首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 15 毫秒
1.
The kinetic properties of the cytoplasmic and the mitochondrial iso-enzymes of creatine kinase from striated muscle were studied in vitro and in vivo. The creatine kinase (CK) iso-enzyme family has a multi-faceted role in cellular energy metabolism and is characterized by a complex pattern of tissue-specific expression and subcellular distribution. In mammalian tissues, there is always co-expression of at least two different CK isoforms. As a result, previous studies into the role of CK in energy metabolism have not been able to directly differentiate between the individual CK species. Here, we describe experiments which were directed at achieving this goal. First, we studied the kinetic properties of the muscle-specific cytoplasmic and mitochondrial CK isoforms in purified form under in vitro conditions, using a combination of P-31 NMR and spectrophotometry. Secondly, P-31 NMR measurements of the flux through the CK reaction were carried out on intact skeletal and heart muscle from wild-type mice and from transgenic mice, homozygous for a complete deficiency of the muscle-type cytoplasmic CK isoform. Skeletal muscle and heart were compared because they differ strongly in the relative abundance of the CK isoforms. The present data indicate that the kinetic properties of cytoplasmic and mitochondrial CK are substantially different, both in vitro and in vivo. This finding particularly has implications for the interpretation of in vivo studies with P-31 NMR. (Mol Cell Biochem 174: 33–42, 1997)  相似文献   

2.
The roles of creatine kinase (CK) and myoglobin (Mb) on steady-state facilitated diffusion and temporal buffering of ATP and oxygen, respectively, are assessed within the context of a reaction-diffusion model of muscle energetics. Comparison of the reaction-diffusion model with experimental data from a wide range of muscle fibers shows that the experimentally observed skeletal muscle fibers are generally not limited by diffusion, and the model further indicates that while some muscle fibers operate near the edge of diffusion limitation, no detectable effects of Mb and CK on the effectiveness factor, a measure of diffusion constraints, are observed under steady-state conditions. However, CK had a significant effect on average ATP concentration over a wide range of rates and length scales within the reaction limited regime. The facilitated diffusion functions of Mb and CK become observable in the model for larger size cells with low mitochondrial volume fraction and for low boundary O(2) concentration and high ATP demand, where the fibers may be limited by diffusion. From the transient analysis it may be concluded that CK primarily functions to temporally buffer ATP as opposed to facilitating diffusion while Mb has a small temporal buffering effect on oxygen but does not play any significant role in steady-state facilitated diffusion in skeletal muscle fibers under most physiologically relevant regions.  相似文献   

3.
After discussing approaches to the modelling of mitochondrial regulation in muscle, we describe a model that takes account, in a simplified way, of some aspects of the metabolic and physical structure of the energy production/usage system. In this model, high-energy phosphates (ATP and phosphocreatine) and low energy metabolites (ADP and creatine) diffuse between the mitochondrion and the myofibrillar ATPase, and can be exchanged at any point by creatine kinase. Creatine kinase is not assumed to be at equilibrium, so explicit account can be taken of substantial changes in its activity of the sort that can now be achieved by transgenic technology in vivo. The ATPase rate is the input function. Oxidative ATP synthesis is controlled by juxtamitochondrial ADP concentration. To allow for possible functional coupling between the components of creatine kinase associated with the mitochondrial adenine nucleotide translocase and the myofibrillar ATPase, we define parameters and that set the fraction of the total flux carried by ATP rather than phosphocreatine out of the mitochondrial unit and into the ATPase unit, respectively. This simplification is justified by a detailed analysis of the interplay between the mitochondrial outer membrane porin proteins, mitochondrial creatine kinase and the adenine nucleotide translocase. As both processes of possible coupling are incorporated into the model as quantitative parameters, their effect on the energetics of the whole cell model can be explicitly assessed. The main findings are as follows: (1) At high creatine kinase activity, the hyperbolic relationship of oxidative ATP synthesis rate to spatially averaged ADP concentration at steady state implies also a near-linear relationship to creatine concentration, and a sigmoid relation to free energy of ATP hydrolysis. At high creatine kinase activity, the degree of functional coupling at either the mitochondrial or ATPase end has little effect on these relationships. However, lowering the creatine kinase activity raises the mean steady state ADP and creatine concentrations, and this is exaggerated when or is near unity (i.e. little coupling). (2) At high creatine kinase activity, the fraction of flow at steady state carried in the middle of the model by ATP is small, unaffected by the degree of functional coupling, but increases with ADP concentration and rate of ATP turnover. Lowering the creatine kinase activity raises this fraction, and this is exaggerated when or is near unity. (3) Both creatine and ADP concentrations show small gradients decreasing towards the mitochondrion (in the direction of their net flux), while ATP and phosphocreatine concentration show small gradients decreasing towards the myosin ATPase. Unless = 0 (i.e. complete coupling), there is a gradient of net creatine kinase flux that results from the need to transform some of the adenine nucleotide flux at the ends of the model into creatine flux in the middle; the overall net flux is small, but only zero if = . A reduction in cytosolic creatine kinase activity decreases ADP concentration at the mitochondrial end and increases it at the ATPase end. (4) During work-jump transitions, spatial average responses exhibit exponential kinetics similar to those of models of mitochondrial control that assume equilibrium conditions for creatine kinase. (5) In response to a step increase in ATPase activity, concentration changes start at the ATPase end and propagate towards the mitochondrion, damped in time and space. This simplified model embodies many important features of muscle in vivo, and accommodates a range of current theories as special cases. We end by discussing its relationship to other approaches to mitochondrial regulation in muscle, and some possible extensions of the model.  相似文献   

4.
The muscle creatine kinase (MCK) gene is expressed at high levels only in differentiated skeletal and cardiac muscle. The activity of the cloned enhancer–promoter has previously been shown to be dependent on the Trex element which is specifically bound by a yet unidentified nuclear factor, TrexBF. We have further characterized the function of the Trex site by comparing wild-type and Trex-mutated MCK transgenes in five mouse skeletal muscles: quadriceps, extensor digitorum longus (EDL), soleus, diaphragm, and distal tongue, as well as in heart ventricular muscle. Several types of statistical analysis including analysis of variance (ANOVA) and rank sum tests were used to compare expression between muscle types and between constructs. Upon mutation of the Trex site, median transgene expression levels decreased 3- to 120-fold in the muscles examined, with statistically significant differences in all muscles except the EDL. Expression in the largely slow soleus muscle was more affected than in the EDL, and expression in the distal tongue and diaphragm muscles was affected more than in soleus. Median expression of the transgene in ventricle decreased about 18-fold upon Trex mutation. Transfections into neonatal rat myocardiocytes confirmed the importance of the Trex site for MCK enhancer activity in heart muscle, but the effect is larger in transgenic mice than in cultured cells.  相似文献   

5.
The effects of four single macromolecular crowding agents, Ficoll 70, dextran 70, polyethylene glycol (PEG) 2000, and calf thymus DNA (CT DNA), and three mixed crowding agents containing both CT DNA and polysaccharide (or PEG 2000) on the refolding of guanidine hydrochloride-denatured rabbit muscle creatine kinase (MM-CK) have been examined by activity assay. When the total concentration of the mixed crowding agent is 100 g/l, in which the weight ratio of CT DNA to Ficoll 70 is 1:9, the refolding yield of MM-CK after refolding for 3 h under these conditions increases 23% compared with that in the presence of 10 g/l CT DNA, 18% compared with 100 g/l Ficoll 70, and 19% compared with that in the absence of crowding agents. A remarkable increase in the refolding yield of MM-CK by a mixed crowding agent containing CT DNA and dextran 70 (or PEG 2000) is also observed. Further folding kinetics analyses show that these three mixed crowding agents remarkably accelerate the refolding of MM-CK, compared with single crowding agents. Aggregation of MM-CK in the presence of any of the three mixed crowding agents is less serious than that in the presence of a single crowding agent at the same concentration but more serious than that in the absence of crowding agents. Both the refolding yield and the refolding rate of MM-CK in mixtures of these agents are increased relative to the individual agents by themselves, indicating that mixed macromolecular crowding agents are more favorable to MM-CK folding and can be used to reflect the physiological environment more accurately than single crowding agents.  相似文献   

6.
The NMR technique of magnetization transfer can be used to define intracellular reaction kinetics. In order to determine the relationship between ATP synthesis and flux through the creatine kinase reaction in the intact heart, we used this technique to measure flux through the creatine kinase reaction in the isolated, isovolumic rat heart at five levels of cardiac performance and oxygen consumption. The unidirectional reaction rate constants (s-1) calculated from a two-site exchange model for both the forward and reverse creatine kinase reactions increased with cardiac performance and oxygen consumption. As the rate-pressure product varied from 0 to 44.7 X 10(3) mm Hg/min and oxygen consumption rose from 5.9 to 45.8 mumol of O2/g dry weight/min, kforward increased from 0.27 to 1.30 and kreverse increased from 0.31 to 1.14. The relationship between creatine kinase flux and oxygen consumption, and thus ATP synthesis, took the form of the Michaelis-Menten equation. Rates of ATP synthesis estimated from magnetization transfer were similar to values calculated from oxygen consumption. The longitudinal relaxation time of creatine phosphate (2.06 s), the gamma-phosphorus atom of ATP (0.75 s), and inorganic phosphate (0.81 s) did not change with cardiac performance. These results show that myocardial energy transfer via the creatine kinase reaction is closely coupled to energy production.  相似文献   

7.
The polyunsaturated fatty acid docosahexaenoic acid (DHA, 22 : 6, n-3) is found at a level of about 50% in the phospholipids of neuronal tissue membranes and appears to be crucial to human health. Dipalmitoyl phosphatidylcholine (DPPC, 16 : 0/16 : 0 PC) and the DHA containing 1-stearoyl-2-docosahexenoyl phosphatidylserine (SDPS) were used to make DPPC (60%)/SDPS (40%) bilayers with and without 10 mol% chlorpromazine (CPZ), a cationic, amphiphilic phenothiazine.

Resonances that are present in 13C NMR spectrum of the DPPC (60%)/SDPS (40%) sample and that disappear in presence of 10% CPZ most probably are due to the special interface environment, e.g. the hydrophobic mismatch, at the interface of DPPC and SDPS microdomains in the DPPC/SDPS bilayer. In itself the appearance of resonances at novel chemical shift values is a clear demonstration of a unique chemical environment in the DPPC (60%)/SDPS (40%) bilayer. The findings of the study presented here suggest CPZ bound to the phosphate of SDPS will slow down and partially inhibit such a DHA acyl chain movement in the DPPC/SDPS bilayer. This would affect the area occupied by a SDPS molecule (in the bilayer) and probably the thickness of the bilayer where SDPS molecules reside as well. It is quite likely that such CPZ caused changes can affect the function of proteins embedded in the bilayer.  相似文献   


8.
Two intracellular pools of soluble polyphosphate were identified by in vivo 31P NMR spectroscopy in the cyanobacterium Synechocystis sp. strain PCC 6308. Polyphosphate was present in the cells after growth in sulfur-limited media containing excess phosphate. The presence of polyphosphate was confirmed by transmission electron microscopy and chemical analysis. 31P NMR spectroscopy of whole cells treated with EDTA revealed two pools of mobile polyphosphate. A downfield shift and narrowing of part of the broad polyphosphate resonance was observed after EDTA treatment, suggesting that EDTA binds metal ions normally associated with some of the polyphosphate. Phosphate, but not polyphosphate, leaked out of the cells after this treatment. Addition of magnesium ions caused the downfield shift in the polyphosphate resonance to move back toward its original value. These data show that only part of the cation-complexed polyphosphate is accessible to the added EDTA and suggest that there are two internal fractions of NMR-visible polyphosphate in the cells, only one of which loses its associated cations to EDTA. Spheroplast formation showed that polyphosphate was not present in the periplasm of the cells. Received: 3 July 1997 / Accepted: 26 September 1997  相似文献   

9.
(1) 31P nuclear magnetic resonance was used to measure the creatine kinase-catalysed fluxes in Langendorff-perfused rat hearts consuming oxygen at different rates and using either of two exogenous substrates (11 mM glucose or 5 mM acetate). (2) Fluxes in the direction of ATP synthesis were between 3.5–12-times the steady-state rates of ATP utilization (estimated from rates of O2-consumption), demonstrating that the reaction is sufficiently rapid to maintain the cytosolic reactants near their equilibrium concentrations. (3) Under all conditions studied, the cytosolic free [ADP] was primarily responsible for regulating the creatine kinase fluxes. The enzyme displayed a Km for cytosolic ADP of 35 μM and an apparent Vmax of 5.5 mM/s in the intact tissue. (4) Although the reaction is maintained in an overall steady-state, the measured ratio of the forward flux (ATP synthesis) to the reverse flux (phosphocreatine synthesis) was significantly greater than unity under some conditions. It is proposed that this discrepancy may be a consequence of participation of ATP in reactions other than the PCr /ag ATP or ATP /ag ADP + Pi interconversions specifically considered in the analysis. (5) The results support the view that creatine kinase functions primarily to maintain low cytosolic concentrations of ADP during transient periods in which energy utilization exceeds production.  相似文献   

10.
(1) The energy state and free intracellular calcium concentration ([Cai) of super-fused cortical slices were measured in moderate hypoxia (~65 μM O2), in mild hypoglycaemia (0.5 mM glucose), and in combinations of the two insults using 19F and 31P NMR spectroscopy. (2) Neither hypoxia nor hypoglycaemia alone caused any significant change in [Cai. Hypoxia caused a 40% fall in phosphocreatine (PCr) content but not in ATP level, and hypoglycaemia produced a slight fall in both (as expected from previous studies). These changes in the energy state recovered on return to control conditions. (3) A combined sequential insult (hypoxia, followed by hypoxia plus hypoglycaemia) produced a 100% increase in [Ca, and a decrease in PCr level to ~25% of control. The reverse combined sequential insult (hypoglycaemia, followed by hypoglycaemia plus hypoxia) had the same effect. On return to control conditions there was some decrease in [Cai and a small increase in PCr content, but neither recovered to control levels. (4) Exposure of the tissue to the combined simultaneous insult (hypoxia plus hypoglycaemia) immediately after the control spectra had been recorded resulted in a fivefold increase in [Cai and a similar decrease in PCr level to 20–25% of control. There was little if any change of [Cai or PCr level on return to control conditions. (5) These results are discussed in terms of metabolic adaptation of some but not all of the cortical cells to the single type of insult, which renders the tissues less vulnerable to the combined insult.  相似文献   

11.
We measured ATP, phosphocreatine (PCr), inorganic phosphate (Pi), and the intracellular pH in rat hindlimb muscles during submaximal isometric exercise with various O2 deliveries using31P nuclear magnetic resonance spectroscopy (31P NMR) to evaluate changes in energy metabolism in relation to O2 availability. Delivery of O2 to muscles was altered by controlling the fractional concentration of inspired oxygen (F IO2) at 0.50, 0.28, 0.21, 0.11 and 0.08 with monitoring partial pressure of oxygen and carbon dioxide, and bicarbonate at the femoral artery. The steady-state ratio of PCr : (PCr + Pi) during exercise decreased as a function ofF IO2 even at 0.21. Significant acidification of the intracellular pH during exercise occurred at 0.08F IO2. Change in the PCr : (PCr + Pi) ratio demonstrated that the oxidative capacity, i.e. the maximal rate of the oxidative phosphorylation reaction, in muscle was not limited by O2 delivery at 0.50F IO2, but was significantly limited at 0.21F IO2 or below. Change in the intracellular pH at 0.08F IO2 could be interpreted as an increase in lactate, suggesting activation of glycolysis. Correlation between the PCr : (PCr + Pi) ratio and the intracellular pH revealed the existence of a critical PCr : (PCr + Pi) ratio and pH for glycolysis activation at around 0.4 and 6.7, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号