首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In agonist-induced platelet activation, the collagen platelet receptor integrin alpha2beta1 is activated to high-affinity states through ADP involvement [Jung, S.M. & Moroi, M. (2000) J. Biol. Chem. 275, 8016-8026]. Here we determined the ADP-receptor subtypes involved and their relative contributions to alpha2beta1 activation (assessed by soluble-collagen binding) using the P2Y12 antagonist AR-C69931MX and P2Y1 antagonists adenosine 3',5'-diphosphate (Ado(3,5)PP) and adenosine 3'-phosphate 5'-phosphosulfate (AdoPPS). All three inhibited alpha2beta1 activation induced by low or high ADP, low thrombin, or low collagen-related peptide (CRP) concentrations; however, AR-C69931MX was markedly more inhibitory than the P2Y1 antagonists, suggesting the greater contribution of P2Y12. Inhibition patterns by various combinations of AR-C69931MX, AdoPPS, and wortmannin suggested that P2Y1 and P2Y12 mediate alpha2beta1 activation through different pathways, with possible involvement of phosphoinositide 3-kinase in both. Low concentrations of the acetoxy-methyl derivative of 1,2-bis(o-aminophenoxy) ethane-N,N,N',N'-tetra-acetic acid (calcium chelator) markedly decreased alpha2beta1 activation by low thrombin or CRP, but did not affect that by low or high ADP. Measurements of intracellular Ca2+ level (fluorimetric method) and alpha2beta1 activation (soluble-collagen binding) in the same platelet preparation indicated that alpha2beta1 activation via ADP receptors was independent of intracellular Ca2+ release. Our data indicate that integrin alpha2beta1 activation by ADP occurs through an inside-out signaling mechanism involving differential contributions by P2Y1 and P2Y12 wherein each contributes to some portion of the activation, with the stronger contribution of P2Y12. Furthermore, intracellular Ca2+ increase is not directly related to integrin alpha2beta1 activation, meaning that it is separate from the calcium mobilization pathways that these two ADP receptors are involved in.  相似文献   

2.
The ability of the chemokines SDF-1, MDC and TARC to induce platelet aggregation depends strongly on low levels of ADP. The ADP receptors involved have now been characterized using the P2Y(1) and P2T(AC) receptor antagonists, A2P5P and AR-C69931MX. Stimulation of aggregation by the chemokines at 10 s was not blocked by AR-C69931MX, but was strongly inhibited by A2P5P. Pertussis toxin abolished the chemokine-stimulated aggregation. We conclude that the P2Y(1) ADP receptor plays a critical role in the initial phases of SDF-1-, MDC- and TARC-induced platelet aggregation, which involve a pertussis toxin-sensitive G protein.  相似文献   

3.
P2Y(12) antagonists such as clopidogrel and AR-C69931MX inhibit aggregation by antagonizing the effects of ADP at P2Y(12) receptors on platelets. Agents such as PGE(1) also inhibit aggregation by stimulating adenylate cyclase to produce cAMP, which interferes with Ca(2+) mobilization within the cell. Since one facet of P2Y(12) receptors is that they mediate inhibition of adenylate cyclase by ADP, it might be expected that P2Y(12) antagonists would interact with PGE(1). We have explored the effects of PGE(1) and AR-C69931MX singly and in combination on ADP-induced intracellular Ca(2+) ([Ca(2+)](i)) responses and aggregation. PGE(1) alone caused parallel dose-dependent inhibition of [Ca(2+)](i) and aggregation responses. AR-C66931MX alone caused only partial inhibition of [Ca(2+)](i) despite a marked inhibitory effect on aggregation. Combinations of PGE(1) with AR-C66931MX were found to act in synergy to reduce both [Ca(2+)](i) and aggregation. This effect was confirmed in patients with acute coronary syndromes by studying the inhibitory effects of PGE(1) on [Ca(2+)](i) and aggregation before and after clopidogrel. In summary, we have shown that P2Y(12) antagonists interact with natural agents such as PGE(1) to provide more effective inhibition of [Ca(2+)](i) and platelet aggregation. This would contribute to the effectiveness of P2Y(12) antagonists as antithrombotic agents in man.  相似文献   

4.
Akt activation in platelets depends on Gi signaling pathways   总被引:10,自引:0,他引:10  
The serine-threonine kinase Akt has been established as an important signaling intermediate in regulating cell survival, cell cycle progression, as well as agonist-induced platelet activation. Stimulation of platelets with various agonists including thrombin results in Akt activation. As thrombin can stimulate multiple G protein signaling pathways, we investigated the mechanism of thrombin-induced activation of Akt. Stimulation of platelets with a PAR1-activating peptide (SFLLRN), PAR4-activating peptide (AYPGKF), and thrombin resulted in Thr308 and Ser473 phosphorylation of Akt, which results in its activation. This phosphorylation and activation of Akt were dramatically inhibited in the presence of AR-C69931MX, a P2Y12 receptor-selective antagonist, or GF 109203X, a protein kinase C inhibitor, but Akt phosphorylation was restored by supplemental Gi or Gz signaling. Unlike wild-type mouse platelets, platelets from Galphaq-deficient mice failed to trigger Akt phosphorylation by thrombin and AYPGKF, whereas Akt phosphorylation was not affected by these agonists in platelets from mice that lack P2Y1 receptor. However, ADP caused Akt phosphorylation in Galphaq- and P2Y1-deficient platelets, which was completely blocked by AR-C69931MX. In contrast, ADP failed to cause Akt phosphorylation in platelets from mice treated with clopidogrel, and thrombin and AYPGKF induced minimal phosphorylation of Akt, which was not affected by AR-C69931MX in these platelets. These data demonstrate that Gi, but not Gq or G12/13, signaling pathways are required for activation of Akt in platelets, and Gi signaling pathways, stimulated by secreted ADP, play an essential role in the activation of Akt in platelets.  相似文献   

5.
Cell surface receptors for high-density lipoprotein (HDL) on hepatocytes are major partners in the regulation of cholesterol homeostasis. We have previously demonstrated on human hepatocytes that apolipoprotein A-I binding to an ectopic F(1)-ATPase stimulates the production of extracellular ADP that activates a P2Y(13)-mediated high-density lipoprotein (HDL) endocytosis pathway. However, P2Y(13)-dependent signalling pathway has never been described yet. The current study demonstrates a major role of cytoskeleton reorganization in F(1)-ATPase/P2Y(13)-dependent HDL endocytosis under the control of the small GTPase RhoA and its effector ROCK I. Indeed human hepatocytes (HepG(2) cells) stimulated by ADP or AR-C69931MX (both P2Y(13) agonists) showed a high specific activation of RhoA; in addition, inhibition of Rho proteins by C3 exoenzyme impairs HDL endocytosis whereas a constitutively active form of RhoA stimulates HDL endocytosis at the same level as under F(1)-ATPase/P2Y(13) activation. Pharmacological inhibition of ROCK activity decreased HDL endocytosis following stimulation by apoA-I (F(1)-ATPase ligand), ADP or AR-C69931MX and specific siRNA ROCK I extinction prevented the stimulation of HDL endocytosis without effect of ROCK II extinction. The functional involvement of ROCK I downstream F(1)-ATPase/P2Y(13) was confirmed by the strong enrichment of the membrane fraction in ROCK I and by the requirement of actin polymerization in hepatocyte HDL endocytosis. These results allow the identification of the molecular events downstream P2Y(13) receptor activation for a better understanding of hepatocyte HDL endocytosis, the latest step in reverse cholesterol transport.  相似文献   

6.
The effects of ADP on the biology of dendritic cells have been studied much less than those of ATP or adenosine. In this study, we showed that adenosine-5'-O-(2-thiodiphosphate) (ADPβS) induced intracellular Ca(2+) transients in murine dendritic cells (DCs). This effect was abolished by AR-C69931MX, a dual P2Y(12) and P2Y(13) receptor antagonist. RT-PCR experiments revealed the expression of both P2Y(12) and P2Y(13) mRNA in DCs. The Ca(2+) response to ADPβS was maintained in P2Y(13)-deficient DCs, whereas it was abolished completely in P2Y(12)(-/-) DCs. ADPβS stimulated FITC-dextran and OVA capture in murine DCs through macropinocytosis, and this effect was abolished in P2Y(12)(-/-) DCs. ADPβS had a similar effect on FITC-dextran uptake by human monocyte-derived DCs. OVA loading in the presence of ADPβS increased the capacity of DCs to stimulate OVA-specific T cells, whereas ADPβS had no effect on the ability of DCs to stimulate allogeneic T cells. Moreover, after immunization against OVA, the serum level of anti-OVA IgG1 was significantly lower in P2Y(12)(-/-) mice than that in wild-type controls. In conclusion, we have shown that the P2Y(12) receptor is expressed in murine DCs and that its activation increased Ag endocytosis by DCs with subsequent enhancement of specific T cell activation.  相似文献   

7.
Stimulation of human platelets by cross-linking of the low affinity receptor for immunoglobulin, FcgammaRIIA, caused the rapid activation of the small GTPase Rap1B, as monitored by accumulation of the GTP-bound form of the protein. This process was totally dependent on the action of secreted ADP since it was completely prevented in the presence of either apyrase or creatine phosphate and creatine phosphokinase. Dose-dependent experiments revealed that the inhibitory effect of ADP scavengers was not related to the reduced increase of cytosolic Ca(2+) concentration in stimulated platelets. Activation of Rap1B induced by clustering of FcgammaRIIA was totally suppressed by AR-C69931MX, a specific antagonist of the G(i)-coupled ADP receptor P2Y12, but was not affected by blockade of the G(q)-coupled receptor, P2Y1. Similarly, direct stimulation of platelets with ADP induced the rapid activation of Rap1B. Pharmacological blockade of the P2Y1 receptor totally prevented ADP-induced Ca(2+) mobilization but did not affect activation of Rap1B. By contrast, prevention of ADP binding to the P2Y12 receptor totally suppressed activation of Rap1B without affecting Ca(2+) signaling. In platelets stimulated by cross-linking of FcgammaRIIA, inhibition of Rap1B activation by ADP scavengers could be overcome by the simultaneous recruitment of the G(i)-coupled alpha(2A)-adrenergic receptor by epinephrine. By contrast, serotonin, which binds to a G(q)-coupled receptor, could not restore activation of Rap1B. When tested alone, epinephrine was found to be able to induce GTP binding to Rap1B, whereas serotonin produced only a slight effect. Finally, activation of Rap1B induced by stimulation of the G(q)-coupled thromboxane A(2) receptor by was completely inhibited by ADP scavengers under conditions in which intracellular Ca(2+) mobilization was unaffected. Inhibition of -induced Rap1B activation was also observed upon blockade of the P2Y12 but not of the P2Y1 receptor for ADP. These results demonstrate that stimulation of a G(i)-dependent signaling pathway by either ADP of epinephrine is necessary and sufficient to activate the small GTPase Rap1B.  相似文献   

8.
9.
We characterized the expression and functional properties of the ADP-sensitive P2Y(1) and P2Y(12) nucleotide receptors in glioma C6 cells cultured in medium devoid of serum for up to 96 h. During this long-term serum starvation, cell morphology changed from fibroblast-like flat to round, the adhesion pattern changed, cell-cycle arrest was induced, extracellular signal-regulated kinase (ERK1/2) phosphorylation was reduced, Akt phosphorylation was enhanced, and expression of the P2Y(12) receptor relative to P2Y(1) was increased. These processes did not reflect differentiation into astrocytes or oligodendrocytes, as expression of glial fibrillary acidic protein and NG2 proteoglycan (standard markers of glial cell differentiation) was not increased during the serum deprivation. Transfer of the cells into fresh medium containing 10% fetal bovine serum reversed the changes. This demonstrates that serum starvation caused only temporary growth arrest of the glioma C6 cells, which were ready for rapid division as soon as the environment became more favorable. In cells starved for 72 and 96 h, expression of the P2Y(1) receptor was low, and the P2Y(12) receptor was the major player, responsible for ADP-evoked signal transduction. The P2Y(12) receptor activated ERK1/2 kinase phosphorylation (a known cell proliferation regulator) and stimulated Akt activity. These effects were reduced by AR-C69931MX, a specific antagonist of the P2Y(12) receptor. On the other hand, Akt phosphorylation increased in parallel with the low expression of the P2Y(1) receptor, indicating the inhibitory role of P2Y(1) in Akt pathway signaling. The shift in nucleotide receptor expression from P2Y(1) to P2Y(12) would appear to be a new and important self-regulating mechanism that promotes cell growth rather than differentiation and is a defense mechanism against effects of serum deprivation.  相似文献   

10.
Platelets were used to study the activation of Rho and Rac through G-protein-coupled receptors and its regulation by cyclic nucleotides. The thromboxane A(2) (TXA(2)) mimetic rapidly activated both small GTPases independently of integrin alpha(IIb)beta(3) activation., which leads to the activation of G(12)/G(13) and G(q) did not induce Rac activation in G alpha(q)-deficient platelets but was able to activate Rho, to stimulate actin polymerization and phosphatidylinositol 4,5-bisphosphate formation, and to induce shape change. Rac activation by in wild-type platelets could be blocked by chelation of intracellular Ca(2+) and was partially sensitive to apyrase and AR-C69931MX, an antagonist of the G(i)-coupled ADP receptor. Cyclic AMP, which completely blocks platelet function, inhibited the -induced activation of G(q) and G(12)/G(13) as well as of Rac and Rho. In contrast, cGMP, which has no effect on platelet shape change blocked only activation of G(q) and Rac. These data demonstrate that Rho and Rac are differentially regulated through heterotrimeric G-proteins. The G(12)/G(13)-mediated Rho activation is involved in the shape change response, whereas Rac is activated through G(q) and is not required for shape change. Cyclic AMP and cGMP differentially interfere with -induced Rho and Rac activation at least in part by selective effects on the regulation of individual G-proteins through the TXA(2) receptor.  相似文献   

11.
Cyclic AMP-dependent induction of differentiation by activation of the beta-adrenergic receptor is correlated with inhibition of protein kinase B activity concomitant with growth arrest and increase in glial fibrillary acidic protein (GFAP) synthesis in rat C6 glioma cells. Costimulation of the beta-adrenergic receptor with purinergic receptors activated by 2-methylthio-adenosine-5'-diphosphate (2MeSADP) increased protein kinase B (PKB) phosphorylation above the level measured in non-stimulated cells and abolished cAMP-dependent differentiation. Transfection of cells with constitutively active PKB confirmed that reactivation of PKB is involved in the 2MeSADP-dependent inhibition of GFAP synthesis. The P2Y(12) and P2Y(13) receptor antagonist AR-C69931MX [N(6)-(2-methylthioethyl)-2-(3,3,3-trifluoropropylthio)-beta,gamma-dichloro-methylene ATP] decreased PKB phosphorylation to the level in non-stimulated cells, whereas the P2Y(13) antagonists pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) and P(1),P(3)-di(adenosine-5') tetraphosphate (Ap(4)A) did not alter the 2MeSADP-induced phosphorylation of PKB, showing that enhanced PKB activity and subsequent phosphorylation of glycogen synthase kinase-3 is due to stimulation of the P2Y(12) receptor. In addition, experiments in the presence of pertussis toxin and phosphatidylinositol 3-kinase (PI 3-K) activity assays demonstrated that the P2Y(12) receptor-mediated increase in PKB phosphorylation is G(i) protein- and PI 3-K-dependent. The presented data demonstrated that a cAMP-dependent inhibition of PKB induces differentiation of C6 glioma cells and that inhibition of adenylate cyclase and reactivation of the PI 3-K/PKB pathway by the P2Y(12) receptor reverses differentiation into enhanced proliferation.  相似文献   

12.
Platelet secretion (exocytosis) is critical in amplifying platelet activation, in stabilizing thrombi, and in arteriosclerosis and vascular remodeling. The signaling mechanisms leading to secretion have not been well defined. We have shown previously that cGMP-dependent protein kinase (PKG) plays a stimulatory role in platelet activation via the glycoprotein Ib-IX pathway. Here we show that PKG also plays an important stimulatory role in mediating aggregation-dependent platelet secretion and secretion-dependent second wave platelet aggregation, particularly those induced via Gq-coupled agonist receptors, the thromboxane A2 (TXA2) receptor, and protease-activated receptors (PARs). PKG I knock-out mouse platelets and PKG inhibitor-treated human platelets showed diminished aggregation-dependent secretion and also showed a diminished secondary wave of platelet aggregation induced by a TXA2 analog and thrombin receptor-activating peptides that were rescued by the granule content ADP. Low dose collagen-induced platelet secretion and aggregation were also reduced by PKG inhibitors. Furthermore PKG I knockout and PKG inhibitors significantly attenuated activation of the Gi pathway that is mediated by secreted ADP. These data unveil a novel PKG-dependent platelet secretion pathway and a mechanism by which PKG promotes platelet activation.  相似文献   

13.
U46619, a thromboxane A2 mimetic, but not ADP, caused activation of p38 mitogen activated protein (MAP) kinase in aspirin-treated platelets. In nonaspirinated human platelets ADP activated p38 MAP kinase in both a time-and concentration-dependent manner, suggesting that ADP-induced p38 MAP kinase activation requires generation of thromboxane A2. However, neither a thromboxane A2/prostaglandin H2 receptor antagonist SQ29548 and a thromboxane synthase inhibitor, furegrelate, either alone or together, nor indomethacin blocked ADP-induced p38 kinase activation in nonaspirinated platelets. Other cycloxygenase products, PGE2, PGD2, and PGF2alpha, failed to activate p38 kinase in aspirin-treated platelets. Hence, ADP must be generating an agonist, other than thromboxane A2, via an aspirin-sensitive pathway, which is capable of activating p38 kinase. AR-C66096, a P2TAC (platelet ADP receptor coupled to inhibition of adenylate cyclase) antagonist, did not inhibit ADP-induced p38 MAP kinase activation. The P2X receptor selective agonist, alpha, beta-methylene ATP, failed to activate p38 MAP kinase. On the other hand, the P2Y1 receptor selective antagonist, adenosine-2'-phosphate-5'-phosphate inhibited ADP-induced p38 kinase activation in a concentration-dependent manner, indicating that the P2Y1 receptor alone mediates ADP-induced generation of the p38 kinase-activating factor. These results demonstrate that ADP causes the generation of a factor in human platelets, which can activate p38 kinase, and that this response is mediated by the P2Y1 receptor. Neither the P2TAC receptor nor the P2X1 receptor has any significant role in this response.  相似文献   

14.
In this study we examined the thromboxane A(2)(TXA(2)) receptor antagonist property of BM-531 (N-tert -butyl- N'-[(2-cyclohexylamino-5-nitrobenzene)sulfonyl]urea), a torasemide derivative, on platelet function. The drug affinity for human washed platelet TXA(2)receptors labelled with [(3)H]SQ-29,548 has been determined (IC50: 0.0078 microM) and demonstrated to be higher than sulotroban (IC50: 0.93 microM) and SQ-29,548 (IC50: 0.021 microM). The antiaggregatory potency has been confirmed since we demonstrated that BM-531 prevented platelet aggregation in human citrated platelet-rich plasma induced by arachidonic acid (600 microM) (ED100: 0.125 microM), U-46619, a stable TXA(2)agonist (1 microM) (ED50: 0.482 microM) and collagen (1 microg mL(-1)) (% of inhibition: 42.9% at 10 microM) and inhibited the second wave of ADP (2 microM). Moreover, when BM-531 was incubated in whole blood from healthy donors, the closure time measured by the recently developed platelet function analyser (PFA-100(trade mark)) was significantly prolonged. These results suggest that BM-531 can be regarded as a novel non-carboxylic TXA(2)antagonist with a powerful antiplatelet potency.  相似文献   

15.
The action of phospholipases A2 and C in the course of collagen-stimulated platelet activation and the effect of cytochalasins on the responses were studied. Stimulation of human platelets with collagen was accompanied by aggregation, Ca2+ mobilization, inositol phosphate formation, and arachidonic acid release. However, in the presence of a cyclooxygenase inhibitor or a thromboxane A2 (TXA2) receptor antagonist, collagen induced only weak arachidonic acid release and weak inositol phosphate formation. The TXA2 mimetic agonist U46619 induced all the responses except for arachidonic acid release, which was induced by synergistic action of collagen and U46619. The result that U46619 did not induce arachidonic acid release despite the activation of phospholipase C suggested that arachidonic acid was not released via phospholipase C but by phospholipase A2. These findings suggested that collagen initially induced weak activation of phospholipases A2 and C and that further activation of phospholipase C as well as Ca2+ mobilization and aggregation were induced by TXA2, whereas further activation of phospholipase A2 required the synergistic action of collagen and TXA2. Platelets pretreated with cytochalasins did not respond to collagen. Further analysis revealed that the initial activation of phospholipases A2 and C was specifically inhibited by cytochalasins, but the responses induced by U46619 or a synergistic action of collagen and U46619 were not inhibited. Therefore, we proposed that interaction of collagen receptor with actin filaments might have some roles in the collagen-induced initial activation of phospholipases.  相似文献   

16.
Thromboxane A2 (TXA2)-mediated platelet secretion and aggregation are important in thrombosis. Here, we present a novel finding that the stable TXA2 analogue, U46619, induces two waves of platelet secretion, each of which precedes a distinct wave of platelet aggregation. ADP released from platelets during the first wave of secretion played a major role in augmenting the first wave of platelet aggregation. The second wave of platelet secretion and aggregation required the first wave of both ADP secretion and aggregation and were blocked by either the integrin inhibitor RGDS or a P2Y12 receptor antagonist, indicating a requirement for both the integrin outside-in signal and ADP-activated Gi pathway. U46619 stimulated phosphoinositide 3-kinase (PI3K)-dependent phosphorylation of Akt, which was augmented by ADP but did not require integrin outside-in signaling. Platelets from PI3Kgamma knock-out mice or PI3K inhibitor-treated platelets showed an impaired second wave of platelet secretion and aggregation. However, the second wave of platelet aggregation was restored by addition of exogenous ADP to PI3Kgamma deficient or PI3K inhibitor-treated platelets. Thus, our data indicate that PI3K, together with the integrin outside-in signaling, play a central role in inducing the second wave of platelet secretion, which leads to the second wave of irreversible platelet aggregation.  相似文献   

17.
Both thromboxane (TX) A(2) and 8-epi prostaglandin (PG) F(2alpha) have been reported to stimulate mitogenesis of vascular smooth muscle (SM) in a number of species. However, TXA(2) and 8-epiPGF(2alpha) mediated mitogenic signalling has not been studied in detail in human vascular SM. Thus, using the human uterine ULTR cell line as a model, we investigated TXA(2) receptor (TP) mediated mitogenic signalling in cultured human vascular SMCs. Both the TP agonist U46619 and 8-epiPGF(2alpha) elicited time and concentration dependent activation of the extracellular signal regulated kinase (ERK)s and c-Jun N-terminal kinase (JNK)s in ULTR cells. Whereas the TP antagonist SQ29548 abolished U46619 mediated signalling, it only partially inhibited 8-epiPGF(2alpha) mediated ERK and JNK activation in ULTR cells. Both U46619 and 8-epiPGF(2alpha) induced ERK activations were inhibited by the protein kinase (PK) C, PKA and phosphoinositide 3-kinase inhibitors GF109203X, H-89 and wortmannin, respectively, but were unaffected by pertussis toxin. In addition, U46619 mediated ERK activation in ULTR cells involves transactivation of the epidermal growth factor (EGF) receptor. In humans, TXA(2) signals through two distinct TP isoforms. In investigating the involvement of the TP isoforms in mitogenic signalling, both TPalpha and TPbeta independently directed U46619 and 8-epiPGF(2alpha) mediated ERK and JNK activation in human embryonic kidney (HEK) 293 cells over-expressing the individual TP isoforms. However, in contrast to that which occurred in ULTR cells, SQ29548 abolished 8-epiPGF(2alpha) mediated ERK and JNK activation through both TPalpha and TPbeta in HEK 293 cells providing further evidence that 8-epiPGF(2alpha) may signal through alternative receptors, in addition to the TPs, in human uterine ULTR cells.  相似文献   

18.
The stable PGI2-analogue iloprost and the TXA2-receptor antagonist sulotroban (BM 13177) were investigated for possible synergistic effects on platelet aggregation in human platelet rich plasma in vitro. Iloprost and sulotroban synergistically inhibited U 46619, collagen, and the second wave of ADP-induced platelet aggregation. Iloprost and sulotroban at concentrations showing little or no inhibition alone resulted, in combination, in marked or complete inhibition of U 46619 or collagen induced aggregation. Combination of iloprost 10(-10) M, which had no effect on the concentration-response curve (CRC) to U 46619, with sulotroban 5 x 10(-6) M, which shifted the CRC to U 46619 by a factor of 3 to the right, resulted in a rightward shift of the U 46619 CRC by a factor of 4.5. To attain a 4.5-fold shift with either compound alone, a concentration of 5 x 10(-10) M iloprost or 10(-5) M sulotroban was required. A similar mutual enhancement of inhibitory effects was seen for combinations of the PGI2-analogue cicaprost (ZK 96.480) with sulotroban or the TXA2-receptor antagonist SQ 29548 with iloprost. When the TXA2-dependent part of collagen-induced aggregation was fully inhibited by sulotroban, the concentrations of iloprost necessary for 90% inhibition were reduced by a factor of 2.5 - 3. In the presence of acetylsalicylic acid, the synergistic action of sulotroban and iloprost was reduced and merely additive effects against U 46619-induced platelet aggregation were found, suggesting that the release of endogenous TXA2 plays an important role for the synergistic effect of the two compounds. The combination of a PGI2-analogue and a TXA2-antagonist may lead to a safer and more effective control of platelet activation than with either compound alone.  相似文献   

19.
Antiplatelet actions of aqueous extract of onion were investigated in rat and human platelet. IC(50)values of onion extract for collagen-, thrombin-, arachidonic acid (AA)-induced aggregations and collagen-induced thromboxane A(2)(TXA(2)) formation were 0.17 +/- 0. 01, 0.23 + 0.03, 0.34 +/- 0.02 and 0.12 +/- 0.01 g/ml, respectively. [(3)H]-AA release induced by collagen (10 microg/ml) in rat platelet was decreased by onion compared to control (22.1 +/- 2.13 and 5.2 +/- 0.82% of total [(3)H]-AA incorporated, respectively). In fura-2 loaded platelets, the elevation of intracellular Ca(2+)concentration stimulated by collagen was inhibited by onion. Onion had no cytotoxic effect in platelet. Onion significantly inhibited TXA(2)synthase activity without influence on COX activity. Platelet aggregation induced by U46619, a stable TXA(2)mimetic, was inhibited by onion, indicating its antagonism for TXA(2)/PGH(2)receptor. These results suggest that the mechanism for antiplatelet effect of onion may, at least partly, involve AA release diminution, TXA(2)synthase inhibition and TXA(2)/PGH(2)receptor blockade.  相似文献   

20.
Using aequorin-loaded rat platelets stimulated with collagen, we found two phases of Ca2+ mobilization, one coinciding with a shape change and the other with aggregation, which have not yet been detected in quin2-loaded platelets. U46619, a stable analogue of prostaglandin H2, induced only a shape change and a concomitant rapid rise in the cytoplasmic ionized calcium concentration ([Cai2+]). However, upon addition of U46619 to platelets previously stimulated with collagen in the presence of indomethacin, a rapid increase in [Cai2+] and a shape change occurred, and, after about 1 min, second increase in [Cai2+] and aggregation occurred. The actions of U46619 were inhibited by an antagonist for the thromboxane A2 (TXA2) receptor. These results suggest that the collagen-induced shape change is initiated by TXA2-induced Ca2+ mobilization, and aggregation is induced by the secondary Ca2+ mobilization induced by TXA2 and the occupation of the receptor by collagen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号