首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phage lysozyme has catalytic activity similar to that of hen egg white lysozyme, but the amino acid sequences of the two enzymes are completely different.The binding to phage lysozyme of several saccharides including N-acetylglucosamine (GlcNAc), N-acetylmuramic acid (MurNAc) and (GlcNAc)3 have been determined crystallographically and shown to occupy the pronounced active site cleft. GlcNAc binds at a single location analogous to the C site of hen egg white lysozyme. MurNAc binds at the same site. (GlcNAc)3 clearly occupies sites B and C, but the binding in site A is ill-defined.Model building suggests that, with the enzyme in the conformation seen in the crystal structure, a saccharide in the normal chair configuration cannot be placed in site D without incurring unacceptable steric interference between sugar and protein. However, as with hen egg white lysozyme, the bad contacts can be avoided by assuming the saccharide to be in the sofa conformation. Also Asp20 in T4 lysozyme is located 3 Å from carbon C(1) of saccharide D, and is in a position to stabilize the developing positive charge on a carbonium ion intermediate. Prior genetic evidence had indicated that Asp20 is critically important for catalysis. This suggests that in phage lysozyme catalysis is promoted by a combination of steric and electronic effects, acting in concert, The enzyme shape favors the binding in site D of a saccharide with the geometry of the transition state, while Asp20 stabilizes the positive charge on the oxocarbonium ion of this intermediate. Tn phage lysozyme, the identity of the proton donor is uncertain. In contrast to hen egg white lysozyme, where Glu35 is 3 Å from the glycosidic DOE bond, and is in a non-polar environment, phage lysozyme has an ion pair, Glull … Arg145, 5 Å away from the glycosidic oxygen. Possibly Glull undergoes a conformational adjustment in the presence of bound substrate, and acts as the proton donor. Alternatively, the proton might come from a bound water molecule.  相似文献   

2.
Two lysozymes were purified from quail egg white by cation exchange column chromatography and analyzed for amino acid sequence. The enzymes showed the same pH optimum profile for lytic activity with broad pH optima (pH 5.0-8.0) but had difference in mobility on native-PAGE. The native-PAGE immunoblot showed one or two lysozymes present in individual egg whites. The established amino acid sequence of quail egg white lysozyme A (QEWL A) was the same as quail lysozyme reported by Kaneda et al. [Kaneda, M., Kato, I., Tominaga, N., Titani, K., Narita, K., 1969. The amino acid sequence of quail lysozyme. J. Biochem. (Tokyo). 66, 747-749] and had six amino acid substitutions at position 3 (Phe to Tyr), 19 (Asn to Lys), 21 (Arg to Gln), 102 (Gly to Val) 103 (Asn to His) and 121 (Gln to Asn) compared to hen egg white lysozyme. QEWL A and QEWL B showed one substitution, at the position 21, Gln replaced by Lys, plus an insertion of Leu between position 20 and 21, being the first report that QEWL B had 130 amino acids. The amino acid differences between two lysozymes did not seem to affect antigenic determinants detected by polyclonal anti-hen egg white lysozyme, but caused them to separate well from each other by ion exchange chromatography.  相似文献   

3.
We have isolated from a human synthetic phage display library a clone, 2A3, which discriminates native lysozyme from denatured forms. Binding of single-chain Fv fragments (scFvs) of the clone to native hen egg white lysozyme was competitively inhibited by native hen egg white (hew) and human (h) lysozymes. Dot blotting analysis indicated that scFv of the clone did not react with denatured lysozymes. The K(d) values for scFv of 2A3 binding to native hew- and h-lysozymes were 3.78 x 10(-9) and 9.31 x 10(-9) M, respectively, indicating that 2A3 binds more strongly to native hew-lysozyme than to native h-lysozyme. The deduced amino acid sequence of the V(H) chain-CDR3 region of 2A3 was RRYALDY, of which the Arg residues at positions 1 and 2 of the CDR3 region were observed to be extremely rare in other antibodies by homology analysis. Based on these observations, site-directed mutagenesis of the RRYALDY-coding region was carried out. The results, combined with biomolecular analyses, demonstrated that Arg residues at positions 1 and 2 of this region were important for native lysozyme-binding.  相似文献   

4.
The egg white of C. atratus contains two forms of lysozyme, a 'chick-type' which is similar to that found in the egg white of the domestic hen, and a 'goose-type' similar to that found in the egg white of the Embden goose. The molecular structure of the goose-type lysozyme has been determined at a resolution of a 2.8 A by X-ray crystallographic analysis. The structure consists of two domains linked by a long stretch of alpha-helix. In all, there are seven helical segments in the structure. While there is no amino acid sequence homology with either hen egg-white or bacteriophage T4 lysozymes, there are portions of the structure where the folding of the main chain is similar to that found in portions of either hen egg-white lysozyme or T4 lysozyme or both. In particular, there is a consistency of structure in the arrangement of acid groups in the catalytic site. G-o plots calculated for this structure and for the bacteriophage T4 lysozyme structure show that both have similar 'modules' of structure with boundaries occurring at structurally equivalent positions. Three of the common boundaries are equivalent structurally to three of the four module boundaries observed in G-o plots of hen egg-white lysozyme. The variation in the position of the remaining boundary may be related to differences in substrate binding.  相似文献   

5.
The lysozyme (rabbit kidney lysozyme) from the homogenate of rabbit kidney (Japanese white) was purified by repeated cation-exchange chromatography on Bio-Rex 70. The amino acid sequence was determined by automated gas-phase Edman degradation of the peptides obtained from the digestion of reduced and S-carboxymethylated rabbit lysozyme with Achromobacter protease I (lysyl endopeptidase). The sequence thus determined was KIYERCELARTLKKLGLDGYKGVSLANWMCLAKWESSYNTRATNYNPGDKSTDYGIFQ INSRYWCNDGKTPRAVNACHIPCSDLLKDDITQAVACAKRVVSDPQGIRAWVAWRNHCQ NQDLTPYIRGCGV, indicating 25 amino acid substitutions from human lysozyme. The lytic activity of rabbit lysozyme against Micrococcus lysodeikticus at pH 7, ionic strength of 0.1, and 30 degrees C was found to be 190 and 60% of those of hen and human lysozymes, respectively. The lytic activity-pH profile of rabbit lysozyme was slightly different from those of hen and human lysozymes. While hen and human lysozymes had wide optimum activities at around pH 5.5-8.5, the optimum activity of rabbit lysozyme was at around pH 5.5-7.0. The high proline content (five residues per molecule compared with two prolines per molecule in hen or human lysozyme) is one of the interesting features of rabbit lysozyme. The transition temperatures for the unfolding of rabbit, human, and hen lysozymes in 3 M guanidine hydrochloride at pH 5.5 were 51.2, 45.5, and 45.4 degrees C, respectively, indicating that rabbit lysozyme is stabler than the other two lysozymes. The high proline content may be responsible for the increased stability of rabbit lysozyme.  相似文献   

6.
cDNA cloning of the lysozyme of the white shrimp Penaeus vannamei   总被引:7,自引:0,他引:7  
Lysozyme, an antibacterial protein, has been implicated in innate immunity in invertebrates, but its activity in shrimp remained to be determined. We cloned the white shrimp lysozyme cDNA using a PCR strategy and detected its activity in haemocytes using a lytic-zone assay against Micrococcus luteus. The cloning was based on a reported EST (dbEST BE18831). The deduced amino acid sequence resulted in 150 amino with 46% identity to hen egg white lysozyme. RT-PCR was used to detect lysozyme mRNA in haemocytes. Analysis of the amino acid sequence of the shrimp lysozyme showed that it belongs to the C-type family of lysozymes. Furthermore, the lysozyme amino acid sequence contained extra residues at its C-terminus, which are characteristic of marine invertebrates. This information will be useful in future studies on the molecular mechanisms of immunity in marine invertebrates.  相似文献   

7.
The amino acid sequence of the lysozyme from phage P22 is shown to be homologous (26% identity) with the lysozyme from bacteriophage T4. The sequence correspondence suggests that the structure of P22 lysozyme is similar to the known structure of T4 lysozyme within the "core" of the molecule, including the active site cleft. However, P22 lysozyme appears to lack two surface loops present in T4 lysozyme. It is possible that P22 lysozyme may provide an "evolutionary link" between the phage-type lysozymes and the goose-type lysozymes.  相似文献   

8.
Bombyx mori lysozyme is 10 amino acids shorter than hen egg-white lysozyme, which is a typical c-type lysozyme. It was expressed by using the methylotrophic yeast Pichia pastoris. The thermal stability and the enzymatic activity of the Bombyx mori lysozyme were estimated and compared with those of human and hen egg-white lysozymes. The denaturation temperature was 17-26°C lower than those of human and hen egg-white lysozymes. Further, the enthalpy change and the heat capacity change for unfolding were smaller than those of human lysozyme. It was also confirmed that the stability against guanidine hydrochloride was lower than those of the other two lysozymes. The enzymatic activity toward a simple synthetic substrate was measured and compared with those of human and hen egg-white lysozymes. The B-F binding mode was obviously dominant, although the A-E binding mode was preferred in human and hen egg-white lysozymes.  相似文献   

9.
The circular dichroism spectra of hen egg white lysozyme, and of lysozyme derivatives in which tryptophan residues 62 or 108, or both, are selectively oxidized, have been measured as a function of pH over the range of 200 to 310 nm. Neither Trp-62 nor Trp-108 is principally responsible for the positive rotational strength in the 280 to 300 nm region. The spectrum in the 200 to 230 nm region is nearly the same in the native protein and in the derivatives, and is little affected by binding of saccharide. These results are used to reinterpret the circular dichroism spectra of the lysozymes and alpha-lactalbumins.  相似文献   

10.
We have investigated the specificity of six different lysozymes for peptidoglycan substrates obtained by extraction of a number of gram-negative bacteria and Micrococcus lysodeikticus with chloroform/Tris-HCl buffer (chloroform/buffer). The lysozymes included two that are commercially available (hen egg white lysozyme or HEWL, and mutanolysin from Streptomyces globisporus or M1L), and four that were chromatographically purified (bacteriophage lambda lysozyme or LaL, bacteriophage T4 lysozyme or T4L, goose egg white lysozyme or GEWL, and cauliflower lysozyme or CFL). HEWL was much more effective on M. lysodeikticus than on any of the gram-negative cell walls, while the opposite was found for LaL. Also the gram-negative cell walls showed remarkable differences in susceptibility to the different lysozymes, even for closely related species like Escherichia coli and Salmonella Typhimurium. These differences could not be due to the presence of lysozyme inhibitors such as Ivy from E. coli in the cell wall substrates because we showed that chloroform extraction effectively removed this inhibitor. Interestingly, we found strong inhibitory activity to HEWL in the chloroform/buffer extracts of Salmonella Typhimurium, and to LaL in the extracts of Pseudomonas aeruginosa, suggesting that other lysozyme inhibitors than Ivy exist and are probably widespread in gram-negative bacteria.  相似文献   

11.
On the basis of the molecular evolution of hen egg white, human, and turkey lysozymes, three replacements (Trp62 with Tyr, Asn37 with Gly, and Asp101 with Gly) were introduced into the active-site cleft of hen egg white lysozyme by site-directed mutagenesis. The replacement of Trp62 with Tyr led to enhanced bacteriolytic activity at pH 6.2 and a lower binding constant for chitotriose. The fluorescence spectral properties of this mutant hen egg white lysozyme were found to be similar to those of human lysozyme, which contains Tyr at position 62. The replacement of Asn37 with Gly had little effect on the enzymatic activity and binding constant for chitotriose. However, the combination of Asn37----Gly (N37G) replacement with Asp101----Gly (D101G) and Trp62----Tyr (W62Y) conversions enhanced bacteriolytic activity much more than each single mutation and restored hydrolytic activity toward glycol chitin. Consequently, the mutant lysozyme containing triple replacements (N37G, W62Y, and D101G) showed about 3-fold higher bacteriolytic activity than the wild-type hen lysozyme at pH 6.2, which is close to the optimum pH of the wild-type enzyme.  相似文献   

12.
Bombyx mori lysozyme (BmLZ), from the silkworm, is an insect lysozyme. BmLZ has considerable activity at low temperatures and low activation energies compared with those of hen egg white lysozyme (HEWLZ), according to measurements of the temperature dependencies of relative activity (lytic and glycol chitin) and the estimation of activation energies using the Arrhenius equation. Being so active at low temperatures and low activation energies is characteristic of psychrophilic (cold-adapted) enzymes. The three-dimensional structure of BmLZ has been determined by X-ray crystallography at 2.5 A resolution. The core structure of BmLZ is similar to that of c-type lysozymes. However, BmLZ shows some distinct differences in the two exposed loops and the C-terminal region. A detailed comparison of BmLZ and HEWLZ suggests structural rationalizations for the differences in the catalytic efficiency, stability, and mode of activity between these two lysozymes.  相似文献   

13.
Primary Structure of Lysozymes from Man and Goose   总被引:4,自引:0,他引:4  
The primary structure of goose egg white lysozyme seems to be distinct from that of hen egg white and human leukaemia lysozymes.  相似文献   

14.
To examine the effect of amino acid substitutions in lysozyme on the binding of antibodies to lysozyme, we purified lysozyme from the egg whites of California quail and Gambel quail. Tryptic peptides were isolated from digests of the reduced and carboxymethylated lysozymes and subjected to quantitative analysis of their amino acid compositions. The two proteins were identical by this criterion. Each peptide from the California quail lysozyme was then sequenced by quantitative Edman degradation, and the peptides were ordered by homology with other bird lysozymes. California quail lysozyme is most similar in amino acid sequence to bobwhite quail lysozyme, from which it differs by two substitutions: arginine for lysine at position 68 and histidine for glutamine at position 121. California and bobwhite quail lysozymes were antigenically distinct from each other in quantitative microcomplement fixation tests, indicating that substitutions at one or both of these positions can alter the antigenic structure of lysozyme. Yet neither of these positions is among those claimed to account for the precise and entire antigenic structure of lysozyme [Atassi, M. Z., & Lee, C.-L. (1978) Biochem. J. 171, 429--434]. Two possible explanations for this discrepancy are discussed.  相似文献   

15.
Summary The amino acid sequence of lysozyme c from chachalaca egg white was determined. Like other bird lysozymes c, that of the chachalaca has 129 amino acid residues. It differs from other avian lysozymes c by 27 to 31 amino acid substitutions as well as by being devoid of phenylalanine. It contains substitutions at 9 positions which are invariant in the other 7 bird lysozymes of known sequence. Although the chachalaca is classified zoologically in the order Galliformes, which includes chickens and other pheasant-like birds, its lysozyme differs more from those of pheasant-like birds than do the lysozymes c of ducks. Phylogenetic analysis of the sequence comparisons confirms that the lineage leading to chachalaca lysozyme c separated from that leading to other galliform lysozymes c before the duck lysozyme c lineage did. This indicates a contrast between protein evolution and evolution at the organismal level. Immunological comparison of chachalacalysozyme c with other lysozymes of known sequence provides further support for the proposal that immunological cross-reactivity is strongly dependent on degree of sequence resemblance among bird lysozymes.103rd communication on lysozymes from the Laboratory of P. Jollès. Supported in part by grants from C.N.R.S. (ER 102), I.N.S.E.R.M. (Groupe de recherche U-116), N.S.F. (GB-42028X), and N.I.H. (GM-21509).  相似文献   

16.
The amino groups of hen egg white lysozyme were reductively alkylated by the reaction with aliphatic aldehydes of various chain lengths and with two aldehydes of different steric hindrance at pH 7.5 and 4 degrees for 3 h. About four of the original six lysine residues were modified by the reaction with acetaldehyde, n-butylaldehyde or n-hexylaldehyde. About three lysine residues were 2,2-dimethylpropylated with trimethylacetaldehyde while a single residue was modified with benzaldehyde. The thermal stabilities of these alkylated lysozymes were investigated by differential scanning calorimetry (DSC) at different acidic pH values. Alkylation thermally destabilized the proteins, depending not only on the extent of modification but also on the size of the substituent. The alkylated derivatives were 8-19 kJ/mol less stable than native lysozyme at 25 degrees and pH 3.0. The temperature dependences of the activities of the alkylated lysozymes against ethylene glycol chitin indicated that the orders of the optimum temperatures and the maximum activities were exactly the same as the order of the thermal stabilities.  相似文献   

17.
It is known that bacteria contain inhibitors of lysozyme activity. The recently discovered Escherichia coli inhibitor of vertebrate lysozyme (Ivy) and its potential interactions with several goose-type (g-type) lysozymes from fish were studied using functional enzyme assays, comparative homology modelling, protein–protein docking, and molecular dynamics simulations. Enzyme assays carried out on salmon g-type lysozyme revealed a lack of inhibition by Ivy. Detailed analysis of the complexes formed between Ivy and both hen egg white lysozyme (HEWL) and goose egg white lysozyme (GEWL) suggests that electrostatic interactions make a dominant contribution to inhibition. Comparison of three dimensional models of aquatic g-type lysozymes revealed important insertions in the β domain, and specific sequence substitutions yielding altered electrostatic surface properties and surface curvature at the protein–protein interface. Thus, based on structural homology models, we propose that Ivy is not effective against any of the known fish g-type lysozymes. Docking studies suggest a weaker binding mode between Ivy and GEWL compared to that with HEWL, and our models explain the mechanistic necessity for conservation of a set of residues in g-type lysozymes as a prerequisite for inhibition by Ivy.  相似文献   

18.
Five monoclonal antibodies specific for the loop region of hen egg lysozyme were prepared by immunisation with a synthetic conjugate of a proteolytic fragment of lysozyme coupled to bovine serum albumin. Their fine specificities were investigated using a panel of variant lysozymes and peptide fragments of lysozyme in a quantitative radio-immunoassay procedure. Knowledge of the structure of hen lysozyme to high resolution and the use of computer graphics enables the localisation of the epitopes recognised by the antibodies with some precision. The antibodies were shown to define three distinct, overlapping epitopes within what was previously considered to be a single antigenic site. These results are discussed in relation to current ideas of the antigenic nature of proteins and other recent studies in which anti-protein antibodies have been elicited by immunisation with small peptides.  相似文献   

19.
Lysozyme was induced by dexamethasone during normal differentiation of cultured mouse myeloid leukemia cells (M1) to macrophages and granulocytes. A large amount of lysozyme was produced by macrophage-like line cells (Mm-1), established from spontaneously differentiated macrophage-like cells from a clonal line of M1 cells. Lysozyme purified from the culture medium of these Mm-1 cells (Mm-1 lysozyme) had a molecular weight of 15,000, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and showed maximal activity at pH 6.6 with an optimal NaCl concentration of 0.04 M. Its mobility on polyacrylamide gel electrophoresis at pH 4.5 was distinctly lower than those of lysozymes from hen egg white and human urine. Rabbit anti-Mm-1 lysozyme serum inhibited the activities of lysozyme preparations from peritoneal macrophages of normal mice and rats and dexamethasone-induced differentiated M1 cells, but not those of preparations from hen egg white and human urine. Lysozyme was also purified from normal mouse lung, which is rich in alveolar macrophages and was found to be similar to lysozyme purified from the culture medium of Mm-1 cells in size and electrophoretic mobility and in its pH optimum, trypsin peptide map, and antigenicity. Thus the molecular structure of the lysozyme induced in differentiated mouse myeloid leukemia cells is similar to that of lysozyme produced by normal cells.  相似文献   

20.
The structure and internal motions of the protein hen egg white lysozyme are studied by analysis of simulation and experimental data. A molecular dynamics simulation and an energy minimization of the protein in vacuum have been made and the results compared with high-resolution structures and temperature factors of hen egg white lysozyme in two different crystal forms and of the homologous protein human lysozyme. The structures obtained from molecular dynamics and energy minimization have root-mean-square deviations for backbone atoms of 2.3 Å and 1.1–1.3 Å, respectively, relative to the crystal structures; the different crystal structures have root-mean-square deviations of 0.73–0.81 Å for the backbone atoms. In comparing the backbone dihedral angles, the difference between the dynamics and the crystal structure on which it is based is the same as that between any two crystal structures. The internal fluctuations of atomic positions calculated from the molecular dynamics trajectory agree well with the temperature factors from the three structures. Simulation and crystal results both show that there are large motions for residues involved in exposed turns of the backbone chain, relatively smaller motions for residues involved in the middle of helices or β-sheet structures, and relatively small motions of residues near disulfide bridges. Also, both the simulation and crystal data show that side-chain atoms have larger fluctuations than main-chain atoms. Moreover, the regions that have large deviations among the x-ray crystal structures, which indicates flexibility, are found to have large fluctuations in the simulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号