首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of the nitrogen source (gaseous nitrogen, N2, or nitrate ions, NO3-) on the use of carbon (C) for root and nodule growth of pea (Pisum sativum L.) was investigated using 13C-labelling of assimilated CO2 at various stages of growth. Nitrate supply and growing conditions (sowing dates, air CO2 concentration) were varied to alter photosynthetic rates. Nodules are the sink with the highest demand for C in both the vegetative and flowering stages, growing at the expense of shoot and root in the vegetative stage, but only at the expense of roots at flowering. Until flowering, the addition of C into root and nodule biomass was linearly related to pre-existing biomass, thus determining net sink strengths which decreased with root and nodule age. Nodule growth patterns did not depend on the N source, whereas root growth was increased by nitrate when nodule biomass was low. At seed filling, the increase in C of biomass of the root system was no longer related to pre-existing biomass and C was preferentially diverted to roots of plants assimilating nitrate, or to nodules for plants fixing N2.  相似文献   

2.
BACKGROUND AND AIMS: Legume nitrogen is derived from two different sources, symbiotically fixed atmospheric N(2) and soil N. The effect of genetic variability of root and nodule establishment on N acquisition and seed protein yield was investigated under field conditions in pea (Pisum sativum). In addition, these parameters were related to the variability in preference for rhizobial genotypes. METHODS: Five different spring pea lines (two hypernodulating mutants and three cultivars), previously identified in artificial conditions as contrasted for both root and nodule development, were characterized under field conditions. Root and nodule establishment was examined from the four-leaf stage up to the beginning of seed filling and was related to the patterns of shoot dry matter and nitrogen accumulation. The genetic structure of rhizobial populations associated with the pea lines was obtained by analysis of nodule samples. The fraction of nitrogen derived from symbiotic fixation was estimated at the beginning of seed filling and at physiological maturity, when seed protein content and yield were determined. KEY RESULTS: The hypernodulating mutants established nodules earlier and maintained them longer than was the case for the three cultivars, whereas their root development and nitrogen accumulation were lower. The seed protein yield was higher in 'Athos' and 'Austin', the two cultivars with increased root development, consistent with their higher N absorption during seed filling. CONCLUSION: The hypernodulating mutants did not accumulate more nitrogen, probably due to the C cost for nodulation being higher than for root development. Enhancing exogenous nitrogen supply at the end of the growth cycle, by increasing the potential for root N uptake from soil, seems a good option for improving pea seed filling.  相似文献   

3.
Fan XH  Tang C  Rengel Z 《Annals of botany》2002,90(3):315-323
Nitrate uptake, nitrate reductase activity (NRA) and net proton release were compared in five grain legumes grown at 0.2 and 2 mM nitrate in nutrient solution. Nitrate treatments, imposed on 22-d-old, fully nodulated plants, lasted for 21 d. Increasing nitrate supply did not significantly influence the growth of any of the species during the treatment, but yellow lupin (Lupinus luteus) had a higher growth rate than the other species examined. At 0.2 mM nitrate supply, nitrate uptake rates ranged from 0.6 to 1.5 mg N g(-1) d(-1) in the order: yellow lupin > field pea (Pisum sativum) > chickpea (Cicer arietinum) > narrow-leafed lupin (L angustifolius) > white lupin (L albus). At 2 mM nitrate supply, nitrate uptake ranged from 1.7 to 8.2 mg N g(-1) d(-1) in the order: field pea > chickpea > white lupin > yellow lupin > narrow-leafed lupin. Nitrate reductase activity increased with increased nitrate supply, with the majority of NRA being present in shoots. Field pea and chickpea had much higher shoot NRA than the three lupin species. When 0.2 mM nitrate was supplied, narrow-leafed lupinreleased the most H+ per unit root biomass per day, followed by yellow lupin, white lupin, field pea and chickpea. At 2 mM nitrate, narrow-leafed lupin and yellow lupin showed net proton release, whereas the other species, especially field pea, showed net OH- release. Irrespective of legume species and nitrate supply, proton release was negatively correlated with nitrate uptake and NRA in shoots, but not with NRA in roots.  相似文献   

4.
Pea (Pisum sativum L.) is the third most important grain legume worldwide, and the increasing demand for protein-rich raw material has led to a great interest in this crop as a protein source. Seed yield and protein content in crops are strongly determined by nitrogen (N) nutrition, which in legumes relies on two complementary pathways: absorption by roots of soil mineral nitrogen, and fixation in nodules of atmospheric dinitrogen through the plant–Rhizobium symbiosis. This study assessed the potential of naturally occurring genetic variability of nodulated root structure and functioning traits to improve N nutrition in pea. Glasshouse and field experiments were performed on seven pea genotypes and on the ‘Cameor’ × ‘Ballet’ population of recombinant inbred lines selected on the basis of parental contrast for root and nodule traits. Significant variation was observed for most traits, which were obtained from non-destructive kinetic measurements of nodulated root and shoot in pouches, root and shoot image analysis, 15N quantification, or seed yield and protein content determination. A significant positive relationship was found between nodule establishment and root system growth, both among the seven genotypes and the RIL population. Moreover, several quantitative trait loci for root or nodule traits and seed N accumulation were mapped in similar locations, highlighting the possibility of breeding new pea cultivars with increased root system size, sustained nodule number, and improved N nutrition. The impact on both root or nodule traits and N nutrition of the genomic regions of the major developmental genes Le and Af was also underlined.  相似文献   

5.
Symbiotic nitrogen fixation is beneficial to legumes. Excessive nodule development, however, disturbs the host growth by over-consuming energy from the plant. To keep a balance, legumes possess a systemic negative feedback regulatory system called 'autoregulation of nodulation', which controls the nodule number and the nodulation zone through long-distance signaling. Plants that are deficient in autoregulation display a hypernodulating phenotype. Recently, genes encoding a CLAVATA1-like receptor-like kinase that mediates autoregulation of nodulation have been identified from several legumes, such as Lotus japonicus and soybean. Other hypernodulation mutants that are regulated by shoot or root genotypes have also been isolated.  相似文献   

6.
Nodule numbers are regulated through systemic auto‐regulatory signals produced by shoots and roots. The relative effects of shoot and root genotype on nodule numbers together with relationships to organ biomass, carbon (C) and nitrogen (N) status, and related parameters were measured in pea (Pisum sativum) exploiting natural genetic variation in maturity and apparent nodulation intensity. Reciprocal grafting experiments between the early (Athos), intermediate (Phönix) and late (S00182) maturity phenotypes were performed and Pearson's correlation coefficients for the parameters were calculated. No significant correlations were found between shoot C/N ratios and plant morphology parameters, but the root C/N ratio showed a strong correlation with root fresh and dry weights as well as with shoot fresh weight with less significant interactions with leaf number. Hence, the root C/N ratio rather than shoot C/N had a predominant influence on plant morphology when pea plants are grown under conditions of symbiotic nitrogen supply. The only phenotypic characteristic that showed a statistically significant correlation with nodulation intensity was shoot length, which accounted for 68.5% of the variation. A strong linear relationship was demonstrated between shoot length and nodule numbers. Hence, pea nodule numbers are controlled by factors related to shoot extension, but not by shoot or root biomass accumulation, total C or total N. The relationship between shoot length and nodule numbers persisted under field conditions. These results suggest that stem height could be used as a breeding marker for the selection of pea cultivars with high nodule numbers and high seed N contents.  相似文献   

7.
The development of nitrogen-fixing nodules in legumes is induced by perception of lipochitin-oligosaccharide signals secreted by a bacterial symbiont. Nitrogen (N) starvation is a prerequisite for the formation, development, and function of root nodules, and high levels of combined N in the form of nitrate or ammonium can completely abolish nodule formation. We distinguished between nitrate and ammonium inhibitory effects by identifying when and where these combined N sources interfere with the Nod-factor-induced pathway. Furthermore, we present a small-scale analysis of the expression profile, under different N conditions, of recently identified genes involved in the Nod-factor-induced pathway. In the presence of high levels of nitrate or ammonium, the NIN gene fails to be induced 24 h after the addition of Nod factor compared with plants grown under N-free conditions. This induction is restored in the hypernodulating nitrate-tolerant har1-3 mutant only in the presence of 10 and 20 mM KNO3. These results were confirmed in Lotus plants inoculated with Mesorhizobium loti. NIN plays a key role in the nodule organogenesis program and its downregulation may represent a crucial event in the nitrate-dependent pathway leading to the inhibition of nodule organogenesis.  相似文献   

8.
The effect of mineral N availability on nitrogen nutrition and biomass partitioning between shoot and roots of pea (Pisum sativum L., cv Baccara) was investigated under adequately watered conditions in the field, using five levels of fertiliser N application at sowing (0, 50, 100, 200 and 400 kg N ha–1). Although the presence of mineral N in the soil stimulated vegetative growth, resulting in a higher biomass accumulation in shoots in the fertilised treatments, neither seed yield nor seed nitrogen concentration was affected by soil mineral N availability. Symbiotic nitrogen fixation was inhibited by mineral N in the soil but it was replaced by root mineral N absorption, which resulted in optimum nitrogen nutrition for all treatments. However, the excessive nitrogen and biomass accumulation in the shoot of the 400 kg N ha–1 treatment caused crop lodging and slightly depressed seed yield and seed nitrogen content. Thus, the presumed higher carbon costs of symbiotic nitrogen fixation, as compared to root mineral N absorption, affected neither seed yield nor the nitrogen nutrition level. However, biomass partitioning within the nodulated roots was changed. The more symbiotic nitrogen fixation was inhibited, the more root growth was enhanced. Root biomass was greater when soil mineral N availability was increased: root growth was greater and began earlier for plants that received mineral N at sowing. Rooting density was also promoted by increased mineral N availability, leading to more numerous but finer roots for the fertilised treatments. However, the maximum rooting depth and the distribution of roots with depth were unchanged. This suggested an additional direct promoting effect of mineral N on root proliferation.  相似文献   

9.
Our understanding of plant growth in response to nitrogen (N) supply is mainly based on studies of mutants and transformants. This study explored the natural variability of Arabidopsis thaliana first to find out its global response to N availability and secondly to characterize the plasticity for growth and N metabolism among 23 genetically distant accessions under normal (N+), limited (N-), and starved (N0) N supplies. Plant growth was estimated by eight morphological traits characterizing shoot and root growth and 10 metabolic parameters that represented N and carbon metabolism. Most of the studied traits showed a large variation linked to genotype and nutrition. Furthermore, Arabidopsis growth was coordinated by master traits such as the shoot to root ratio of nitrate content in N+, root fresh matter and root amino acids in N-, and shoot fresh matter together with root thickness in N0. The 23 accessions could be gathered into four different groups, according to their growth in N+, N-, and N0. Phenotypic profiling characterized four different adaptative responses to N- and N0. Class 1 tolerated N limitation with the smallest decrease in shoot and root biomass compared with N+, while class 2 presented the highest resistance to N starvation by preferential increased root growth, huge starch accumulation, and high shoot nitrate content. In contrast, class 3 plants could tolerate neither N limitation nor N starvation. Small plants of class 4 were different, with shoot biomass barely affected in N- and root biomass unaffected in N0.  相似文献   

10.
The relationships between symbiotic nitrogen fixation (SNF) activity and C fluxes were investigated in pea plants (Pisum sativum L. cv. Baccara) using simultaneous 13C and 15N labelling. Analysis of the dynamics of labelled CO2 efflux from the nodulated roots allowed the different components associated with SNF activity to be calculated, together with root and nodule synthetic and maintenance processes. The carbon costs for the synthesis of roots and nodules were similar and decreased with time. Carbon lost by turnover, associated with maintenance processes, decreased with time for nodules while it increased in the roots. Nodule turnover remained higher than root turnover until flowering. The effect of the N source on SNF was investigated using plants supplied with nitrate or plants only fixing N2. SNF per unit nodule biomass (nodule specific activity) was linearly related to the amount of carbon allocated to the nodulated roots regardless of the N source, with regression slopes decreasing across the growth cycle. These regression slopes permitted potential values of SNF specific activity to be defined. SNF activity decreased as the plants aged, presumably because of the combined effects of both increasing C costs of SNF (from 4.0 to 6.7 g C g-1 N) and the limitation of C supply to the nodules. SNF activity competed for C against synthesis and maintenance processes within the nodulated roots. Synthesis was the main limiting factor of SNF, but its importance decreased as the plant aged. At seed-filling, SNF was probably more limited by nodule age than by C supply to the nodulated roots.  相似文献   

11.
玉米氮素吸收的基因型差异及其与根系形态的相关性   总被引:54,自引:2,他引:52  
采用溶液培养的方法,选用在田间、土培试验中对氮反应有典型差异的玉米自交系:478、H21、Wu312、Zong31、Baici,在4个供N水平(0.04、0.4、2.4mmol/L)下,研究了玉米苗期氮素吸收、分配的基因差异以及与根系形态之间的相关关系,结果表明:在一定的NO3^-浓度范围内(0.04-2mmol/L),根系生物量随N水平的提高而增加,而高N不同程度地降低了5个自交系根系干重。低N下(0.04mmol/L),与其它自交系相比,N高效基因型478具有较大的根系生物量,其根系干重分别为H21、Wu312、Zong31、Baici的1.1、1.74、1.6、1.18倍,并往根系分配了较大比例的N素,根系N累积占总N量的百分率比Wu312、Zong31分别高18.34%、17.08%,而N低效基因型Wu312、Zong31则往地上部分配了较大比例的氮素。随N水平的增加,显著促进了地上部的生长,并在地上部分配了较大比例的N素。当N水平增至4mmol/L时,地上部N素分配的基因型差异减小。低N下,5个自交系根系干重、总根长、根轴总长与总吸N量显著线性相关,而高N下不表现相关关系,说明在N素胁迫的条件下,根系形态对N吸收效率起重要作用。  相似文献   

12.
Legumes of the Phaseoleae ( Glycine max L. Merr., Phaseolus coccineus L., P. vulgaris L., Vigna radiata L. Wilczek and V. unguiculata L. Walp.), when grown on 10 m M nitrate, had a low in vitro nitrate reductase (NR) activity in the root compared to the shoot (<15%). In legumes of the Vicieae ( Cicer aerietinum L., Pisum sativum L. and Vicia faba L.), Genisteae ( Lupinus albus L.) and Trifolieae ( Medicago sativa L. and M. truncatula Gaertn.), 30–60% of their total NR activity was in the root. The Phaseoleae had a higher nitrate content in the shoot. Decreasing the nitrate supply increased the relative proportion of NR activity in the root of garden pea ( Pisum sativum ) and wheat but did not alter the predominantly leaf-based assimilation of nitrate in Phaseolus vulgaris. When in vitro NR activity of the pea shoot was compared with the in vivo NR activity and the rate of accumulation of reduced N by this tissue, similar values were obtained. In vitro NR activity of the wheat shoot was 5 times its in vivo NR activity and 12 times its rate of accumulation of reduced N.  相似文献   

13.
Seedling pre-emergence is a critical phase of development for successful crop establishment because of its susceptibility to environmental conditions. In a context of reduced use of inorganic fertilizers, the genetic bases of the response of seedlings to nitrate supply received little attention. This issue is important even in legumes where nitrate absorption starts early after germination, before nodule development. Natural variation of traits characterizing seedling growth in the absence or presence of nitrate was investigated in a core collection of 192 accessions of Medicago truncatula. Plasticity indexes to the absence of nitrate were calculated. The genetic determinism of the traits was dissected by genome-wide association study (GWAS). The absence of nitrate affected seed biomass mobilization and root/shoot length ratio. However, the large range of genetic variability revealed different seedling performances within natural diversity. A principal component analysis (PCA) carried out with plasticity indexes highlighted four physiotypes of accessions differing in relationships between seedling elongation and seed biomass partitioning traits in response to the absence of nitrate. Finally, GWAS revealed 45 associations with single or combined traits corresponding to coordinates of accessions on PCA, as well as two clusters of genes encoding sugar transporters and glutathione transferases surrounding loci associated with seedling elongation traits.  相似文献   

14.
The supernodulating mutants of legumes lack the internal regulation of the number of symbiotic root nodules that harbour N2-fixing nodule bacteria. On one hand, these mutants represent an efficient tool for dramatic increase in the degree of rhizobial symbiosis development. The trait of released nodulation is often associated with the desirable resistance of nodule initiation and functioning to the inhibition by ambient nitrate. On the other hand, the more intense and stable atmospheric nitrogen fixation of supernodulated plants is devalued by plant growth depression that results from the disproportion between the photosynthetic capacity of the shoot and the catabolic demands of symbiotic nodules. The deleterious effects of excessive nodulation can be neutralised or alleviated by a breeding strategy aimed at creating an ideotype of N2-fixing legume. The growth depression can be diminished by the reduction in the nodule number typical for supernodulators, that is, 6–10-fold of the wild type, to the level found permissive for the particular crop. This shift should be accompanied with breeding aimed at the increased photosynthetic capacity of the shoot. Forage varieties of legumes represent a reserve of high photosynthetic and shoot growth capacity, thanks to a long-term breeding history for green biomass accumulation. Moreover, the deleterious effects of supernodulation are less perceived after introgression into the background of forage varieties in view of different criteria in their evaluation, such as nitrogen accumulation and biomass production per crop area unit. The growth of supernodulators can be further corrected by breeding for auxiliary traits such as long-vine shoot architecture, a longer vegetation period and late flowering. The same strategy is applicable to the compensation for inherent pleiotropic changes in plant development, which are often associated with primarily symbiotic mutations. Supporting evidence for the efficiency of the described approach has already been reported.  相似文献   

15.
Lee KH  Larue TA 《Plant physiology》1992,100(4):1759-1763
Exogenous ethylene inhibited nodulation on the primary and lateral roots of pea, Pisum sativum L. cv Sparkle. Ethylene was more inhibitory to nodule formation than to root growth; nodule number was reduced by half with only 0.07 μL/L ethylene applied continually to the roots for 3 weeks. The inhibition was overcome by treating roots with 1 μm Ag+, an inhibitor of ethylene action. Exogenous ethylene also inhibited nodulation on sweet clover (Melilotus alba) and on pea mutants that are hypernodulating or have ineffective nodules. Exogenous ethylene did not decrease the number of infections per centimeter of lateral pea root, but nearly all of the infections were blocked when the infection thread was in the basal epidermal cell or in the outer cortical cells.  相似文献   

16.
Strigolactones promote nodulation in pea   总被引:2,自引:0,他引:2  
Foo E  Davies NW 《Planta》2011,234(5):1073-1081
Strigolactones are recently defined plant hormones with roles in mycorrhizal symbiosis and shoot and root architecture. Their potential role in controlling nodulation, the related symbiosis between legumes and Rhizobium bacteria, was explored using the strigolactone-deficient rms1 mutant in pea (Pisum sativum L.). This work indicates that endogenous strigolactones are positive regulators of nodulation in pea, required for optimal nodule number but not for nodule formation per se. rms1 mutant root exudates and root tissue are almost completely deficient in strigolactones, and rms1 mutant plants have approximately 40% fewer nodules than wild-type plants. Treatment with the synthetic strigolactone GR24 elevated nodule number in wild-type pea plants and also elevated nodule number in rms1 mutant plants to a level similar to that seen in untreated wild-type plants. Grafting studies revealed that nodule number and strigolactone levels in root tissue of rms1 roots were unaffected by grafting to wild-type scions indicating that strigolactones in the root, but not shoot-derived factors, regulate nodule number and provide the first direct evidence that the shoot does not make a major contribution to root strigolactone levels.  相似文献   

17.

Background and aims

As a legume, pea plant has the ability to symbiotically fix N2. However, symbiotic N2 fixation is very sensitive to environmental stresses that affect plant growth, and there is little knowledge on the impact of root pruning on N2 fixation and plant growth.

Methods

In this study, we removed half of the nodulated roots of pea wild-type Frisson and hypernodulating mutants P64, P118, and P121. Dinitrogen fixation was measured using 15N labeling and carbon assimilation and partitioning between plant organs using 13C labeling.

Results

Root pruning decreased N2 fixation by ?46 to ?79 % in wild-type and mutants. Pea mutant P118 had a lower decrease of specific activity of N2 fixation (?17 %) than both wild-type and other mutants (?36 to ?62 %). For all genotypes, root pruning increased root and nodule sinks strengths for carbon. For P118 and for P121, this was associated to higher nodule growth than for control plants, as measured 8 days after root pruning.

Conclusion

This is the first analysis of N2-fixing plant response to root pruning. Importantly, we showed that some hypernodulating mutant pea lines (P118 and to a lesser extent P121) withstood this stress better than wild-type did.  相似文献   

18.
Cho MJ  Harper JE 《Plant physiology》1991,96(4):1277-1282
It was previously reported that the hypernodulating soybean (Glycine max [L.] Merr.) mutants, derived from the cultivar Williams, had higher root concentration of isoflavonoid compounds (daidzein, genistein, and coumestrol) than did Williams at 9 to 12 days after inoculation with Bradyrhizobium japonicum. These compounds are known inducers of nod genes in B. japonicum and may be involved in subsequent nodule development. The current study involving reciprocal grafts between NOD1-3 (hypernodulating mutant) and Williams showed that root isoflavonoid concentration and content was more than twofold greater when the shoot genotype was NOD1-3. When grafted, NOD1-3 shoots also induced hypernodulation on roots of both Williams and NOD1-3, while Williams shoots induced normal nodulation on both root genotypes. This shoot control of hypernodulation may be causally related to differential root isoflavonoid levels, which are also controlled by the shoot. In contrast, the nonnodulating characteristic of the NN5 mutant was strictly root controlled, based on reciprocal grafts. Delayed inoculation (7 days after planting) resulted in greater nodule numbers on both NOD1-3 and Williams, compared with a seed inoculation treatment. The nodulation pattern of grafted plants was independent of whether the shoot portion was derived from inoculated seed or uninoculated seed, when grafted at day 7 onto seedling roots derived from inoculated seed. This observation, coupled with the fact that no difference existed in nodule number of NOD1-3 and Williams until after 9 days from seed inoculation, indicated that if isoflavonoids play a role in differential nodulation of the hypernodulating mutant and the wild type, the effect is on advanced stages of nodule ontogeny, possibly related to autoregulation, rather than on initial infection stages.  相似文献   

19.
Cadmium (Cd) is a non-essential and highly toxic element for plant growth while zinc (Zn) becomes toxic at elevated levels. Presence of these heavy metals (HMs) in soils has negative impact on rhizobial symbiosis in legumes leading to reduced agricultural productivity. Role of silicon (Si) amendment and Rhizophagus irregularis in mitigating HM stress has gained importance in recent years. Present study evaluated the individual and cumulative effects of Si and/or AM on Cd (25, 50 mg/kg) or Zn (600, 1000 mg/kg) induced responses in terms of nitrogen fixing efficiency, trehalose biosynthesis, antioxidant defense and phytochelatin (PC) synthesis in pigeon pea genotypes (Tolerant-Pusa 2002, Sensitive-Pusa 991). Results indicated that although mycorrhizal colonization (MC) declined with increase in metal concentration in both genotypes, Pusa 2002 was able to form significant colonization even under stress. Cadmium and zinc stress negatively affected plant biomass and rhizobial symbiosis, with Cd more toxic than Zn. The decline in nodulation potential under both HMs was much more significant in Pusa 991 than Pusa 2002 which could be correlated with proportionately reduced MC, nutrient uptake and ultimate N accumulation. Individual application of AM was much more effective in improving nitrogen fixing efficiency by increasing trehalose biosynthesis, PC production and strengthening antioxidant defense than Si. Restoration of rhizobial symbiosis under combined applications of Si and AM could be correlated with enhanced Si uptake through mycorrhization. Thus, study suggested use of AM as a tool in enhancing benefits of Si nutrition in terms of restoration of nodule senescence and N-fixing competence in pigeon pea under HMs stress.  相似文献   

20.
Two field experiments with different soybean (Glycine max L.) materials were conducted to investigate the interactions between phosphorus (P) and nitrogen (N) as related to the genetic attributes of root morphological and nodular traits. In experiment one, 13 cultivated soybean varieties were grown in a field with relatively low soil P and N availability. P application with 160 kg P/hm2 as triple superphosphate produced a significant simultaneous increase in the content of both P and N in shoot, demonstrating positive P and N interactions. The addition of P also increased root dry weight, root nodule number, nodule mass, nodule size, and nodulation index, but decreased root length and root surface area, indicating that P may affect N nutrition in soybean through a number of root morphological and nodular traits. Interestingly,like P content, N content appeared to be more correlated with root morphological traits (root weight, root length, and root surface area) than with root nodular traits (nodule number, nodule size, nodule mass, and nodulation index) at both P levels, implying that N taken up by the roots may contribute more to the plant N status than biological N2 fixation under the present experimental conditions. In experiment two, 57 soybean lines of a recombinant inbred line (RIL) population derived from a cross between a cultivated variety and a wild genotype were grown on another field site with moderately sufficient P and N levels to further characterize the genetic attributes of root morphological and nodular traits and their relationships with P and N interactions. The results indicated that all morphological and nodular traits measured continually segregated in the RIL population with a normal distribution of the phenotypic values, indicating that these traits are possibly controlled by quantitative trait loci (QTLs). Genetic analysis revealed that all these root traits had relatively low heritabilities (h2b=74.12, 70.65, 73.76, 56.34, 52.59, and 52.24 for root weight, root length,root surface area, nodule number, nodule mass, and nodule size, respectively), suggesting that root morphology and nodule formation are influenced greatly by environmental factors. Correlation analysis of the RILs showed that shoot N content was significantly correlated with P content, confirming positive P×N interactions. Similar to experiment one, shoot N content was only significantly correlated with root morpho logical traits, but not with root nodular traits, again denoting the fact that the N status in soybean could be attributed more to N uptake from the soil than to biological N2 fixation under the present experimental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号