首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OMSVP3 and OMTKY3 (third domains of silver pheasant and turkey ovomucoid inhibitor) are Kazal-type serine proteinase inhibitors. They have been isomorphously crystallized in the monoclinic space group C2 with cell dimensions of a = 4.429 nm, b = 2.115 nm, c = 4.405 nm, beta = 107 degrees. The asymmetric unit contains one molecule corresponding to an extremely low volume per unit molecular mass of 0.0017 nm3/Da. Data collection was only possible for the OMSVP3 crystals. Orientation and position of the OMSVP3 molecules in the monoclinic unit cells were determined using Patterson search methods and the known structure of the third domain of Japanese quail ovomucoid (OMJPQ3) [Papamokos, E., Weber, E., Bode, W., Huber, R., Empie, M. W., Kato, I. and Laskowski, M., Jr (1982) J. Mol. Biol. 158, 515-537]. The OMSVP3 structure has been refined by restrained crystallographic refinement yielding a final R value of 0.199 for data to 0.15 nm resolution. Conformation and hydrogen-bonding pattern of OMSVP3 and OMJPQ3 are very similar. Large deviations occur at the NH2 terminus owing to different crystal packing, and at the C terminus of the central helix, representing an intrinsic property and resulting from amino acid substitutions far away from this site. The deviation of OMSVP3 from OMTKY3 complexed with the Streptomyces griseus protease B is very small [Fujinaga, M., Read, R. J., Sielecki, A., Ardelt, W., Laskowski, M., Jr and James, M. N. G. (1982) Proc. Natl Acad. Sci. USA, 79, 4868-4872].  相似文献   

2.
Japanese quail ovomucoid third domain (OMJPQ3), a Kazal-type inhibitor, was crystallographically refined with energy constraints. The final R-value is 0.20 at 1.9 Å resolution. The four molecules in the asymmetric unit are very similar, with deviations of main-chain atoms between 0.2 and 0.3 Å. An analysis of the side-chain hydrogen-bonding pattern and amino acid variability in the Kazal family shows a high correlation between hydrogen-bonding and conservation.The conformation of the reactive site loop (P2-P2′) of OMJPQ3 is similar to those of basic pancreatic trypsin inhibitor, Streptomyces subtilisin inhibitor, and soybean trypsin inhibitor. This suggests a common binding mode and justifies model-building studies of complexes.Complexes of OMJPQ3 with trypsin, chymotrypsin and elastase were modelled on the basis of the trypsin-basic pancreatic trypsin inhibitor complex structure and inspected by use of a computer graphics system. Stereochemically satisfying models were constructed in each case and detailed interactions are proposed. The complex with elastase is of particular interest, showing that leucine and methionine are good P1 residues. A good correlation is observed between functional properties of ovomucoid variants and the position of the exchanged residues with respect to the modelled inhibitor-protease contact.  相似文献   

3.
Two-dimensional proton NMR experiments have been used to sequentially assign resonances to all of the peptide backbone protons of turkey ovomucoid third domain (OMTKY3) except those of the N-terminal alpha-amino group whose signal was not resolved owing to exchange with the solvent. Assignments also have been made for more than 80% of the side-chain protons. Two-dimensional chemical shift correlated spectroscopy (COSY), relayed coherence transfer spectroscopy (RELAY), and two-dimensional homonuclear Hartmann-Hahn spectroscopy (HOHAHA) were used to identify the spin systems of almost half of the residues prior to sequential assignment. Assignments were based on two-dimensional nuclear Overhauser enhancements observed between adjacent residues. The secondary structure of OMTKY3 in solution was determined from additional assigned NOESY cross-peaks; it closely resembles the secondary structure determined by single-crystal X-ray diffraction of OMTKY3 in complex with Streptomyces griseus proteinase B [Fujinaga, M., Read, R.J., Sielecki, A., Ardelt, W., Laskowski, M., Jr., & James, M.N.G. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 4868-4872]. The NMR data provide evidence for three slowly exchanging amide protons that were not identified as hydrogen-bond donors in the crystal structure.  相似文献   

4.
W Bode  A Z Wei  R Huber  E Meyer  J Travis    S Neumann 《The EMBO journal》1986,5(10):2453-2458
Orthorhombic crystals diffracting beyond 1.7 A resolution, have been grown from the stoichiometric complex formed between human leukocyte elastase (HLE) and the third domain of turkey ovomucoid inhibitor (OMTKY3). The crystal and molecular structure has been determined with the multiple isomorphous replacement technique. The complex has been modeled using the known structure of OMTKY3 and partial sequence information for HLE, and has been refined. The current crystallographic R-value is 0.21 for reflections from 25 to 1.8 A resolution. HLE shows the characteristic polypeptide fold of trypsin-like serine proteinases and consists of 218 amino acid residues. However, several loop segments, mainly arranged around the substrate binding site, have unique conformations. The largest deviations from the other vertebrate proteinases of known spatial structure are around Cys168. The specificity pocket is constricted by Val190, Val216 and Asp226 to preferentially accommodate medium sized hydrophobic amino acids at P1. Seven residues of the OMTKY3-binding segment are in specific contact with HLE. This interaction and geometry around the reactive site are similar as observed in other complexes. It is the first serine proteinase glycoprotein analysed, having two sugar chains attached to Asn159 and to residue 109.  相似文献   

5.
Tetragonal and triclinic crystals of two ovomucoid inhibitor third domains from silver pheasant and Japanese quail, modified at their reactive site bonds Met18-Glu19 (OMSVP3*) and Lys18-Asp19 (OMJPQ3*), respectively, were obtained. Their molecular and crystal structures were solved using X-ray data to 2.5 A and 1.55 A by means of Patterson search methods using truncated models of the intact (virgin) inhibitors as search models. Both structures were crystallographically refined to R-values of 0.185 and 0.192, respectively, applying an energy restraint reciprocal space refinement procedure. Both modified inhibitors show large deviations from the intact derivatives only in the proteinase binding loops (Pro14 to Arg21) and in the amino-terminal segments (Leu1 to Val6). In the modified inhibitors the residues immediately adjacent to the cleavage site (in particular P2, P1, P1') are mobile and able to adapt to varying crystal environments. The charged end-groups, i.e. Met18 COO- and Glu19 NH3+ in OMSVP3*, and Lys18 COO- and Asp19 NH3+ in OMJPQ3*, do not form ion pairs with one another. The hydrogen bond connecting the side-chains of Thr17 and Glu19 (i.e. residues on either side of the scissile peptide bond) in OMSVP3 is broken in the modified form, and the hydrogen-bond interactions observed in the intact molecules between the Asn33 side-chain and the carbonyl groups of loop residues P2 and P1' are absent or weak in the modified inhibitors. The reactive site cleavage, however, has little effect on specific interactions within the protein scaffold such as the side-chain hydrogen bond between Asp27 and Tyr31 or the side-chain stacking of Tyr20 and Pro22. The conformational differences in the amino-terminal segment Leu1 to Val6 are explained by their ability to move freely, either to associate with segments of symmetry-related molecules under formation of a four-stranded beta-barrel (OMSVP3* and OMJPQ3) or to bind to surrounding molecules. Together with the results given in the accompanying paper, these findings probably explain why Khyd of small protein inhibitors of serine proteinases is generally found to be so small.  相似文献   

6.
G I Rhyu  J L Markley 《Biochemistry》1988,27(7):2529-2539
The solution structure of modified turkey ovomucoid third domain (OMTKY3*) was investigated by high-resolution proton NMR techniques. OMTKY3* was obtained by enzymatic hydrolysis of the scissile reactive site peptide bond (Leu18-Glu19) in turkey ovomucoid third domain (OMTKY3). All of the backbone proton resonances were assigned to sequence-specific residues except the NH's of Leu1 and Glu19, which were not observed. Over 80% of the side-chain protons also were assigned. The secondary structure of OMTKY3*, as determined from assigned NOESY cross-peaks and identification of slowly exchanging amide protons, contains antiparallel beta-sheet consisting of three strands (residues 21-25, 28-32, and 49-54), one alpha-helix (residues 33-44), and one reverse turn (residues 26-28). This secondary structure closely resembles that of OMTKY3 in solution [Robertson, A. D., Westler, W. M., & Markley, J. L. (1988) Biochemistry (preceding paper in this issue)]. On the other hand, changes in the tertiary structure of the protein near to and remote from the cleavage site are indicated by differences in the chemical shifts of numerous backbone protons of OMTKY3 and OMTKY3*.  相似文献   

7.
The molecular structure of the complex between bovine pancreatic alpha-chymotrypsin (EC 3.4.4.5) and the third domain of the Kazal-type ovomucoid from Turkey (OMTKY3) has been determined crystallographically by the molecular replacement method. Restrained-parameter least-squares refinement of the molecular model of the complex has led to a conventional agreement factor R of 0.168 for the 19,466 reflections in the 1.8 A (1 A = 0.1 nm) resolution shell [I greater than or equal to sigma (I)]. The reactive site loop of OMTKY3, from Lys13I to Arg21I (I indicates inhibitor), is highly complementary to the surface of alpha-chymotrypsin in the complex. A total of 13 residues on the inhibitor make 113 contacts of less than 4.0 A with 21 residues of the enzyme. A short contact (2.95 A) from O gamma of Ser195 to the carbonyl-carbon atom of the scissile bond between Leu18I and Glu19I is present; in spite of it, this peptide remains planar and undistorted. Analysis of the interactions of the inhibitor with chymotrypsin explains the enhanced specificity that chymotrypsin has for P'3 arginine residues. There is a water-mediated ion pair between the guanidinium group on this residue and the carboxylate of Asp64. Comparison of the structure of the alpha-chymotrypsin portion of this complex with the several structures of alpha and gamma-chymotrypsin in the uncomplexed form shows a high degree of structural equivalence (root-mean-square deviation of the 234 common alpha-carbon atoms averages 0.38 A). Significant differences occur mainly in two regions Lys36 to Phe39 and Ser75 to Lys79. Among the 21 residues that are in contact with the ovomucoid domain, only Phe39 and Tyr146 change their conformations significantly as a result of forming the complex. Comparison of the structure of the OMTKY3 domain in this complex to that of the same inhibitor bound to a serine proteinase from Streptomyces griseus (SGPB) shows a central core of 44 amino acids (the central alpha-helix and flanking small 3-stranded beta-sheet) that have alpha-carbon atoms fitting to within 1.0 A (root-mean-square deviation of 0.45 A) whereas the residues of the reactive-site loop differ in position by up to 1.9 A (C alpha of Leu18I). The ovomucoid domain has a built-in conformational flexibility that allows it to adapt to the active sites of different enzymes. A comparison of the SGPB and alpha-chymotrypsin molecules is made and the water molecules bound at the inhibitor-enzyme interface in both complexes are analysed for similarities and differences.  相似文献   

8.
The bilin binding protein of the butterfly Pieris brassicae has been prepared, crystallized and its crystal structure determined at high resolution using film and FAST area detector intensity data. The crystallographic asymmetric unit contains a tetramer of identical subunits with a molecular weight of about 90,000. The crystal structure was determined by isomorphous replacement. Use was made of the molecular symmetry to improve phases. A molecular interpretation of the electron density distribution and partial tracing of the polypeptide chain was possible without amino acid sequence information, as the fold is very similar to retinol binding protein. It is characterized by a beta-barrel formed by two orthogonal beta-sheets and an alpha-helix. The bilin pigment seems to be bound within the beta-barrel analogously to retinol in retinol binding protein. The tetramer in the crystal has C2 symmetry and is a dimer of dimers of quasi-equivalent subunits.  相似文献   

9.
Two kinds of the third domain, either with or without a carbohydrate chain, were prepared from chicken ovomucoid. The immunoreactivity of the domain preparations to human IgE antibody directed against ovomucoid was examined by using the sera from patients of egg allergy. About 30% of the serum antibody to ovomucoid reacted with the carbohydrate-containing domain, whereas little or no antibody with reactivity to the carbohydrate-free domain was detected, suggesting that the carbohydrate chain attached to the third domain played an important role in antigenic determinants of the carbohydrate-containing third domain against the human IgE antibody.  相似文献   

10.
Rhodniin is a highly specific inhibitor of thrombin isolated from the assassin bug Rhodnius prolixus. The 2.6 Angstrum crystal structure of the non-covalent complex between recombinant rhodniin and bovine alpha-thrombin reveals that the two Kazal-type domains of rhodniin bind to different sites of thrombin. The amino-terminal domain binds in a substrate-like manner to the narrow active-site cleft of thrombin; the imidazole group of the P1 His residue extends into the S1 pocket to form favourable hydrogen/ionic bonds with Asp189 at its bottom, and additionally with Glu192 at its entrance. The carboxy-terminal domain, whose distorted reactive-site loop cannot adopt the canonical conformation, docks to the fibrinogen recognition exosite via extensive electrostatic interactions. The rather acidic polypeptide linking the two domains is displaced from the thrombin surface, with none of its residues involved in direct salt bridges with thrombin. The tight (Ki = 2 x 10(-13) M) binding of rhodniin to thrombin is the result of the sum of steric and charge complementarity of the amino-terminal domain towards the active-site cleft, and of the electrostatic interactions between the carboxy-terminal domain and the exosite.  相似文献   

11.
Two closely related crystal structures of alpha 1-proteinase inhibitor modified at the reactive site peptide bond Met358--Ser359 have been analysed. The crystal structure has been obtained from diffraction data at 3 A resolution, with phases originally from isomorphous replacement. The electron density map was substantially improved by cyclic averaging of the electron densities of the two crystal forms and allowed the chain to be traced in terms of the known chemical amino acid sequence. Energy restrained crystallographic refinement was initiated and resulted in conventional R-values of 0.251 for the tetragonal crystal form (6 to 3 A resolution) and 0.247 for the hexagonal crystal form (6 to 3.2 A resolution). The polypeptide chain is almost completely arranged in well-defined secondary structural elements: three beta-sheets and eight alpha-helices. The helices are preferentially formed by the first 150 residues. They are in proximity underneath sheet A. The chain ends Met358 and Ser359 of the nicked species are arranged in strands on opposite ends of the molecule indicating a major structural rearrangement upon modification of the intact inhibitor. It is suggested that the Met358 strand is in a different conformation removed from sheet A and approaches Ser359 in the intact inhibitor species. Glu342, which is exchanged by a lysine in the Z-variant is in a strategic position for such a rearrangement. The three carbohydrate chains of alpha 1-proteinase inhibitor have partly defined electron density close to their attachment sites at asparagine residues. The anti-thrombin and ovalbumin amino acid sequences can be accommodated in the alpha 1 inhibitor molecular structure. The intron-exon junctions of the ovalbumin and the alpha 1-proteinase inhibitor gene are all in surface loops of the mature protein.  相似文献   

12.
A modified version of the human pancreatic trypsin inhibitor (PSTI), generated in a protein-design project, has been crystallized in spacegroup P4(3) with lattice constants a = 40.15 A, c = 33.91 A. The structure has been solved by molecular replacement. Refinement of the structure by simulated annealing and conventional restrained least-squares yielded for 8.0 to 2.3 A data a final R-value of 19.1%. Differences to the known structures of porcine PSTI complexed with trypsinogen and modified human PSTI complexed with chymotrypsinogen occur at the flexible N-terminal part of the molecule. These differences are influenced by crystal packing, as are low temperature factors for the binding loop. The geometry of the binding loop is similar to the complexed structures.  相似文献   

13.
Ovomucoid (Gal d1) is a major allergen in hen egg white, consisting of three tandem domains. In this study, five genetically modified third domain (DIII) mutants, which were substituted single or double amino acids within its IgE and IgG epitopes were compared with those prepared and their antigenicity and allergenicity with native analogue using Western immunoblot and enzyme-linked immunosorbent assay. The replacement of phenylalanine at 37 (F37) position with methionine caused drastical loss of IgG and IgE binding activities of human sera derived from egg allergic patients as well as disruption of the alpha-helix structure which comprises a part of the IgG and IgE epitopes. Substituting glycine at 32 position in conjunction with F37 showed a synergistic effect of decreasing antigenicity. The present study indicated that glycine 32 and phenylalanine 37 have an important role on its antigenicity and allergenicity as well as structural integrity of ovomucoid DIII.  相似文献   

14.
Human estrogenic 17β-hydroxysteroid dehydrogenase (17β-HSD1) catalyzes the synthesis of 17β-estradiol (E2) from estrone, in the ovary and peripheral tissues. While the structures of 17β-HSD1 alone and in complex with E2 have been determined (D. Ghosh, V. Pletnev, D.-W. Zhu, Z. Wawrzak, W.-L. Duax, W. Pangborn, F. Labrie, S.-X. Lin, Structure of human 17β-hydroxysteroid dehydrogenase at 2.20 Å resolution, Structure 3 (1995) 503–513; A. Azzi, P.H. Rhese, D.-W. Zhu, R.L. Campbell, F. Labrie, S.-X. Lin, Crystal structure of human estrogenic 17β-hydroxysteroid dehydrogenase complexed with 17β-estradiol, Nature Struct. Biol. 3 (1996) 665–668, no structures of inhibitor/enzyme complex, either modeled or from crystallography, have been reported before the submission of the present paper. The best available inhibitors are among the ‘dual-site inhibitors’, blocking estrogenic 17β-HSD and the estrogen receptor. These compounds belong to a family of estradiol analogues having an halogen atom at the 16 position and an extended alkyl-amide chain at the 7 position (C. Labrie, G. Martel, J.M. Dufour, G. Levesque, Y. Merand, F. Labrie, Novel compounds inhibit estrogen formation and action, Cancer Res. 52 (1992) 610–615). We now report the crystallization of this enzyme/inhibitor complex. The complex of the best available dual-site inhibitor, EM-139, with 17β-HSD1 has been crystallized using both cocrystallization and soaking methods. Crystals are isomorphous to the native crystals grown in the presence of 0.06% β-octyl-glucoside and polyethyleneglycol 4000, with a monoclinic space group C2. Data at 1.8 Å have been collected from a synchrotron source. Even though the size of the inhibitor is greater than that of the substrate, our preliminary X-ray-diffraction study shows that EM-139 fits into the active site in a position similar to that of estrogen. The availability of such structural data will help design more potent inhibitors of estrogenic 17β-HSD.  相似文献   

15.
Ovomucoid, a major allergen in hen's egg white, consists of three tandem domains. The third domain (DIII) cDNA was sublconed into pGEMT-vector and the resultant plasmid (pGEMDIII) was inserted into a pGEM-4T-2 glutathione-S-transferase (GST) fusion vector. The GST-DIII fusion protein was expressed in Escherichia coli. The 56-residue fragment corresponding to DIII (Leu131-Cys186) was liberated using cyanogen bromide to cleave off the GST that had been hydrolized with thrombin, which left an additional peptide at the terminus of the recombinant protein. Measurement of circular dichroism spectra indicated that the recombinant third domain (DIII*) had a structure that was slightly less compact than that of the native form. Immunoblot analysis showed that the human IgE binding activity of DIII* was identical to that of native DIII, while its activity was significantly increased to IgE antibodies from egg-allergic patients when tested with an enzyme-linked immunosorbent assay. These results indicate that recombinant DIII* has similar sequential epitopes, but may have more predominant conformational epitopes than native analogues. This might have important implications in egg-allergic reactions.  相似文献   

16.
The virgin (reactive-site Leu18-Glu19 peptide bond intact) and modified (reactive-site Leu18-Glu19 peptide bond hydrolyzed) forms of turkey ovomucoid third domain (OMTKY3 and OMTKY3*, respectively) have been analyzed by proton-detected 1H(13C) two-dimensional single-bond correlation (1H[13C]SBC) spectroscopy. Previous 1H-nmr assignments of these proteins [A.D. Robertson, W.M. Westler, and J.L Markley (1988) Biochemistry, 27, 2519-2529; G. I. Rhyu and J. L. Markley (1988) Biochemistry, 27, 2529-2539] have been extended to directly bonded 13C atoms. Assignments have been made to 52 of the 56 backbone 13C alpha-1H units and numerous side-chain 13C-1H groups in both OMTKY3 and OMTKY3*. The largest changes in the 13C chemical shift upon conversion of OMTKY3 to OMTKY3* occur at or near the reactive site, and tend toward values observed in small peptides. Moreover, the side-chain prochiral methylene protons attached to the C gamma of Glu19 and C delta of Arg21 show nonequivalent chemical shifts in OMTKY3 but more equivalent chemical shifts in OMTKY3*. These results suggest that the reactive site region becomes less ordered upon hydrolysis of the Leu18-Glu19 peptide bond. Comparison of 13C alpha chemical shifts of OMTKY3 and bovine pancreatic trypsin inhibitor [D. Brühuiler and G. Wagner (1986) Biochemistry 25, 5839-5843; N. R. Nirmala and G. Wagner (1988) Journal of the American Chemical Society, 110, 7557-7558] with small peptide values [R. Richarz and K. Wüthrich (1978) Biopolymers, 17, 2133-2141] suggests that 13C alpha chemical shifts of residues residing in helices are generally about 2 ppm downfield of resonances from nonhelical residues.  相似文献   

17.
Crystal structures of the complexes of Streptomyces griseus proteinase B (SGPB) with three P1 variants of turkey ovomucoid inhibitor third domain (OMTKY3), Leu18, Ala18, and Gly18, have been determined and refined to high resolution. Comparisons among these structures and of each with native, uncomplexed SGPB reveal that each complex features a unique solvent structure in the S1 binding pocket. The number and relative positions of water molecules bound in the S1 binding pocket vary according to the size of the side chain of the P1 residue. Water molecules in the S1 binding pocket of SGPB are redistributed in response to the complex formation, probably to optimize hydrogen bonds between the enzyme and the inhibitor. There are extensive water-mediated hydrogen bonds in the interfaces of the complexes. In all complexes, Asn 36 of OMTKY3 participates in forming hydrogen bonds, via water molecules, with residues lining the S1 binding pocket of SGPB. For a homologous series of aliphatic straight side chains, Gly18, Ala18, Abu18, Ape18, and Ahp18 variants, the binding free energy is a linear function of the hydrophobic surface area buried in the interface of the corresponding complexes. The resulting constant of proportionality is 34.1 cal mol-1 A-2. These structures confirm that the binding of OMTKY3 to the preformed S1 pocket in SGPB involves no substantial structural disturbances that commonly occur in the site-directed mutagenesis studies of interior residues in other proteins, thus providing one of the most reliable assessments of the contribution of the hydrophobic effect to protein-complex stability.  相似文献   

18.
We have used thermal and chemical denaturation to characterize the thermodynamics of unfolding for turkey ovomucoid third domain (OMTKY3). Thermal denaturation was monitored spectroscopically at a number of wave-lengths and data were subjected to van't Hoff analysis; at pH 2.0, the midpoint of denaturation (Tm) occurs at 58.6 +/- 0.4 degrees C and the enthalpy of unfolding at this temperature (delta Hm) is 40.8 +/- 0.3 kcal/mol. When Tm was perturbed by varying pH and denaturant concentration, the resulting plots of delta Hm versus Tm yield a mean value of 590 +/- 120 cal/(mol.K) for the change in heat capacity upon unfolding (delta Cp). A global fit of the same data to an equation that includes the temperature dependence for the enthalpy of unfolding yielded a value of 640 +/- 110 cal/(mol.K). We also performed a variation of the linear extrapolation method described by Pace and Laurents, which is an independent method for determining delta Cp (Pace, C.N. & Laurents, D., 1989, Biochemistry 28, 2520-2525). First, OMTKY3 was thermally denatured in the presence of a variety of denaturant concentrations. Linear extrapolations were then made from isothermal slices through the transition region of the denaturation curves. When extrapolated free energies of unfolding (delta Gu) were plotted versus temperature, the resulting curve appeared linear; therefore, delta Cp could not be determined. However, the data for delta Gu versus denaturant concentration are linear over an extraordinarily wide range of concentrations. Moreover, extrapolated values of delta Gu in urea are identical to values measured directly.  相似文献   

19.
The inhibitor of apoptosis proteins (IAPs) regulate the caspase family of cysteine proteases, which play an important role in the execution of programmed cell death. Human X-linked inhibitor of apoptosis protein (XIAP) is a potent inhibitor of caspases-3, -7, and -9. Here we show that the Bir3 domain is the minimal region of XIAP that is needed for potent caspase-9 inhibition. The three-dimensional structure of the Bir3 domain of XIAP, determined by NMR spectroscopy, resembles a classical zinc finger and consists of five alpha-helices, a three-stranded beta-sheet, and a zinc atom chelated to three cysteines and one histidine. The structure of the Bir3 domain is similar to that of the Bir2 domain of XIAP but differs from the previously determined structure of the Bir3 domain of MIHB. Based on site-directed mutagenesis, we have identified the regions of the Bir3 domain of XIAP that are important for inhibiting caspase-9. Despite the structural similarities of the Bir2 and Bir3 domain of XIAP, a different set of residues were found to be critical for inhibiting the individual caspases. These results suggest that XIAP inhibits caspase-3 and caspase-9 in a different manner.  相似文献   

20.
Phosphoglucose isomerase electrophoretic patterns of the Japanese quail were found to be controlled by three alleles at an autosomal locus. In the laboratory quail population, the frequency of the alleles PGIF, PGIS1 and PGIS2 was 0.175, 0.465 and 0.360, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号