首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Families of Czech Landrace (94 litters and 636 offspring) were tested for halothane sensitivity, A-O (S), H, PHI and PGD phenotypes. Informative matings for the estimation of recombination rates between marker loci were selected. The following recombination frequencies were established: S - Phi = 4.8% (2.5%-10.7%); S - H = 6.8% (4.3%-11.7%); Phi - H = 2.6% (0.9%-5.3%); H - Pgd = 4.4% (1.6%-8.0%). Cross-overs were observed also between S - Hal, Hal - H and Hal - Pgd, but were not found between Phi - Hal. On the basis of these results it has been possible to revise the position of the S locus in this linkage group. The most probable gene order would be: S - Phi - Hal (or Hal - Phi) - H - (Po2) - Pgd. A striking difference was found between the number of halothane-sensitive pigs (87) and HalnHaln genotypes determined by haplotyping (123). Segregation rates in 19 backcross matings and experimental matings of the animals proved that this difference is mostly due to incomplete penetrance or low expression of halothane sensitivity.  相似文献   

2.
Data from matings appropriate to test linkage in pigs of genes for halothane sensitivity (HAL), H red cell antigens, phosphohexose isomerase (PHI) and 6-phosphogluconate dehydrogenase (6-PGD) red cell isoenzyme variants were consistent with a gene order of Phi-Hal-H-Pgd. There was no unequivocal evidence for a Hal locus separate from Phi, although the phenotype of one pig not tested for halothane sensitivity suggested recombination between Hal and Phi. Breeding tests confirmed that in two cases there had been recombination between Hal and H. Offspring of one of these recombinant types provided evidence for a locus for a gene for inhibition of expression of A and O separate from the locus for H.  相似文献   

3.
The localization of the Po2 locus controlling a polymorphic serum postalbumin was studied in 41 families of the Czech Landrace breed. The haplotypes involving six closely linked loci (S, Phi, Hal, H, Po2, Pgd) were determined for each family member. The crossovers observed between the H, Po2 and Pgd loci indicated that Po2 is located between H and Pgd. The Po2 locus appears to be closer to H [theta = 0.54% (0.06%-1.92%)] than to Pgd [theta = 4.02% (1.67%-7.96%)]. A strong Ha-Po2S association (r = 0.96, P less than 0.001) and H-PO2 linkage disequilibrium (D = 0.2218, P less than 0.01, D/DMax = 0.98) were found.  相似文献   

4.
Results from a large-scale study, comprising 75 different breeding herds, are reported on predicting the halothane ( Hal ) genotypes of individual pigs by making use of the known close linkage between Hal and three C blood marker loci ( Phi, Po2, Pgd ). The parents haplotypes (involving Hal and marker loci) were determined from the HAL phenotypes (halothane test results) and marker loci phenotypes of their offspring in the first one or two litters studied. In subsequent litters of the Hal -marker loci haplotyped parents, the offspring's expected Hal genotypes could be predicted on the basis of the marker loci haplotypes inherited by them. By comparing the expected and observed HAL phenotypes of offspring in subsequent litters, the predicted Hal genotype was found to be correct in 90–95 % of the 4000 offspring (from Nn × Nn and Nn × nn matings) of Swedish Landrace and Yorkshire breeds studied.
The order of the three marker loci was confirmed as Phi-Po2-Pgd but the position of Hal with regards to Phi could not be resolved. The recombination frequencies between the most distant loci in this region, viz. Hal-Pgd and Phi-Pgd , were estimated to be 3–4.5 % and 4–6 % , respectively. The easy and rapid electrophoretic techniques described in the study to phenotype PHI, PO2, PGD, also allowed phe-notyping of six other polymorphic protein systems on the same gels. Thus Hal genotyping and effective parentage control can be conducted simultaneously.  相似文献   

5.
The linkage of the Phi, Pgd, Po2, S, H and halothane sensitivity loci was followed in a Belgian Landrace family, heterozygous for these systems over 6 generations. Recombination next to the S locus occurred mainly in pigs belonging to this particular family. From this investigation the position of the S locus is proved to be outwith the Phi-Pgd region, next to Phi . Therefore the gene sequence S - Phi - Hal -H- Po2 -Pgd is proposed. Higher recombination rates were observed in the female parental line of the multiheterozygous family when compared to the male parental line. Additional data from animals, unrelated to this strain, confirm the evidence of close linkage of the S system to the nearest marker loci.  相似文献   

6.
Data from one apparent crossover between S and H, two between PHI and HAL on one side and S on the other, and one between PHI on one side and HAL, S and H on the other, indicate a gene order in pigs of Phi-Hal-S-H-Pgd for genes for PHI, halothane sensitivity, inhibition of expression of A and O, H red blood cell antigens and 6-PGD types. Rasmusen et al. (1980) provided data for a gene order in pigs ofPhi-Hal-H-Pgd for genes for phosphohexose isomerase (PHI) isozyme variants, halothane sensitivity (HAL), H red cell antigens and 6-phosphogluconate dehydrogenase (6-PGD) variants, and suggested that there might be a locus for a gene for inhibition of expression of A and O separate from the locus for H. This is contrary to an earlier proposal by Rasmusen (1972) that the H-system genotype directly influences expression of A and O. Imlah (1980) suggested that the recessive gene for halothane sensitivity has a suppressant effect on the expression of A and O. Andresen (1981) proposed that the locus for inhibition of A and O (for which Rasmusen, 1964, proposed the symbol S) was between the loci for HAL and H types. Data presented in Table 1, which includes haplotypes for three recombinant offspring described by Rasmusen et al. (1980) (883-1, 233-3 and 3864-1) as well as one other recombinant (296-2) provide evidence for the gene order for five genes proposed by Andresen. Types for 6-PGD are listed for all pigs, although they do not provide evidence for gene order in these cases. Male 883-1 (Table 1, and Rasmusen et al., 1980, Table 5) provided the original evidence for recombination between S and H. His phenotype, as well as his genotype as revealed by progeny test (Rasmusen et al., 1980, Table 6) indicated that recombination had occurred between the genes for PHI, HAL and S and the gene for H type in his dam, so that the S locus mapped between H and the loci for the other three traits. The phenotype of one of his sons (233-3, Table 1, and Rasmusen et al., 1980, Table 6) indicated that there had been a recombination between genes for PHI and HAL types on one side and S and H types on the other, providing evidence that the S locus was separate from PHI and HAL as well as H. Another pig listed in Table 1,3864-1, was also described by Rasmusen et al. (1980, Table 9) as a recombinant. This pig provides evidence for recombination between PHI on one side and HAL, S and H on the other, establishing a gene order of Phi-Hal-S-H-Pgd. The last pig listed in Table 1,296-2, is a recombinant comparable to 233-3. The H type of his dam provides markers indicating the recombination was between PHI and HAL on one side and S and H on the other, although the unusual expression of HAL phenotype in both parents of 296-2 makes her haplotypes somewhat uncertain. (Recombination may have been between PHI and HAL rather than as indicated in Table 1.) In spite of incomplete penetrance for HAL (Ollivier et al., 1975; Smith & Bampton, 1977) which makes haplotypes for HAL questionable in some cases, the other genetic markers available are useful to show that recombination has taken place. Without considering the results of halothane testing, if the apparent recombinants are accepted as being as indicated, the order of the genes at the other four loci seems established. Alleles for S types appear to be separable by recombination from those for PHI and H, and the S locus appears to be between the loci for PHI and H. For the five loci, data obtained thus far are cohsistent with a gene order of Phi-Hal-S-H-Pgd.  相似文献   

7.
The investigation of A-O blood group phenotypes in selected pig families confirms the existence of an S locus which specifically controls the expression of A and) alloantigens. Forty-five informative litters were scored for linkage between the S gene and the H blood group locus. The recombination frequency in 345 offspring was estimated to be 9.56 % (33 cross-overs). Specific difficulties involved in the determination of A-O and H phenotypes and the importance of S and H polymorphisms for the determination of Hal genotypes are discussed.  相似文献   

8.
P. Imlah 《Animal genetics》1982,13(4):245-262
Frequency of blood group factors at the A-O and H loci were markedly altered within halothane positive (HP) and halothane negative (HN) composite synthetic Pietrain/Hampshire lines (PTH) over four generations of selection.
Linkage studies on the litters from 45 double backcross and 20 mixed and intercross matings, involving the S(A-O), H, Phi and Hal loci, were made in the PTH line and halothane positive and negative selected British Landrace lines. Crossing-over frequencies of 0.05 ± 0.04, 0.05 ± 0.03 and 0.1 ± 0.03 were established between Phi and Hal, H and Hal , and Phi and H respectively. An unequal crossing-over frequency between Phi and H was found when the alleles Ha and Hcd were compared. The difference in recombination frequency between the Ha and Hcd alleles amounted to 0.04 to 0.06.
No cross-overs were observed between the S(A -O ) and Phi, H or Hal loci in 15 families studied. The position of the S locus in relation to the other loci could not be established, but statistical evidence of association favours a haplotype sequence of Phi-Hal-S-H .  相似文献   

9.
Routine blood typing of German Landrace pedigree populations and an earlier study revealed very low frequencies of the favourable alleles at the marker loci Phi, Pgd and H . The hypothesis was that in this population the whole linkage group of favourable alleles at the halothane and neighbouring marker loci may have been lost as a consequence of intense selection for leanness and type. The present study of 1050 German Landrace pigs at the Relliehausen experimental station, where some effort has been made to maintain a higher frequency of the favourable alleles PhiA (0.48), H- (0.43) and PgdA (0.70) gave quite different results.
The frequency of halothane-positive pigs found by using a severe test was only 30 %. Only 5.4 %, 8.8 %, 13.4 % and 13.9 7% of animals with PhiAIA, H-I-, PgdA/A and PhiA/B genotypes respectively were halothane-positive. Forty to sixty per cent of pigs with these marker genotypes could therefore be expected to be homozygous halothane-negative ( N/N ) animals. Creatine kinase activity and three selected meat quality characters showed highly significant differences between the A/A and the B/B genotypes for the marker loci Phi and Pgd , with the heterozygotes being intermediate. These differences are greater than those observed between halothane-negative and halothane-positive phenotypes. The only other consistently superior marker genotype in this population was the H blood group genotype H -I- . In contrast to findings from Sweden and Switzerland, the postalbumin locus Po2 and the suppressor locus S for the A-O blood groups did not exhibit useful marker qualities.
It is concluded that in the German Landrace the marker loci Phi, Pgd and H could also be helpful in breeding homozygous halothane-negative pigs with distinctly better meat quality characteristics.  相似文献   

10.
Polymorphism of an alpha-protease inhibitor, PI3, in pig serum samples was detected using 2D agarose gel (pH 5.4)--polyacrylamide gel (pH 9.0) electrophoresis. Evidence was obtained that the five variants observed (A, B1, B2, C and D) are under genetic control by codominant alleles (Pi3A, Pi3B1, Pi3B2, Pi3C and Pi3D) at one autosomal locus. Variants A, B1, B2 and C inhibited chymotrypsin; there was no appreciable inhibition of trypsin and papain. Variant D did not inhibit chymotrypsin, and therefore its classification as a PI3 variant was put in question. PI3 typing was not possible in about 50% of the studied pigs since in those cases the PI3 variants were either too weak or absent. On the basis of backcross matings and haplotyping in complete families for protease inhibitor loci Pi1, Po1A, Pi2 and Pi3 it was proved that the Pi3 locus belongs to the protease inhibitor gene cluster, and the position of the locus in the linkage group was proposed as being Pi1-Po1A-(Po1B)-Pi3-Pi2-(Igh1, Igh2, Igh3, Igh4).  相似文献   

11.
A new liver-specific rat carboxylesterase isozyme (EC 3.1.1.1) designated esterase-18 (ES-18) is described. Genetic variation of ES-18 was examined in 93 inbred strains and substrains and a structural locusEs-18 was suggested, coding for either the presence (Es-18 a) or the absence (Es-18 b) of the isozyme. Linkage studies involving two backcross series revealed thatEs-18 resides in cluster 2 of LGV. No recombination betweenEs-18 and other cluster 2 loci was found in 19 lines of two RI strain sets or in the backcross series.R. K. was supported by the Sonderforschungsbereich 146 (Versuchstierforschung). O.D. was supported by the Deutsche Forschungsgemeinschaft (De 315/2). This is communication No. 65 of a research program devoted to the cellular distribution, regulation, and genetics of nonspecific esterases.  相似文献   

12.
Treatment of IMR-90 human diploid fibroblasts with a sublethal concentration of H(2)O(2) induces premature senescence. We investigated the protein abundance, subcellular localization and involvement of caveolin 1 in premature senescence. Caveolin 1 is a scaffolding protein able to concentrate and organize signaling molecules within the caveolae membrane domains. We report the first evidence of increased nuclear and cytoplasmic localization of caveolin 1 during establishment of H(2)O(2)-induced premature senescence. Moreover, we demonstrate that phosphorylation of caveolin 1 during treatment with H(2)O(2) is dependent on p38alpha mitogen-activated protein kinase.  相似文献   

13.
For the sake of providing some important information relevant to the study of the molecular mechanism of genic male sterility in plants, gene differential expression in flower buds at different developmental stages, as well as in rosette leaves, florescence leaves, and scapes was analyzed using cDNA amplified fragment length polymorphism (cDNA-AFLP) in the genic male sterile A and fertile B line of Chinese cabbage pak-choi. Following amplification of 125 pairs of primer combinations, 11 differential fragments were obtained, of which eight were from the B line and the other three were from the A line. Of 11 differential fragments, four were verified by Northern hybridization that were expressed preferentially in fertile flower buds. Results of GenBank BLAST showed that one fragment was with unknown function, whereas the other fragments have strong nucleotide sequence similarities with the polygalacturonase (PG) gene, the pectinesterase (PE) gene, and the polygalacturonase inhibitory protein (PGIP4) gene. Only fulllength cDNA from the differential fragment BcMF-A 18T 16-1 was amplified by rapid amplification of cDNA ends (RACE) and Northern analysis showed that this fragment was expressed only in medium and largesized flower buds of the B line. The full-length cDNA, designated as BcMF2 (Brassica campestris Male Fertile 2), was 1 485 bp long and was composed ofa 1 263-bp open reading frame, which had 83% nucleotide similarity to a PG gene from Arabidopsis encoding polygalacturonase. Analysis of the basic structure of the protein revealed that it had one polygalacturonase active site (RVTCGPGHGLSVGS) at 256th site of amino acids and was classified as being a member of family 28 of the glycosyl hydrolases. The role of the BcMF2gene on microspore development is discussed in the present paper.  相似文献   

14.
For the sake of providing some important information relevant to the study of the molecular mechanism of genic male sterility in plants, gene differential expression in flower buds at different developmental stages, as well as in rosette leaves, florescence leaves, and scapes was analyzed using cDNA amplified fragment length polymorphism (cDNA-AFLP) in the genic male sterile A and fertile B line of Chinese cabbage pak-choi. Following amplification of 125 pairs of primer combinations, 11 differential fragments were obtained, of which eight were from the B line and the other three were from the A line. Of 11 differential fragments, four were verified by Northern hybridization that were expressed preferentially in fertile flower buds. Results of GenBank BLAST showed that one fragment was with unknown function,whereas the other fragments have strong nucleotide sequence similarities with the polygalacturonase (PG)gene, the pectinesterase (PE) gene, and the polygalacturonase inhibitory protein (PGIP4) gene. Only fulllength cDNA from the differential fragment BcMF-A18T16-1 was amplified by rapid amplification of cDNA ends (RACE) and Northern analysis showed that this fragment was expressed only in medium and largesized flower buds of the B line. The full-length cDNA, designated as BcMF2 (Brassica campestris Male Fertile 2), was 1 485 bp long and was composed of a 1 263-bp open reading frame, which had 83% nucleotide similarity to a PG gene from Arabidopsis encoding polygalacturonase. Analysis of the basic structure of the protein revealed that it had one polygalacturonase active site (RVTCGPGHGLSVGS) at 256th site of amino acids and was classified as being a member of family 28 of the glycosyl hydrolases. The role of the BcMF2 gene on microspore development is discussed in the present paper.  相似文献   

15.
16.
17.
Zaytseva OO  Bogdanova VS  Kosterin OE 《Gene》2012,504(2):192-202
A phylogenetic analysis of the genus Pisum (peas), embracing diverse wild and cultivated forms, which evoke problems with species delimitation, was carried out based on a gene coding for histone H1, a protein that has a long and variable functional C-terminal domain. Phylogenetic trees were reconstructed on the basis of the coding sequence of the gene His5 of H1 subtype 5 in 65 pea accessions. Early separation of a clear-cut wild species Pisum fulvum is well supported, while cultivated species Pisum abyssinicum appears as a small branch within Pisum sativum. Another robust branch within P. sativum includes some wild and almost all cultivated representatives of P. sativum. Other wild representatives form diverse but rather subtle branches. In a subset of accessions, PsbA-trnH chloroplast intergenic spacer was also analysed and found less informative than His5. A number of accessions of cultivated peas from remote regions have a His5 allele of identical sequence, encoding an electrophoretically slow protein product, which earlier attracted attention as likely positively selected in harsh climate conditions. In PsbA-trnH, a 8bp deletion was found, which marks cultivated representatives of P. sativum.  相似文献   

18.
The compound 2-hydroxy-3-(1'-propen-3-phenyl)-1,4-naphthoquinone (PHNQ6) was evaluated for activity against Toxoplasma gondii, alone or combined with sulfadiazine. Treatment with PHNQ6 combined with sulfadiazine protected at least 70 and 90% of mice infected with RH and EGS strains, respectively. Mice were treated with PHNQ6 (50 mg/kg/day) alone or combined with sulfadiazine (40 mg/L) 30 days after infection with P strain. The number of brain cysts was lower in mice treated with PHNQ6 alone or combined with sulfadiazine compared to that in control mice. Degenerated bradyzoites were observed in animals treated with PHNQ6. Infectivity of bradyzoites treated with PHNQ6 alone or combined with sulfadiazine was inhibited after in vitro incubation.  相似文献   

19.
Bark beetles oxidize the defensive monoterpenes of their host trees both to detoxify them and convert them into components of their pheromone system. This oxidation is catalyzed by cytochrome P450 enzymes and occurs in different tissues of the insect, including the gut (i.e., the site where the beetle's pheromones are produced and accumulated) and the antennae (i.e., the olfactory organs used for perception of airborne defensive monoterpenes as well as other host-associated compounds and pheromones). We identified ten new CYP genes in the pine beetle Dendroctonus rhizophagus in either antennae or gut tissue after stimulation with the vapors of major host monoterpenes α-pinene, β-pinene and 3-carene. Five genes belong to the CYP4 family, four to the CYP6 family and one to the CYP9 family. Differential expression of almost all of the CYP genes was observed between sexes, and within these significant differences among time, stimuli, anatomical region, and their interactions were found upon exposure to host monoterpenes. Increased expression of cytochrome P450 genes suggests that they play a role in the detoxification of monoterpenes released by this insect's host trees.  相似文献   

20.
The mutation causing the Silverblue color type (pp) is one of the most used recessive mutations within American mink (Neovison vison) fur farming, since it is involved in some of the popular color types such as Violet and Saphire which originate from a combination of recessive mutations. In the present study, the genomic and mRNA sequences of the melanophilin (MLPH) gene were studied in Violet, Silverblue and wild-type (wt) mink animals. Although breeding schemes and previous literature indicates that the Violet (aammpp) phenotype is a triple recessive color type involving the same locus as the Silverblue (pp) color type, our findings indicate different genotypes at the MLPH locus. Upon comparison at genomic level, we identified two deletions of the entire intron 7 and of the 5′ end of intron 8 in the sequence of the Silverblue MLPH gene. When investigating the mRNA, the Silverblue animals completely lack exon 8, which encodes 65 residues, of which 47 define the Myosin Va (MYO5A) binding domain. This may cause the incorrect anchoring of the MLPH protein to MYO5A in Silverblue animals, resulting in an improper pigmentation as seen in diluted phenotypes. Additionally, in the MLPH mRNA of wt, Violet and Silverblue phenotypes, part of intron 8 is retained resulting in a truncated MLPH protein, which is 359 residues long in wt and Violet and 284 residues long in Silverblue. Subsequently, our findings point out that the missing actin-binding domain, in neither of the 3 analyzed phenotypes affects the transport of melanosomes or the consequent final pigmentation. Moreover, the loss of the major part of the MYO5A domain in the Silverblue MLPH protein seems to be the responsible for the dilute phenotype. Based on our genomic DNA data, genetic tests for selecting Silverblue and Violet carrier animals can be performed in American mink.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号