 1,000 protein spots were matched through the replicate 2-DE gels each from one embryo in the embryo proper and yolk sac membrane, respectively, and virtually the same protein spots were observed irrespective to the length of culture period. From protein spots specific to the embryo proper (126 spots) and yolk sac membrane (304 spots), proteins involved in tissue-characteristic functions, such as morphogenesis and nutritional transfer, were identified: calponin, cellular retinoic acid binding protein, cofilin, myosin, and stathmin in the embryo proper, and Ash-m, dimerization cofactor of hepatocyte nuclear factor, ERM-binding phosphoprotein, cathepsin, and legumain in the yolk sac membrane. CONCLUSION: Proteomic analysis of cultured postimplantation rat embryos will be a new approach in developmental biology and toxicology at the protein level. 相似文献
5.
Cerebrospinal fluid (CSF) is considered as the most promising body fluid target for the discovery of biomarkers for early diagnosis of neurodegenerative diseases such as Creutzfeldt–Jakob disease in humans and bovine spongiform encephalopathy in cattle. For the recognition of disease‐associated changes in bovine CSF protein patterns, a detailed knowledge of this proteome is a prerequisite. The absence of a high‐resolution CSF proteome map prompted us to determine all bovine CSF protein spots that can be visualised on 2‐D protein gels. Using state‐of‐the‐art 2‐DE technology for proteome mapping of bovine ante mortem CSF combined with sensitive fluorescent protein staining and MALDI‐TOF/TOF MS for protein identification, a highly detailed 2‐DE map of the bovine CSF proteome was established. Besides the proteins mapped by earlier studies, this map contains 66 different proteins, including 58 which were not annotated in bovine 2‐DE CSF maps before. 相似文献
6.
In the literature, a variety of ways have been used to obtain anoxia, and most often results are compared between studies without taking into consideration how anoxia has been obtained. Here, we provide a comprehensive study of two types of anoxia, using a proteomics approach to compare changes in protein expression. The two investigated situations were 30 min of chemical anoxia (10 mM NaN(3)) followed by reoxygenation overnight (CR) and 2 h of N(2)-induced anoxia (achieved by flushing with N(2)) followed by reoxygenation overnight (NR), after which samples were resolved by 2-DE. Forty-five protein spots changed their abundance in response to CR and 35 protein spots changed their abundance in response to NR, but only six proteins changed their abundance in response to both stimuli. By the means of MS/MS, 40 protein spots were identified including proteins involved in processes like cell protection and protein synthesis. It was also revealed that the level of a number of keratins was down-regulated. This study therefore provides a valuable comparison of two different anoxia models and shows that great care should be taken when comparing the effects of anoxia in studies that have used different types and durations of anoxia. 相似文献
7.
Rita Ferreira Rui Vitorino Renato M. P. Alves Hans Joachim Appell Scott K. Powers José Alberto Duarte Francisco Amado 《Proteomics》2010,10(17):3142-3154
Skeletal muscle is a highly specialized tissue that contains two distinct mitochondria subpopulations, the subsarcolemmal (SS) and the intermyofibrillar (IMF) mitochondria. Although it is established that these mitochondrial subpopulations differ functionally in several ways, limited information exists about the proteomic differences underlying these functional differences. Therefore, the objective of this study was to biochemically characterize the SS and IMF mitochondria isolated from rat red gastrocnemius skeletal muscle. We separated the two mitochondrial subpopulations from skeletal muscle using a refined method that provides an excellent division of these unique mitochondrial subpopulations. Using proteomics of mitochondria and its subfractions (intermembrane space, matrix and inner membrane), a total of 325 distinct proteins were identified, most of which belong to the functional clusters of oxidative phosphorylation, metabolism and signal transduction. Although more gel spots were observed in SS mitochondria, 38 of the identified proteins were differentially expressed between the SS and IMF subpopulations. Compared to the SS mitochondrial, IMF mitochondria expressed a higher level of proteins associated with oxidative phosphorylation. This observation, coupled with the finding of a higher respiratory chain complex activity in IMF mitochondria, suggests a specialization of IMF mitochondria toward energy production for contractile activity. 相似文献
8.
This study describes the identification of outer membrane proteins (OMPs) of the bacterial pathogen Pasteurella multocida and an analysis of how the expression of these proteins changes during infection of the natural host. We analysed the sarcosine-insoluble membrane fractions, which are highly enriched for OMPs, from bacteria grown under a range of conditions. Initially, the OMP-containing fractions were resolved by 2-DE and the proteins identified by MALDI-TOF MS. In addition, the OMP-containing fractions were separated by 1-D SDS-PAGE and protein identifications were made using nano LC MS/MS. Using these two methods a total of 35 proteins was identified from samples obtained from organisms grown in rich culture medium. Six of the proteins were identified only by 2-DE MALDI-TOF MS, whilst 17 proteins were identified only by 1-D LC MS/MS. We then analysed the OMPs from P. multocida which had been isolated from the bloodstream of infected chickens (a natural host) or grown in iron-depleted medium. Three proteins were found to be significantly up-regulated during growth in vivo and one of these (Pm0803) was also up-regulated during growth in iron-depleted medium. After bioinformatic analysis of the protein matches, it was predicted that over one third of the combined OMPs predicted by the bioinformatics sub-cellular localisation tools PSORTB and Proteome Analyst, had been identified during this study. This is the first comprehensive proteomic analysis of the P. multocida outer membrane and the first proteomic analysis of how a bacterial pathogen modifies its outer membrane proteome during infection. 相似文献
9.
A study of Streptococcus thermophilus proteome by integrated analytical procedures and differential expression investigations 总被引:1,自引:0,他引:1
Arena S D'Ambrosio C Renzone G Rullo R Ledda L Vitale F Maglione G Varcamonti M Ferrara L Scaloni A 《Proteomics》2006,6(1):181-192
Streptococcus thermophilus is a Gram-positive bacterium belonging to the group of lactic acid bacteria, among which several genera play an essential role in manufacture of food products. Recently, a genomic consortium sequenced and annotated its entire genome, which has been demonstrated to contain 1900 coding sequences. In this study, we have revealed the expression products of almost 200 different genes using a proteomic strategy combining 2-DE plus MALDI-TOF PMF and differential 1-DE plus muLC-ESI-IT-MS/MS. Thus, a number of cellular pathways related to important physiological processes were described at the proteomic level. Almost 50 genes were related to multiple electrophoretic species, whose heterogeneity was mainly due to variability in pI values. A 2-DE reference map obtained for lactose-grown cells was compared with those obtained after heat, cold, acid, oxidative and starvation stresses. Protein up/down-regulation measurements demonstrated that adaptation to different environmental challenges may involve the contribution of unique as well as combined physiological mechanisms. Common regulatory sites in the promoter region of genes whose expression was induced after stress were identified. These results provide a better comprehension of biochemical processes related to stress resistance in S. thermophilus, allowing defining the molecular bases of adaptative responses or markers for the identification of strains with potential industrial applications. 相似文献
10.
Transposons are a class of selfish DNA elements that can mobilize within a genome. If mobilization is accompanied by an increase in copy number (replicative transposition), the transposon may sweep through a population until it is fixed in all of its interbreeding members. This introgression has been proposed as the basis for drive systems to move genes with desirable phenotypes into target species. One such application would be to use them to move a gene conferring resistance to malaria parasites throughout a population of vector mosquitos. We assessed the feasibility of using the piggyBac transposon as a gene-drive mechanism to distribute anti-malarial transgenes in populations of the malaria vector, Anopheles stephensi. We designed synthetic gene constructs that express the piggyBac transposase in the female germline using the control DNA of the An. stephensi nanos orthologous gene linked to marker genes to monitor inheritance. Two remobilization events were observed with a frequency of one every 23 generations, a rate far below what would be useful to drive anti-pathogen transgenes into wild mosquito populations. We discuss the possibility of optimizing this system and the impetus to do so. 相似文献
11.
Serum is believed to harbor thousands of distinct proteins that are either actively secreted or leak from various blood cells or tissues. Exploring protein composition in serum may accelerate the discovery of novel protein biomarkers for specific economic traits in livestock species. This study analyzed serum protein composition to establish a 2-DE reference map, and monitored protein dynamics of single-comb White Leghorn hens at 8, 19 and 23 weeks after hatching. A total of 119 CBB-stained and 315 silver-stained serum protein spots were analyzed by MALDI-TOF MS. Of these, 98 CBB-stained and 94 silver-stained protein spots were significantly matched to existing chicken proteins. The identified spots represented 30 distinctive proteins in the serum of laying hens. To compare protein expression during development, expression levels of 47 protein spots were quantified by relative spot volume with Melanie 3 software. Ten protein spots increased and 3 protein spots decreased as hen age increased. Previous research has suggested that some of these proteins play critical roles in egg production. The differentially expressed proteins with unknown identities will be valuable candidates for further explorations of their roles in egg production of laying hens. 相似文献
12.
Freshwater mussels (order Unionoida) represent one of the most severely endangered groups of animals due to habitat destruction, introduction of nonnative species, and loss of host fishes, which their larvae (glochidia) are obligate parasites on. Conservation efforts such as habitat restoration or restocking of host populations are currently hampered by difficulties in unionoid species identification by morphological means. Here we present the first complete molecular identification key for all seven indigenous North and Central European unionoid species and the nonnative Sinanodonta woodiana, facilitating quick, low-cost, and reliable identification of adult and larval specimens. Application of this restriction fragment length polymorphisms (RFLP) key resulted in 100% accurate assignment of 90 adult specimens from across the region by digestion of partial ITS-1 (where ITS is internal transcribed spacer) polymerase chain reaction (PCR) products in two to four single digestions with five restriction endonucleases. In addition, we provide protocols for quick and reliable extraction and amplification of larval mussel DNA from complete host fish gill arches. Our results indicate that this new method can be applied on infection rates as low as three glochidia per gill arch and enables, for the first time, comprehensive, large-scale assessments of the relative importance of different host species for given unionoid populations. 相似文献
13.
Pathogenic staphylococci can form biofilms in which they show a higher resistance to antibiotics and the immune defense system than their planktonic counterparts, which suggests that the cells in a biofilm have an altered metabolic activity. Here, 2-D PAGE was used to identify secreted, cell wall-associated and cytoplasmic proteins expressed in Staphylococcus aureus after 8 and 48 h of growth. The proteins were separated at pH ranges of 4-7 or 6-11. The protein patterns revealed significant differences in 427 protein spots; from these, 258 non-redundant proteins were identified using ESI-MS/MS. Biofilm cells expressed higher levels of proteins associated with cell attachment and peptidoglycan synthesis, and in particular fibrinogen-binding proteins. Enzymes involved in pyruvate and formate metabolism were upregulated. Furthermore, biofilm cells expressed more staphylococcal accessory regulator A protein (SarA), which corroborates the positive effect of SarA on the expression of the intercellular adhesion operon ica and biofilm growth. In contrast, proteins, such as proteases and particularly immunodominant antigen A (IsaA) and staphylococcal secretory antigen (SsaA), were found in lower amounts. The RNA expression profiling largely supports the proteomic data. The results were mapped onto KEGG pathways. 相似文献
14.
Paul A. Sigala Jan R. Crowley Samantha Hsieh Jeffrey P. Henderson Daniel E. Goldberg 《The Journal of biological chemistry》2012,287(45):37793-37807
Malaria parasites generate vast quantities of heme during blood stage infection via hemoglobin digestion and limited de novo biosynthesis, but it remains unclear if parasites metabolize heme for utilization or disposal. Recent in vitro experiments with a heme oxygenase (HO)-like protein from Plasmodium falciparum suggested that parasites may enzymatically degrade some heme to the canonical HO product, biliverdin (BV), or its downstream metabolite, bilirubin (BR). To directly test for BV and BR production by P. falciparum parasites, we DMSO-extracted equal numbers of infected and uninfected erythrocytes and developed a sensitive LC-MS/MS assay to quantify these tetrapyrroles. We found comparable low levels of BV and BR in both samples, suggesting the absence of HO activity in parasites. We further tested live parasites by targeted expression of a fluorescent BV-binding protein within the parasite cytosol, mitochondrion, and plant-like plastid. This probe could detect exogenously added BV but gave no signal indicative of endogenous BV production within parasites. Finally, we recombinantly expressed and tested the proposed heme degrading activity of the HO-like protein, PfHO. Although PfHO bound heme and protoporphyrin IX with modest affinity, it did not catalyze heme degradation in vivo within bacteria or in vitro in UV absorbance and HPLC assays. These observations are consistent with PfHO''s lack of a heme-coordinating His residue and suggest an alternative function within parasites. We conclude that P. falciparum parasites lack a canonical HO pathway for heme degradation and thus rely fully on alternative mechanisms for heme detoxification and iron acquisition during blood stage infection. 相似文献
15.
Bronchoalveolar lavage fluid (BALF) is a complex mixture of proteins, which represents a unique clinically useful sampling of the lower respiratory tract. Many proteomic technologies can be used to characterize complex biological mixtures; however, it is not yet clear which technology(s) provide more information regarding the number of proteins identified and sequence coverage. In this study, we initially compared two common proteomic approaches, 2-D LC microESI MS/MS and 1-DE followed by gel slice digestion, peptide extraction and peptide identification by MS in characterization of the mouse BALF proteome; secondly, we identified 297 unique proteins from the mouse BALF proteome, greatly expanded the BALF proteome by about threefold regardless of species. 相似文献
16.
Larval attachment and metamorphosis, commonly referred to as larval settlement, of marine sessile invertebrates can be triggered or blocked by chemical cues and affected by changes in overall protein expression pattern and phosphorylation dynamics. This study focuses on the effects of butenolide, an effective larval settlement inhibitor, on larval settlement at the proteome level in the bryozoan Bugula neritina. Liquid‐phase IEF sample prefractionation combined with 2‐DE and MALDI‐TOF MS was used to identify the differentially expressed proteins. Substantial changes occurred both in protein abundance and in phosphorylation status during larval settlement and when settling larvae were challenged with butenolide. The proteins that responded to treatment were identified as structural proteins, molecular chaperones, mitochondrial peptidases and calcium‐binding proteins. Compared with our earlier results, both genistein and butenolide inhibited larval settlement of B. neritina primarily by changes in protein abundance and the phosphorylation status of proteins but have different protein targets in the same species. Clearly, to design potent antifouling compounds and to understand the mode of action of compounds, more studies on the effects of different compounds on proteome and phosphoproteome of different larval species are required. 相似文献
17.
An improved method for sample preparation for MALDI-MS and MS/MS using AnchorChip targets is presented. The method, termed the SMW method (sample, matrix wash), results in better sensitivity for peptide mass fingerprinting as well as for sequencing by MS/MS than previously published methods. The method allows up-concentration and desalting directly on the mass spectrometric target and should be amenable for automation. A draw back caused by extensive oxidation of methionine and tryptophan in the SMW method can be alleviated by the addition of n-octyl glucopyranoside and DTT to the sample solution. The method was validated for protein identification from a 2-DE based liver proteome study. The SMW method resulted in identification of many more proteins and in most cases with a better score than the previously published methods. 相似文献
18.
Since completion of genome sequencing of the malarial parasite Plasmodium falciparum, proteomic tools for the identification of parasite proteins have become particularly attractive as they allow a more thorough interpretation of these data. Recent advances in 2-D PAGE, MS, and bioinformatics have created great opportunities for mapping and characterization of protein populations. We employed these improvements in a proteomic approach for the analysis of proteins detected in two blood stages of P. falciparum, (i) in the schizont stage and (ii) in the merozoite stage. For the isolation of merozoites, we introduced a new protocol based on the preparation of clustered structures of merozoites upon treatment of cultures with the common cysteine proteinase inhibitor E64. Peptide mass fingerprints of excised and trypsinated protein spots, acquired by MALDI-TOF MS were generated to identify a variety of proteins. Moreover, prefractionation procedures were used to enrich and map low-abundance proteins in protein samples. The data demonstrate that classic proteomic analyses using 2-D PAGE are now feasible for P. falciparum and represent the first step in the direction of creating 2-D reference maps for this medically most relevant protozoon. 相似文献
19.
Hadi Hasan Choudhary Pratik Narain Srivastava Subhash Singh Kota Arun Kumar Satish Mishra 《International journal for parasitology》2018,48(3-4):203-209
In Plasmodium, the shikimate pathway is a potential target for malaria chemotherapy owing to its absence in the mammalian host. Chorismate, the end product of this pathway, serves as a precursor for aromatic amino acids, Para-aminobenzoic acid and ubiquinone, and is synthesised by Chorismate synthase (CS). Therefore, it follows that the Cs locus may be refractory to genetic manipulation. By utilising a conditional mutagenesis system of yeast Flp/FRT, we demonstrate an unexpectedly dispensable role of CS in Plasmodium. Our studies reiterate the need to establish an obligate reliance on Plasmodium metabolic enzymes through genetic approaches before their selection as drug targets. 相似文献
20.
A proteome study of the first five days of Medicago truncatula protoplast cultures was done to investigate molecular changes taking place during protoplast proliferation. A total of 1556 protein spots were analysed, of which 886 protein spots showed significant (p<0.005) changes in abundance at some time during the first five days of protoplast culture. Of the 886 significantly changing protein spots, 89 proteins were identified by MALDI-TOF MS. The majority of the identified proteins were part of four main cellular processes that may be involved in protoplast proliferation: energy metabolism, defence or stress response, secondary metabolism and protein synthesis and folding. The accumulation pattern of these proteins indicates extensive changes in the energy metabolism of the cells, accompanied by the activation of stress response pathways and modifications of the cell wall. In addition, seven PR10-like (pathogenesis related) proteins were identified. The accumulation pattern of these seven PR10-like proteins suggests that they could have a developmental role during protoplast proliferation. 相似文献