首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
General architecture of the alpha-helical globule   总被引:4,自引:0,他引:4  
A model is presented for the arrangement of alpha-helices in globular proteins. In the model, helices are placed on certain ribs of "quasi-spherical" polyhedra. The polyhedra are chosen so as to allow the close packing of helices around a hydrophobic core and to stress the collective interactions of the individual helices. The model predicts a small set of stable architectures for alpha-helices in globular proteins and describes the geometries of the helix packings. Some of the predicted helix arrangements have already been observed in known protein structures; others are new. An analysis of the three-dimensional structures of all proteins for which co-ordinates are available shows that the model closely approximates the arrangements and packing of helices actually observed. The average deviations of the real helix axes from those in the model polyhedra is +/- 20 degrees in orientation and +/- 2 A in position (1 A = 0.1 nm). We also show that for proteins that are not homologous, but whose helix arrangements are described by the same polyhedron, the root-mean-square difference in the position of the C alpha atoms in the helices is 1.6 to 3.0 A.  相似文献   

2.
An abasic site in DNA creates a strong block to DNA polymerase and is a mutagenic base lesion. In this study, we present structural and dynamic properties of duplex oligodeoxynucleotides containing G, C and T opposite a model abasic site studied by one and two-dimensional nuclear magnetic resonance spectroscopy. We have demonstrated that A opposite the abasic site was positioned within the helix as if paired with T, and that the A residue melted co-operatively with the surrounding helix. We report here that G opposite the abasic site is also observed to be predominantly intrahelical in a normal anti conformation at low temperature. With increasing temperature, the mobility of the G residue increases rapidly and apparently is in a "melted state" well before denaturation of the helix. At low temperature, two species are found for T opposite the abasic site; one, intrahelical, one extrahelical. These species are in slow exchange with one another on a proton nuclear magnetic resonance time-scale. The two species then move into fast exchange with increasing temperature and the proportion of the extra-helical form increases. When C is positioned opposite the abasic site, both the C residue and the abasic sugar are extrahelical, the helix collapses, and the adjacent G.C base-pairs stack over one another. On the basis of these observations, we propose a model that explains why the abasic site acts to block DNA replication. Further, we suggest an explanation for the observed polymerase preference for base selection at abasic sites.  相似文献   

3.
D L Weaver 《Biopolymers》1992,32(5):477-490
The interhelical interfaces have been examined in seven high-resolution globin chains. The profiles of hydrophobic contact, as measured by the residue solvent-accessible area loss upon folding, have been calculated. The seven globins studied differ in their overall loss of solvent-accessible area upon packing of their helices, the order being 1MBD greater than 1LH1 greater than 1ECD greater than 2MHBB greater than 2HHBB greater than 2HHBA greater than 2MHBA, which gives a measure of the difference in stability due to the hydrophobic interaction. The five helix-pair packings (AH, BE, BG, FH and GH) examined in detail have qualitative similarities. There are, however, substantial quantitative differences both at the equivalent residue level and at the level of overall helix-helix contact, which has significance in some models of folding. The AH pair has the most uniform area loss over the seven globins and the largest variation in accessible area loss on packing among the five helix pairs is the GH pair. The set of residues required to produce the globin fold has been deduced from the residue area losses.  相似文献   

4.
AKR (Avian Knotted-Related) was the first example of a vertebrate homeodomain protein with a highly divergent Ile residue at position 50 of the DNA-recognition helix. The protein was cloned from a liver cDNA expression library of a day-9 chick embryo by virtue of its ability to bind to the F' site in the proximal promoter of the avian apoVLDLII gene. Expression of the apoVLDLII gene is completely estrogen dependent, and mutation or deletion of the F' site decreases estrogen inducibility 5- to 10-fold. Subsequent data indicated that AKR is capable of repressing the hormone responsiveness of the apoVLDLII promoter, specifically through binding to F'. Involvement of the F' site in the hormone-dependent activation of apoVLDLII gene expression, as well as AKR-mediated repression, strongly suggests that both positive and negative regulatory factors interact with this site. Although several mammalian proteins have now been isolated whose homeodomains share many of the structural features of AKR, including the Ile at position 50, little is known of their functions in vivo or the identities of the genes they regulate. Consequently, the elements through which they exert their effects and the structural determinants of their binding specificities remain largely uncharacterized. In this study, we defined the sequence specificity of binding by AKR using polymerase chain reaction-assisted optimal site selection and determined the affinity with which the protein binds to both the optimized site and the F' site. Additionally, we generated a three-dimensional model of the AKR homeodomain binding to its optimized site and probed the validity of the model by examining the consequences of mutating amino acid residues in recognition helix 3 and the N-terminal arm on the binding specificity of the homeodomain. Finally, we present evidence that the F' site itself may act as an estrogen response element (ERE) when in the vicinity of imperfect or canonical EREs and that AKR can repress hormone inducibility mediated via this site.  相似文献   

5.
The molecular mechanism of thermal unfolding of E. coli tRNAGlu, tRNAfMet and tRNAPhe (in 0.02M Tris-HC1, pH 7.5. 10 MM Mg C12) has been examined by the spin-labeling technique. The rate of tumbling of the spin label has been measured as a function of temperature for ten different selectively spin-labeled tRNAs. Only spin labels at position s4U-8 were able to probe the tertiary structure. Evidences are presented which support the hypothesis that the thermal denaturation of the three species of tRNAs studied is sequential. The unfolding process occurs in three discrete stages. The first step (30 degrees-32 degrees) could either be assigned to a localized reorganization of the cold-denatured structure or to a "transient" melting, followed by the simultaneous disruption of the tertiary structure and part of the hU helix. This transition is observed even in the absence of magnesium. The second step (50 degrees-54 degrees) involves the melting of the anticodon and miniloop regions. The last step occurs above 65 degrees where the t psi c and amino acid acceptor stems, forming one continuous double helix, melt. A simple dynamic model is considered for tRNA function in protein biosynthesis.  相似文献   

6.
The variability in amino acid axial rise per residue of the collagen helix is a potentially important parameter that is missing in many structural models of fibrillar collagen to date. The significance of this variability has been supported by evidence from collagen axial structures determined by electron microscopy and X-ray diffraction, as well as studies of the local sequence-dependent conformation of the collagen helix. Here, sequence-dependent variation of the axial rise per residue was used to improve the fit between simulated diffraction patterns derived from model structures of the axially projected microfibrillar structure and the observed X-ray diffraction pattern from hydrated rat tail tendon. Structural models were adjusted using a genetic algorithm that allowed a wide range of structures to be tested efficiently. The results show that variation of the axial rise per residue could reduce the difference metric between model and observed data by up to 50%, indicating that such a variable is a necessary part of fibril model structure building. The variation in amino acid translation was also found to be influenced by the number of proline and hydroxyproline residues in the triple helix structure.  相似文献   

7.
The unusually stable and multifunctional, thin aggregative fimbriae common to all Salmonella spp. are principally polymers of the fimbrin subunit, AgfA. AgfA of Salmonella enteritidis consists of two domains: a protease-sensitive, 22 amino acid residue N-terminal region and a protease-resistant, 109 residue C-terminal core. The unusual amino acid sequence of the AgfA core region comprises two-, five- and tenfold internal sequence homology patterns reflected in five conserved, 18-residue tandem repeats. These repeats have the consensus sequence, Sx5QxGx2NxAx3Q and are linked together by four or five residues, (x)xAx2. The predicted secondary structure for this unusual arrangement of tandem repeats in AgfA indicates mainly extended conformation with the beta strands linked by four to six residues. Candidate proteins of known structure with motifs of alternating beta strands and short loops were selected from folds described in SCOP as a source of coordinates for AgfA model construction. Three all-beta class motifs selected from the Serratia marcescens metalloprotease, myelin P2 protein or vitelline membrane outer protein I were used for initial AgfA homology build-up procedures ultimately resulting in three structural models; beta barrel, beta prism and parallel beta helix. The beta barrel model is a compact, albeit irregular structure, with the beta strands arranged in two antiparallel beta sheet faces. The beta prism model does not reflect the 5 or 10-fold symmetry of the AgfA primary sequence. However, the favored, parallel beta helix model is a compact coil of ten helically arranged beta strands forming two parallel beta sheet faces. This arrangement predicts a regular, potentially stable, C-terminal core region consistent with the observed tandem repeat sequences, protease-resistance and strong tendency of this fimbrin to oligomerize and aggregate. Positional conservation of amino acid residues in AgfA and the Escherichia coli AgfA homologue, CsgA, provides strong support for this model. The parallel beta helix model of AgfA offers an interesting solution to a multifunctional fimbrin molecular surface having solvent exposed areas, regions for major and minor subunit interactions as well as fiber-fiber interactions common to many bacterial fimbriae.  相似文献   

8.
The polynucleotide helix d(T)n.d(A)n.d(T)n is the only deoxypolynucleotide triple helix for which a structure has been published, and it is generally assumed as the structural basis for studies of DNA triplexes. The helix has been assigned to an A-form conformation with C3'-endo sugar pucker by Arnott and Selsing [1974; cf. Arnott et al. (1976)]. We show here by infrared spectroscopy in D2O solution that the helix is instead B-form and that the sugar pucker is in the C2'-endo region. Distamycin A, which binds only to B-form and not to A-form helices, binds to the triple helix without displacement of the third strand, as demonstrated by CD spectroscopy and gel electrophoresis. Molecular modeling shows that a stereochemically satisfactory structure can be build using C2'-endo sugars and a displacement of the Watson-Crick base-pair center from the helix axis of 2.5 A. Helical constraints of rise per residue (h = 3.26 A) and residues per turn (n = 12) were taken from fiber diffraction experiments of Arnott and Selsing (1974). The conformational torsion angles are in the standard B-form range, and there are no short contacts. In contrast, we were unable to construct a stereochemically allowed model with A-form geometry and C3'-endo sugars. Arnott et al. (1976) observed that their model had short contacts (e.g., 2.3 A between the phosphate-dependent oxygen on the A strand and O2 in the Hoogsteen-paired thymine strand) which are generally known to be outside the allowed range.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The conformational properties of an 18 residues peptide spanning the entire sequence, L1KTPA5QFDAD10ELRAA15MKG, of the first helix (A-helix) of domain 2 of annexin I, were thoroughly investigated. This fragment exhibits several singular features, and in particular, two successive potential capping boxes, T3xxQ6 and D8xxE11. The former corresponds to the native hydrogen bond network stabilizing the alpha helix N-terminus in the protein; the latter is a non-native capping box able to break the helix at residue D8, and is observed in the domain 2 partially folded state. Using 2D-NMR techniques, we showed that two main populations of conformers coexist in aqueous solution. The first corresponds to a single helix extending from T3 to K17. The second corresponds to a broken helix at residue Ds. Four mutants, T3A, F7A, D8A, and E11A, were designed to further analyze the role of key amino acids in the equilibrium between the two ensembles of conformers. The sensitivity of NMR parameters to account for the variations in the populations of conformers was evaluated for each peptide. Our data show the delta13Calpha chemical shift to be the most relevant parameter. We used it to estimate the population ratio in the various peptides between the two main ensembles of conformers, the full helix and the broken helix. For the WT, E11A, and F7A peptides, these ratios are respectively 35/65, 60/40, 60/40. Our results were compared to the data obtained from helix/coil transition algorithms.  相似文献   

10.
Ansari S  Helms V 《Proteins》2005,61(2):344-355
A non-redundant set of 170 protein-protein interfaces of known structure was statistically analyzed for residue and secondary-structure compositions, pairing preferences and side-chain-backbone interaction frequencies. By focussing mainly on transient protein-protein interfaces, the results underline previous findings for protein-protein interfaces but also show some new interesting aspects of transient interfaces. The residue compositions at interfaces found in this study correlate well with the results of other studies. On average, contacts between pairs of hydrophobic and polar residues were unfavorable, and the charged residues tended to pair subject to charge complementarity. Secondary structure composition analysis shows that neither helices nor beta-sheets are dominantly populated at interfaces. Analyzing the pairing preferences of the secondary structure elements revealed a higher affinity within the same elements and alludes to tight packings. In addition, the results for the side-chain and backbone interaction frequencies, which were measured under more stringent conditions, showed a high occurrence of side-chain-backbone interactions. Taking a closer look at the helix and beta-sheet binding frequencies for a given side-chain and backbone interaction underlined the relevance of tight packings. The polarity of interfaces increased with decreasing interface size. These types of information may be useful for scoring complexes in protein-protein docking studies or for prediction of protein-protein interfaces from the sequences alone.  相似文献   

11.
Solid-state 2H NMR spectroscopy has been employed to study the channel conformation of gramicidin A (GA) in unoriented 1,2-dimyristoyl-sn-glycerol-3-phosphocholine (DMPC) multilayers. Quadrupolar echo spectra were obtained at 44 degrees C and 53 degrees C, from gramicidin A labels in which the proton attached to the alpha carbon of residue 3, 4, 5, 10, 12, or 14 was replaced with deuterium. Because of the nearly axially symmetric electric field gradient tensor, the quadrupolar splittings obtained from an unoriented multilamellar dispersion of DMPC and singly labeled GA directly yield unambiguous orientational constraints on the C-2H bonds. The average of the ratios of the quadrupolar splittings of the left-handed amino acids to those of the right-handed amino acids, (delta vQL/delta vQD), is expected to be 0.97 +/- 0.04 for a relaxed right-handed beta 6.3LD helix, while a ratio of 0.904 +/- 0.003 is expected for a left-handed beta LD6.3 helix. Since we have experimentally determined this ratio to be 1.01 +/- 0.04, we conclude that that the helix sense of the channel conformation of GA is right-handed. Assuming that the dominant motions are fast axial diffusion of the gramicidin molecule and reorientation of the diffusion axis with respect to the local bilayer normal, then the theoretical splittings may all be scaled down by a constant motional narrowing factor. In this case, a relaxed right-handed beta LD6.3 helix, whose axis of motional averaging is roughly along the presumed helix axis, gave the best fit to experimental results. The reasonably uniform correspondence between the splittings predicted by the relaxed right-handed beta LD6.3 helix and the observed splittings, for labels from both the inner and outer turn of GA, did not reflect a peptide backbone flexibility gradient, since an outer turn (i.e., the turn of the helix closest to the interface with water) with greater flexibility would show additional motional narrowing for labels located there.  相似文献   

12.
The geminivirus replication factor AL1 interacts with the plant retinoblastoma-related protein (pRBR) to modulate host gene expression. The AL1 protein of tomato golden mosaic virus (TGMV) binds to pRBR through an 80-amino-acid region that contains two highly predicted α-helices designated 3 and 4. Earlier studies suggested that the helix 4 motif, whose amino acid sequence is strongly conserved across geminivirus replication proteins, plays a role in pRBR binding. We generated a series of alanine substitutions across helix 4 of TGMV AL1 and examined their impact on pRBR binding using yeast two-hybrid assays. These experiments showed that several helix 4 residues are essential for efficient pRBR binding, with a critical residue being a leucine at position 148 in the middle of the motif. Various amino acid substitutions at leucine-148 indicated that both structural and side chain components contribute to pRBR binding. The replication proteins of the geminiviruses tomato yellow leaf curl virus and cabbage leaf curl virus (CaLCuV) also bound to pRBR in yeast dihybrid assays. Mutation of the leucine residue in helix 4 of CaLCuV AL1 reduced binding. Together, these results suggest that helix 4 and the conserved leucine residue are part of a pRBR-binding interface in begomovirus replication proteins.  相似文献   

13.
AAF linked to the guanine amino group: a B-Z junction.   总被引:1,自引:1,他引:0       下载免费PDF全文
Minimized conformational potential energy calculations have been performed for AAF linked to dCpdG at the guanine amino group. This is a model for the minor AAF adduct observed in DNA, whose conformational influence has been difficult to ascertain. A global minimum energy conformation was computed with torsion angles like those of the dCpdG residue of Z-DNA. This conformation was incorporated into a larger polymer model at a B-Z junction, with the carcinogen residing in the groove in the Z direction. Local minimum energy conformations of the B type were also computed. In addition, two minima were found with fluorenecytidine stacking. These results suggest that existing B-Z junctions may be vulnerable to modification by AAF at the guanine amino group, or that such junctions may be induced by the carcinogen if the base sequence is appropriate. Otherwise the carcinogen can be located in the minor groove of the B helix (5, 10, 11) or covalently intercalated (13-15).  相似文献   

14.
G‐Protein Coupled Receptors (GPCRs) play a critical role in cellular signal transduction pathways and are prominent therapeutic targets. Recently there has been major progress in obtaining experimental structures for a few GPCRs. Each GPCR, however, exhibits multiple conformations that play a role in their function and we have been developing methods aimed at predicting structures for all these conformations. Analysis of available structures shows that these conformations differ in relative helix tilts and rotations. The essential issue is, determining how to orient each of the seven helices about its axis since this determines how it interacts with the other six helices. Considering all possible helix rotations to ensure that no important packings are overlooked, and using rotation angle increments of 30° about the helical axis would still lead to 127 or 35 million possible conformations each with optimal residue positions. We show in this paper how to accomplish this. The fundamental idea is to optimize the interactions between each pair of contacting helices while ignoring the other 5 and then to estimate the energies of all 35 million combinations using these pair‐wise interactions. This BiHelix approach dramatically reduces the effort to examine the complete set of conformations and correctly identifies the crystal packing for the experimental structures plus other near‐native packings we believe may play an important role in activation. This approach also enables a detailed structural analysis of functionally distinct conformations using helix‐helix interaction energy landscapes and should be useful for other helical transmembrane proteins as well. Proteins 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

15.
The standard collagen triple‐helix requires a perfect (Gly‐Xaa‐Yaa)n sequence, yet all nonfibrillar collagens contain interruptions in this tripeptide repeating pattern. Defining the structural consequences of disruptions in the sequence pattern may shed light on the biological role of sequence interruptions, which have been suggested to play a role in molecular flexibility, collagen degradation, and ligand binding. Previous studies on model peptides with 1‐ and 4‐residue interruptions showed a localized perturbation within the triple‐helix, and this work is extended to introduce natural collagen interruptions up to nine residue in length within a fixed (Gly‐Pro‐Hyp)n peptide context. All peptides in this set show decreases in triple‐helix content and stability, with greater conformational perturbations for the interruptions longer than five residue. The most stable and least perturbed structure is seen for the 5‐residue interruption peptide, whose sequence corresponds to a Gly to Ala missense mutation, such as those leading to collagen genetic diseases. The triple‐helix peptides containing 8‐ and 9‐residue interruptions exhibit a strong propensity for self‐association to fibrous structures. In addition, a small peptide modeling only the 9‐residue sequence within the interruption aggregates to form amyloid‐like fibrils with antiparallel β‐sheet structure. The 8‐ and 9‐residue interruption sequences studied here are predicted to have significant cross‐β aggregation potential, and a similar propensity is reported for ~10% of other naturally occurring interruptions. The presence of amyloidogenic sequences within or between triple‐helix domains may play a role in molecular association to normal tissue structures and could participate in observed interactions between collagen and amyloid.  相似文献   

16.
The i + 5-->i hydrogen bonded turn conformation (pi-turn) with the fifth residue adopting alpha L conformation is frequently found at the C-terminus of helices in proteins and hence is speculated to be a "helix termination signal." An analysis of the occurrence of i + 5-->i hydrogen bonded turn conformation at any general position in proteins (not specifically at the helix C-terminus), using coordinates of 228 protein crystal structures determined by X-ray crystallography to better than 2.5 A resolution is reported in this paper. Of 486 detected pi-turn conformations, 367 have the (i + 4)th residue in alpha L conformation, generally occurring at the C-terminus of alpha-helices, consistent with previous observations. However, a significant number (111) of pi-turn conformations occur with (i + 4)th residue in alpha R conformation also, generally occurring in alpha-helices as distortions either at the terminii or at the middle, a novel finding. These two sets of pi-turn conformations are referred to by the names pi alpha L and pi alpha R-turns, respectively, depending upon whether the (i + 4)th residue adopts alpha L or alpha R conformations. Four pi-turns, named pi alpha L'-turns, were noticed to be mirror images of pi alpha L-turns, and four more pi-turns, which have the (i + 4)th residue in beta conformation and denoted as pi beta-turns, occur as a part of hairpin bend connecting twisted beta-strands. Consecutive pi-turns occur, but only with pi alpha R-turns. The preference for amino acid residues is different in pi alpha L and pi alpha R-turns. However, both show a preference for Pro after the C-termini. Hydrophilic residues are preferred at positions i + 1, i + 2, and i + 3 of pi alpha L-turns, whereas positions i and i + 5 prefer hydrophobic residues. Residue i + 4 in pi alpha L-turns is mainly Gly and less often Asn. Although pi alpha R-turns generally occur as distortions in helices, their amino acid preference is different from that of helices. Poor helix formers, such as His, Tyr, and Asn, also were found to be preferred for pi alpha R-turns, whereas good helix former Ala is not preferred. pi-Turns in peptides provide a picture of the pi-turn at atomic resolution. Only nine peptide-based pi-turns are reported so far, and all of them belong to pi alpha L-turn type with an achiral residue in position i + 4. The results are of importance for structure prediction, modeling, and de novo design of proteins.  相似文献   

17.
Structural microdomains of G protein-coupled receptors (GPCRs) consist of spatially related side chains that mediate discrete functions. The conserved helix 2/helix 7 microdomain was identified because the gonadotropin-releasing hormone (GnRH) receptor appears to have interchanged the Asp(2.50) and Asn(7.49) residues which are conserved in transmembrane helices 2 and 7 of rhodopsin-like GPCRs. We now demonstrate that different side chains of this microdomain contribute specifically to receptor expression, heterotrimeric G protein-, and small G protein-mediated signaling. An Asn residue is required in position 2.50(87) for expression of the GnRH receptor at the cell surface, most likely through an interaction with the conserved Asn(1.50(53)) residue, which we also find is required for receptor expression. Most GPCRs require an Asp side chain at either the helix 2 or helix 7 locus of the microdomain for coupling to heterotrimeric G proteins, but the GnRH receptor has transferred the requirement for an acidic residue from helix 2 to 7. However, the presence of Asp at the helix 7 locus precludes small G protein-dependent coupling to phospholipase D. These results implicate specific components of the helix 2/helix 7 microdomain in receptor expression and in determining the ability of the receptor to adopt distinct activated conformations that are optimal for interaction with heterotrimeric and small G proteins.  相似文献   

18.
The substitution Ala----Gly has been studied in a unique-sequence peptide (related in sequence to the C-peptide of ribonuclease A) to determine its effect on C-peptide helicity at different residue positions. There is a substantial decrease in helicity for Ala----Gly at residue position 4, 5, or 6 but only a small decrease in helicity for Ala----Gly at end residue 1 and no decrease at end residue 13. The change for Ala----Gly is similar at position 4, 5, or 6; the change is caused chiefly by the difference in s, the helix growth parameter in the Zimm-Bragg model for alpha-helix formation, between Ala and Gly. Thus, the helicity of C-peptide depends sensitively on s at interior positions. The small change in helicity found for Ala----Gly at either end position suggests that the end residues are largely excluded from the helix, with the result that helicity is relatively unaffected by replacement of an end residue. Another possibility is that some helix-stabilizing effect is exerted by Gly only at an end position. Exclusion of an end residue from the helix might be caused either by fraying of the helix ends or by helix termination at an interior residue, resulting from a helix stop signal such as the Glu-2- -Arg-10+ salt bridge or the Phe-8-His-12+ ring interaction.  相似文献   

19.
Fibrillar collagens have an absolute requirement for Gly as every 3rd residue, whereas breaks in the Gly-X-Y repeating pattern are found normally in the triple helix domains of non-fibrillar collagens, such as type IV collagen in basement membranes. In this study, a model 30-mer peptide is designed to include the interruption GPOGAAVMGPOGPO found in the alpha5 chain of type IV collagen. The GAAVM peptide forms a stable triple helix, with Tm= 29 degrees C. When compared with a control peptide with Gly as every 3rd residue, the GAAVM peptide has a marked decrease in the 225 nm maximum of its CD spectrum and a 10 degrees C drop in stability. A 50% decrease in calorimetric enthalpy is observed, which may result from disruption of ordered water structure anchored by regularly placed backbone carbonyls. NMR studies on specific 15N-labeled residues within the GAAVM peptide indicate a normal triple helical structure for Gly-Pro-Hyp residues flanking the break. The sequence within the break is not disordered but shows altered hydrogen exchange rates and an abnormal Val chemical shift. It was previously reported that a peptide designed to model a similar kind of interruption in the peptide (Pro-Hyp-Gly)10, (GPOGPOPOGPO), is unable to form a stable triple helix, and replacement of GAA by GPO or VM by PO within the GAAVM break decreases the stability. Thus, rigid imino acids are unfavorable within a break, despite their favorable stabilization of the triple helix itself. These results suggest some non-random structure typical of this category of breaks in the Gly-X-Y repeat of the triple helix.  相似文献   

20.
Denic V  Weissman JS 《Cell》2007,130(4):663-677
Very long-chain fatty acids (VLCFAs) are essential lipids whose functional diversity is enabled by variation in their chain length. The full VLCFA biosynthetic machinery and how this machinery generates structural diversity remain elusive. Proteoliposomes reconstituted here from purified membrane components-an elongase protein (Elop), a novel dehydratase, and two reductases-catalyzed repeated rounds of two-carbon addition that elongated shorter FAs into VLCFAs whose length was dictated by the specific Elop homolog present. Mutational analysis revealed that the Elop active site faces the cytosol, whereas VLCFA length is determined by a lysine near the luminal end of an Elop transmembrane helix. By stepping the lysine residue along one face of the helix toward the cytosol, we engineered novel synthases with correspondingly shorter VLCFA outputs. Thus the distance between the active site and the lysine residue determines chain length. Our results uncover a mutationally adjustable, caliper-like mechanism that generates the repertoire of cellular VLCFAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号