首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
As an actively dividing organism, the intracellular parasite Toxoplasma gondii must adjust the size and composition of its membranes in order to accommodate changes due to housekeeping activities, to commit division and in fine to produce new viable progenies. Lipid inventory of T. gondii reveals that the biological membranes of this parasite are composed of a complex mixture of neutral and polar lipids. After examination of the origin of T. gondii membrane lipids, three categories of lipids can be described: (i) lipids scavenged by T. gondii from the host cell; (ii) lipids synthesized in large amounts by the parasite, independently from its host cell; and (iii) lipids produced de novo by the parasite, but whose synthesis does not come close to satisfying the entire parasite's needs. These latter must be adeptly acquired from the host environment. To this end, T. gondii diverts a large variety of lipid precursors from host cytoplasm and efficiently manufacture them into complex lipids. This rather remarkable reliance on host lipid resources for parasite survival opens new avenues to restrict parasite growth. Indeed, parasite starvation can be induced upon deprivation from essential host lipids. Lipid analogues with anti-proliferative properties are voraciously taken up by the parasites, which results in parasite membrane defects, and ultimately death.  相似文献   

2.
Giardia lamblia, a protozoan parasite, infects a wide variety of vertebrates, including humans. Studies indicate that this anaerobic protist possesses a limited ability to synthesize lipid molecules de novo and depends on supplies from its environment for growth and differentiation. It has been suggested that most lipids and fatty acids are taken up by endocytic and non-endocytic pathways and are used by Giardia for energy production and membrane/organelle biosynthesis. The purpose of this article is to provide an update on recent progress in the field of lipid research of this parasite and the validation of lipid metabolic pathways through recent genomic information. Based on current cellular, biochemical and genomic data, a comprehensive pathway has been proposed to facilitate our understanding of lipid and fatty acid metabolism/syntheses in this waterborne pathogen. We envision that the current review will be helpful in identifying targets from the pathways that could be used to design novel therapies to control giardiasis and related diseases.  相似文献   

3.
Binding of specific lipids to large, polytopic membrane proteins is well described, and it is clear that such lipids are crucial for protein stability and activity. In contrast, binding of defined lipid species to individual transmembrane helices and regulation of transmembrane helix monomer–oligomer equilibria by binding of distinct lipids is a concept, which has emerged only lately. Lipids bind to single-span membrane proteins, both in the juxta-membrane region as well as in the hydrophobic membrane core. While some interactions counteract transmembrane helix oligomerization, in other cases lipid binding appears to enhance oligomerization. As reversible oligomerization is involved in activation of many membrane proteins, binding of defined lipids to single-span transmembrane proteins might be a mechanism to regulate and/or fine-tune the protein activity. But how could lipid binding trigger the activity of a protein? How can binding of a single lipid molecule to a transmembrane helix affect the structure of a transmembrane helix oligomer, and consequently its signaling state? These questions are discussed in the present article based on recent results obtained with simple, single-span transmembrane proteins. This article is part of a Special Issue entitled: Lipid–protein interactions.  相似文献   

4.
The folding mechanisms of integral membrane proteins have largely eluded detailed study. This is owing to the inherent difficulties in folding these hydrophobic proteins in vitro, which, in turn, reflects the often apparently insurmountable problem of mimicking the natural membrane bilayer with lipid or detergent mixtures. There is, however, a large body of information on lipid properties and, in particular, on phosphatidylcholine and phosphatidylethanolamine lipids, which are common to many biological membranes. We have exploited this knowledge to develop efficient in vitro lipid-bilayer folding systems for the membrane protein, bacteriorhodopsin. Furthermore, we have shown that a rate-limiting apoprotein folding step and the overall folding efficiency appear to be controlled by particular properties of the lipid bilayer. The properties of interest are the stored curvature elastic energy within the bilayer, and the lateral pressure that the lipid chains exert on the their neighbouring folding proteins. These are generic properties of the bilayer that can be achieved with simple mixtures of biological lipids, and are not specific to the lipids studied here. These bilayer properties also seem to be important in modulating the function of several membrane proteins, as well as the function of membranes in vivo. Thus, it seems likely that careful manipulations of lipid properties will shed light on the forces that drive membrane protein folding, and will aid the development of bilayer folding systems for other membrane proteins.  相似文献   

5.
Sphingolipids represent a class of membrane lipids that contain a hydrophobic ceramide chain as its common backbone structure. Sphingolipid synthesis requires two simple components: l-serine and palmitoyl CoA. Although l-serine is classified as a non-essential amino acid, an external supply of l-serine is essential for the synthesis of sphingolipids and phosphatidylserine (PS) in particular types of central nervous system (CNS) neurons. l-Serine is also essential for these neurons to undergo neuritogenesis and to survive. Biochemical analysis has shown that l-serine is synthesized from glucose and released by astrocytes but not by neurons, which is the major reason why this amino acid is an essential amino acid for neurons. Biosynthesis of membrane lipids, such as sphingolipids, PS, and phosphatidylethanolamine (PE), in neurons is completely dependent on this astrocytic factor. Recent advances in lipid biology research using transgenic mice have demonstrated that synthesis of endogenous l-serine and neuronal sphingolipids is essential for brain development. In this review, we discuss the metabolic system that coordinates sphingolipid synthesis with the l-serine synthetic pathway between neurons and glia. We also discuss the crucial roles of the metabolic conversion of l-serine to sphingolipids in neuronal development and survival. Human diseases associated with serine and sphingolipid biosynthesis are also discussed.  相似文献   

6.
H J Vial  M L Ancelin  J R Philippot  M J Thuet 《Blood cells》1990,16(2-3):531-55; discussion 556-61
The asexual development of Plasmodium within the mature mammalian erythrocyte is associated with intense membrane biogenesis, notably to ensure the increase in the size of the parasite and of the parasitophorous vacuolar membranes PVM. A considerable increase in the content of most lipids except cholesterol [namely, phospholipids PL, neutral lipids, and fatty acids FA] occurs. The PL composition and the constitutive FAs of the parasite differ markedly from the original host cell membrane. Particularly notable is the absence of cholesterol and sphingomyelin SM from the parasite membranes. How can the parasite obtain such a quantity of new lipid molecules in a host cell totally devoid of any lipid biosynthetic activity? Like the normal erythrocyte, the infected cell is unable to synthesize cholesterol or FAs. In contrast, it exhibits an intense biosynthesis of neutral lipids and a bewildering variety of PL biosyntheses. Phosphatidylcholine PC is synthesized by a de novo pathway, and also by methylation of phosphatidylethanolamine PE, which itself originates from de novo biosynthesis or from decarboxylation of phosphatidylserine PS. Hence, interference with this intense and specific PL metabolism could provide the basis for a new malaria chemotherapy. Indeed, compounds that interfere with the entry of the plasmatic precursors (FAs or polar heads) or with their metabolism are lethal to the parasite. Lastly, we focus on the structural modifications of the host cell membrane with respect to lipids, including increased fluidity and enhanced transbilayer mobility of PLs. Possible modifications in the asymmetric distribution of PLs in the host cell membrane are discussed in light of the various methods used and their limits. The capacity of infected cells to take up and metabolize large quantities of exogenous vesicles of PLs accounts for the intense dynamics of lipids in the infected erythrocytes.  相似文献   

7.
The local abundance of specific lipid species near a membrane protein is hypothesized to influence the protein's activity. The ability to simultaneously image the distributions of specific protein and lipid species in the cell membrane would facilitate testing these hypotheses. Recent advances in imaging the distribution of cell membrane lipids with mass spectrometry have created the desire for membrane protein probes that can be simultaneously imaged with isotope labeled lipids. Such probes would enable conclusive tests to determine whether specific proteins colocalize with particular lipid species. Here, we describe the development of fluorine-functionalized colloidal gold immunolabels that facilitate the detection and imaging of specific proteins in parallel with lipids in the plasma membrane using high-resolution SIMS performed with a NanoSIMS. First, we developed a method to functionalize colloidal gold nanoparticles with a partially fluorinated mixed monolayer that permitted NanoSIMS detection and rendered the functionalized nanoparticles dispersible in aqueous buffer. Then, to allow for selective protein labeling, we attached the fluorinated colloidal gold nanoparticles to the nonbinding portion of antibodies. By combining these functionalized immunolabels with metabolic incorporation of stable isotopes, we demonstrate that influenza hemagglutinin and cellular lipids can be imaged in parallel using NanoSIMS. These labels enable a general approach to simultaneously imaging specific proteins and lipids with high sensitivity and lateral resolution, which may be used to evaluate predictions of protein colocalization with specific lipid species.  相似文献   

8.
During the asexual stage of malaria infection, the intracellular parasite exports membranes into the erythrocyte cytoplasm and lipids and proteins to the host cell membrane, essentially "transforming" the erythrocyte. To investigate lipid and protein trafficking pathways within Plasmodium falciparum-infected erythrocytes, synchronous cultures are temporally analyzed by confocal fluorescence imaging microscopy for the production, location and morphology of exported membranes (vesicles) and parasite proteins. Highly mobile vesicles are observed as early as 4 h postinvasion in the erythrocyte cytoplasm of infected erythrocytes incubated in vitro with C6-NBD-labeled phospholipids. These vesicles are most prevalent in the trophozoite stage. An immunofluorescence technique is developed to simultaneously determine the morphology and distribution of the fluorescent membranes and a number of parasite proteins within a single parasitized erythrocyte. Parasite proteins are visualized with FITC- or Texas red-labeled monoclonal antibodies. Double-label immunofluorescence reveals that of the five parasite antigens examined, only one was predominantly associated with membranes in the erythrocyte cytoplasm. Two other parasite antigens localized only in part to these vesicles, with the majority of the exported antigens present in lipid-free aggregates in the host cell cytoplasm. Another parasite antigen transported into the erythrocyte cytoplasm is localized exclusively in lipid-free aggregates. A parasite plasma membrane (PPM) and/or parasitophorous vacuolar membrane (PVM) antigen which is not exported always colocalizes with fluorescent lipids in the PPM/PVM. Visualization of two parasite proteins simultaneously using FITC- and Texas red-labeled 2 degrees antibodies reveals that some parasite proteins are constitutively transported in the same vesicles, whereas other are segregated before export. Of the four exported antigens, only one appears to cross the barriers of the PPM and PVM through membrane-mediated events, whereas the others are exported across the PPM/PVM to the host cell cytoplasm and surface membrane through lipid (vesicle)-independent pathways.  相似文献   

9.
The structural diversity of lipids underpins the biophysical properties of cellular membranes, which vary across all scales of biological organization. Because lipid composition results from complex metabolic and transport pathways, its experimental control has been a major goal of mechanistic membrane biology. Here, we argue that in the wake of synthetic biology, similar metabolic engineering strategies can be applied to control the composition, physicochemical properties, and function of cell membranes. In one emerging area, titratable expression platforms allow for specific and genome-wide alterations in lipid biosynthetic genes, providing analog control over lipidome stoichiometry in membranes. Simultaneously, heterologous expression of biosynthetic genes and pathways has allowed for gain-of-function experiments with diverse lipids in non-native systems. Finally, we highlight future directions for tool development, including recently discovered lipid transport pathways to intracellular lipid pools. Further tool development providing synthetic control of membrane properties can allow biologists to untangle membrane lipid structure-associated functions.  相似文献   

10.
细胞膜局部区域可形成富含饱和脂质、胆固醇、鞘脂的脂筏域作为其信号转导调控平台。传统实验手段在研究脂筏及其功能时受到系统复杂度高及区域结构瞬时性强等制约。近年来,分子动力学模拟技术为细胞膜的组织原则提供了重要的理论支撑,从简单的单一组分模型到多组分系统转变,最终形成了越来越多的细胞膜仿真模型。其中,粗粒化模拟由于其简化模型,可大副拓展模拟体系的复杂程度与模拟时间,在细胞膜以及蛋白质-脂质相互作用相关研究中得到了广泛应用。本文采用MARTINI粗粒化力场模拟,构建了一种含有阴离子脂质磷脂酰肌醇二磷酸(phosphatidylinositol diphosphate, PIP2)的混合膜体系。模拟结果表明,该体系在适当温度及饱和度条件下,能自发分层形成脂筏域;膜厚度、膜组分分布、膜组分流动性等多种参数均表明,脂筏结构形成且符合其结构特征;少量PIP2添加不影响分层特性且PIP2对脂筏具有显著亲和性。此外,利用该模型以跨膜信号蛋白CD3ε为例研究了脂筏域体系中蛋白质-脂质相互作用。结果表明,PIP2-CD3ε胞内区相互作用可能是脂筏招募CD3ε的驱动力,且该过程可受钙离子调控。本工作体现了粗粒化模拟在仿真膜相关研究中的巨大优势及良好应用前景。  相似文献   

11.
There is little information on the trafficking of eukaryotic lipids from a host cell to either the cytoplasmic membrane of or the vacuolar membrane surrounding intracellular pathogens. Purified Chlamydia trachomatis, an obligate intracellular bacterial parasite, contains several eukaryotic glycerophospholipids, yet attempts to demonstrate transfer of these lipids to the chlamydial cell membrane have not been successful. In this report, we demonstrate that eukaryotic glycerophospholipids are trafficked from the host cell to C. trachomatis. Phospholipid trafficking was assessed by monitoring the incorporation of radiolabelled isoleucine, a precursor of C. trachomatis specific branched-chain fatty acids, into host-derived glycerophospholipids and by monitoring the transfer of host phosphatidylserine to chlamydiae and its subsequent decarboxylation to form phosphatidylethanolamine. Phospholipid trafficking to chlamydiae was unaffected by brefeldin A, an inhibitor of Golgi function. Furthermore, no changes in trafficking were observed when C. trachomatis was grown in a mutant cell line with a nonfunctional, nonspecific phospholipid transfer protein. Host glycerophospholipids are modified by C. trachomatis, such that a host-synthesized straight-chain fatty acid is replaced with a chlamydia-synthesized branched-chain fatty acid. We also demonstrate that despite the acquisition of host-derived phospholipids, C. trachomatis is capable of de novo synthesis of phospholipids typically synthesized by prokaryotic cells. Our results provide novel information on chlamydial phospholipid metabolism and eukaryotic cell lipid trafficking, and they increase our understanding of the evolutionary steps leading to the establishment of an intimate metabolic association between an obligate intracellular bacterial parasite and a eukaryotic host cell.  相似文献   

12.
Being the principal component of biological membranes lipids are essential building blocks of life. Given their huge biological importance, the investigation of lipids, their properties, interactions and metabolic pathways is of prime importance for the fundamental understanding of living cells and organisms as well as the emergence of diseases. Different strategies have been applied to investigate lipid-mediated biological processes, one of them being the use of lipid mimetics. They structurally resemble their natural counterparts but are equipped with functionality that can be used to probe or manipulate lipid-mediated biological processes and biomembranes. Lipid mimetics therefore constitute an indispensable toolbox for lipid biology and membrane research but also beyond for potential applications in medicine or synthetic biology. Herein, we highlight recent advances in the development and application of lipid-mimicking compounds.  相似文献   

13.
The movement of lipids from their sites of synthesis to ultimate intracellular destinations must be coordinated with lipid metabolic pathways to ensure overall lipid homeostasis is maintained. Thus, lipids would be predicted to play regulatory roles in the movement of vesicles within cells. Recent work has highlighted how specific lipid metabolic events can affect distinct vesicle trafficking steps and has resulted in our first glimpses of how alterations in lipid metabolism participate in the regulation of intracellular vesicles. Specifically, (i) alterations in sphingolipid metabolism affect the ability of SNAREs to fuse membranes, (ii) sterols are required for efficient endocytosis, (iii) glycerophospholipids and phosphorylated phosphatidylinositols regulate Golgi-mediated vesicle transport, (iv) lipid acylation is required for efficient vesicle transport mediated membrane fission, and (v) the addition of glycosylphosphatidylinositol lipid anchors to proteins orders them into distinct domains that result in their preferential sorting from other vesicle destined protein components in the endoplasmic reticulum. This review describes the experimental evidence that demonstrates a role for lipid metabolism in the regulation of specific vesicle transport events.  相似文献   

14.
Nowadays we understand cell membranes not as a simple double lipid layer but as a collection of complex and dynamic protein–lipid structures and microdomains that serve as functional platforms for interacting signaling lipids and proteins. Membrane lipids and lipid structures participate directly as messengers or regulators of signal transduction. In addition, protein–lipid interactions participate in the localization of signaling protein partners to specific membrane microdomains. Thus, lipid alterations change cell signaling that are associated with a variety of diseases including cancer, obesity, neurodegenerative disorders, cardiovascular pathologies, etc. This article reviews the newly emerging field of membrane lipid therapy which involves the pharmacological regulation of membrane lipid composition and structure for the treatment of diseases. Membrane lipid therapy proposes the use of new molecules specifically designed to modify membrane lipid structures and microdomains as pharmaceutical disease-modifying agents by reversing the malfunction or altering the expression of disease-specific protein or lipid signal cascades. Here, we provide an in-depth analysis of this emerging field, especially its molecular bases and its relevance to the development of innovative therapeutic approaches.  相似文献   

15.
Ether lipids, such as plasmalogens, are peroxisomederived glycerophospholipids in which the hydrocarbon chain at the sn-1 position of the glycerol backbone is attached by an ether bond, as opposed to an ester bond in the more common diacyl phospholipids. This seemingly simple biochemical change has profound structural and functional implications. Notably, the tendency of ether lipids to form non-lamellar inverted hexagonal structures in model membranes suggests that they have a role in facilitating membrane fusion processes. Ether lipids are also important for the organization and stability of lipid raft microdomains, cholesterol-rich membrane regions involved in cellular signaling. In addition to their structural roles, a subset of ether lipids are thought to function as endogenous antioxidants, and emerging studies suggest that they are involved in cell differentiation and signaling pathways. Here, we review the biology of ether lipids and their potential significance in human disorders, including neurological diseases, cancer, and metabolic disorders.  相似文献   

16.
Enkephalins (Tyr-Gly-Gly-Phe-Met/Leu) are opioid peptides with proven antinociceptive action in organism. They interact with opioid receptors belonging to G-protein coupled receptor superfamily. It is known that these receptors are located preferably in membrane rafts composed mainly of sphingomyelin (Sm), cholesterol (Cho), and phosphatidylcholine. In the present work, using Langmuir’s monolayer technique in combination with Wilhelmy’s method for measuring the surface pressure, the interaction of synthetic methionine–enkephalin and its amidated derivative with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), Sm, and Cho, as well as with their double and triple mixtures, was studied. From the pressure/area isotherms measured, the compressional moduli of the lipids and lipid–peptide monolayers were determined. Our results showed that the addition of the synthetic enkephalins to the monolayers studied led to change in the lipid monolayers characteristics, which was more evident in enkephalinamide case. In addition, using Brewster angle microscopy (BAM), the surface morphology of the lipid monolayers, before and after the injection of both enkephalins, was determined. The BAM images showed an increase in surface density of the mixed surface lipids/enkephalins films, especially with double and triple component lipid mixtures. This effect was more pronounced for the enkephalinamide as well. These observations showed that there was an interaction between the peptides and the raft-forming lipids, which was stronger for the amidated peptide, suggesting a difference in folding of both enkephalins. Our research demonstrates the potential of lipid monolayers for elegant and simple membrane models to study lipid–peptide interactions at the plane of biomembranes.  相似文献   

17.
Sphingolipids are a family of lipids that are critical to cell function and survival. Much of the recent work done on sphingolipids has been performed by a closely-knit family of sphingolipid researchers, which including our colleague, Dr. Lina Obeid, who recently passed away. We now briefly review where the sphingolipid field stands today, focusing in particular on areas of sphingolipid research to which Dr. Obeid made valued contributions. These include the ‘many-worlds’ view of ceramides and the role of a key enzyme in the sphingolipid biosynthetic pathway, namely the ceramide synthases (CerS). The CerS contain a number of functional domains and also interact with a number of other proteins in lipid metabolic pathways, fulfilling Dr. Obeid’s prophecy that ceramides, and the enzymes that generate ceramides, form the critical hub of the sphingolipid metabolic pathway.  相似文献   

18.
Hoang AN  Sandlin RD  Omar A  Egan TJ  Wright DW 《Biochemistry》2010,49(47):10107-10116
In eukaryotic cells, neutral lipids serve as major energy storage molecules; however, in Plasmodium falciparum, a parasite responsible for causing malaria in humans, neutral lipids may have other functions during the intraerythrocytic stage of the parasite life cycle. Specifically, experimental data suggest that neutral lipid structures behave as a catalyst for the crystallization of hemozoin, a detoxification byproduct of several blood-feeding organisms, including malaria parasites. Synthetic neutral lipid droplets (SNLDs) were produced by depositing a lipid blend solution comprised of mono- and diglycerides onto an aqueous surface. These lipid droplets are able to mediate the production of brown pigments that are morphologically and chemically identical to hemozoin. The partitioning of heme into these SNLDs was examined by employing Nile Red, a lipid specific dye. Soluble ferriprotoporphyrin IX was observed to spontaneously localize to the lipid droplets, partitioning in a pH-dependent manner with an estimated log P of 2.6. Interestingly, the pH profile of heme partitioning closely resembles that of β-hematin formation. Differential scanning calorimetry and kinetic studies demonstrated that the SNLDs provide a unique environment that promotes hemozoin formation. SNLD-mediated formation of the malaria pigment displayed an activation energy barrier lower than those of individual lipid components. In particular, lipid droplets composed of diglycerides displayed activation barriers lower than those composed of monoglycerides. This difference was attributed to the greater fluidity of these lipids. In conjunction with the known pattern of lipid body proliferation, it is suggested that neutral lipid structures within the digestive vacuole not only are the location of in vivo hemozoin formation but are also essential for the survival of the parasite by functioning as a kinetically competent and site specific mediator for heme detoxification.  相似文献   

19.
Lipids are essential membrane structural components and important signal carriers. The major enzymatic metabolisms of various lipids (phospholipid, sphingolipid, cholesterol) are well studied. The developmental function of lipid metabolism has remained, for the most part, elusive. With the help of new techniques and model organisms, the important roles of lipid metabolism in development just start to emerge. Drosophila spermatogenesis is an ideal system for in vivo studies of cytokinesis and membrane remodeling during development. The metabolic regulators of many lipids, including phosphatidylinositol (PI) lipids, fatty acids and cholesterol, are reported to play critical roles in various steps during Drosophila spermatogenesis. In this mini-review, we summarized recent findings supporting a tight link between lipids metabolism and Drosophila sperm development.  相似文献   

20.
Malaria parasite UIS3 (up-regulated in infective sporozoites gene 3) is essential for sporozoite development in infected hepatocytes. UIS3 encodes for a membrane protein that is localized to the parasite parasitophorous vacuolar membrane in infected hepatocytes. We describe here 2.5-A resolution crystal structure of Plasmodium falciparum UIS3 soluble domain (PfUIS3(130-229)) in complex with the lipid phosphatidylethanolamine (PE). PfUIS3(130-229) is a novel, compact, and all alpha-helical structure bound to one molecule of PE. The PfUIS3(130-229)-PE complex structure reveals a novel binding site with specific interactions between PfUIS3(130-229) and the PE head group. One acyl chain of PE wraps around part of PfUIS3(130-229) and docks onto a hydrophobic channel. We additionally provide new structural and biochemical evidence of PfUIS3(130-229) interactions with lipids (phosphatidylethanolamine), with phospholipid liposomes, and with the human liver fatty acid-binding protein. The direct interaction of PfUIS3(130-229) with liver fatty acid-binding protein most likely provides the parasite with a conduit for importing essential fatty acids/lipids. Therefore, our analyses have implications for lipid transport into the parasite during the rapid growth phases of sporozoites. Given that PfUIS3 is essential for establishment of liver stage infection by P. falciparum, our data provide a new target for abrogating parasite development within liver cells before typical symptoms of malaria can manifest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号