首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The misfolding and aggregation of proteins is associated with many different diseases including the trinucleotide repeat disorders and Prion diseases. We have studied three residue peptides comprising alanine and glutamine in order to understand the short range interactions affecting the formation of β-rich aggregates. Using infrared spectroscopy, we have found that trialanine and triglutamine form significant amounts of β-sheet, but that tripeptides containing alanine and glutamine are only able to form β-sheet if the glutamine side-chains extend outward on both faces of the sheet. From our data, we conclude that different stabilizing interactions are responsible for β-sheet formation in trialanine and triglutamine.  相似文献   

2.
A method to identify β-sheets in globular proteins from extended strands, using only α-carbon positions, has been developed. The strands that form β-sheets are picked up by means of simple distance criteria. The method has been tested by applying it to three proteins with accurately known secondary structures. It has also been applied to ten other proteins wherein only α-carbon coordinates are available, and the list of β-sheets obtained. The following points are worth noting: (i) The sheets identified by the algorithm are found to agree satisfactorily with the reported ones based on backbone hydrogen bonding, wherever this information is available. (ii) β-Strands that do not form parts of any sheet are a common feature of protein structures. (iii) Such isolated β-strands tend to be short. (iv) The conformation corresponding to the preferred right-handed twist of the sheet is overwhelmingly observed in both the sheet-forming and isolated β-strands.  相似文献   

3.
Here we test the hypothesis that membrane-spanning β-sheets can exhibit structural plasticity in membranes due to their ability to shift hydrogen-bonding patterns. Transmembrane β-sheet forming peptides of the sequence AcWLn, where n = 5, 6, or 7, which range from 21 to 27 Å in maximum length, were incorporated into bilayers made of phosphatidylcholine lipids with saturated acyl chains containing 14, 16, or 18 carbons, which are 36–50 Å in thickness. The effect of the peptide β-sheets on fluid- and gel-phase bilayers were studied with differential scanning calorimetry and circular dichroism spectroscopy. We show that AcWL5 forms a stable, peptide-rich gel phase in all three lipids. The whole family of AcWLn peptides appears to form similarly stable, nonmembrane-disrupting β-sheets in all bilayer phases and thicknesses. Bilayers containing up to 20 mol % peptide, which is the maximum concentration tested, formed gel phases with melting temperatures that were equal to, or slightly higher than, the pure lipid transitions. Given the range of peptide lengths and bilayer thicknesses tested, these experiments show that the AcWLn family of membrane-inserted β-sheets exhibit remarkable structural plasticity in membranes.  相似文献   

4.
Cross‐strand disulfides bridge two cysteines in a registered pair of antiparallel β‐strands. A nonredundant data set comprising 5025 polypeptides containing 2311 disulfides was used to study cross‐strand disulfides. Seventy‐six cross‐strand disulfides were found of which 75 and 1 occurred at non‐hydrogen‐bonded (NHB) and hydrogen‐bonded (HB) registered pairs, respectively. Conformational analysis and modeling studies demonstrated that disulfide formation at HB pairs necessarily requires an extremely rare and positive χ1 value for at least one of the cysteine residues. Disulfides at HB positions also have more unfavorable steric repulsion with the main chain. Thirteen pairs of disulfides were introduced in NHB and HB pairs in four model proteins: leucine binding protein (LBP), leucine, isoleucine, valine binding protein (LIVBP), maltose binding protein (MBP), and Top7. All mutants LIVBP T247C V331C showed disulfide formation either on purification, or on treatment with oxidants. Protein stability in both oxidized and reduced states of all mutants was measured. Relative to wild type, LBP and MBP mutants were destabilized with respect to chemical denaturation, although the sole exposed NHB LBP mutant showed an increase of 3.1°C in T m . All Top7 mutants were characterized for stability through guanidinium thiocyanate chemical denaturation. Both exposed and two of the three buried NHB mutants were appreciably stabilized. All four HB Top7 mutants were destabilized (ΔΔG 0 = ?3.3 to ?6.7 kcal/mol). The data demonstrate that introduction of cross‐strand disulfides at exposed NHB pairs is a robust method of improving protein stability. All four exposed Top7 disulfide mutants showed mild redox activity. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
α-Helical coiled coil and β-sheet complexes are essential structural building elements of silk proteins produced by different species of the Hymenoptera. Beside X-ray scattering at wide and small angles we applied cryo-electron diffraction and microscopy to demonstrate the presence and the details of such structures in silk of the giant hornet Vespa mandarinia japonica. Our studies on the assembly of the fibrous silk proteins and their internal organization in relation to the primary chain structure suggest a 172 Å pitch supercoil consisting of four intertwined alanine-rich α-helical strands. The axial periodicity may adopt even multiples of the pitch value. Coiled coil motifs form the largest portion of the hornet silk structure and are aligned nearly parallel to the cocoon fiber axis in the same way as the membrane-like parts of the cocoon are molecularly orientated in the spinning direction. Supercoils were found to be associated with β-crystals, predominantly localized in the l-serine-rich chain sequences terminating each of the four predominant silk proteins. Such β-sheet blocks are considered resulting from transformation of random coil molecular sequences due to the action of elongational forces during the spinning process.  相似文献   

6.
Plastocyanin and azurin form a family of small copper-containing proteins, active in the electron transport systems of plants and bacteria, respectively. The crystal structures of two members of this family have been determined: poplar leaf plastocyanin and Pseudomonas aeruginosa azurin. Both proteins contain two β-sheets, packed face-to-face. Using computed superpositions of the structures, we have aligned the sequences, identified homologous positions, and studied how the structures have changed as a result of mutations.The residues in the vicinity of the copper-binding site show minimal amino acid substitution and form almost identical structures. Other portions of these proteins are more variable in sequence and in structure. Buried residues tend to maintain their hydrophobic character, but mutations change their volume. The mean variation in volume of homologous buried residues is 54 Å3. The differences in size and shape of these buried residues are accommodated by a 3.8 Å shift in relative position of the packed β-sheets. This shift does not affect the copper binding site, because the residues that form this site are in, or adjacent to, just one of the β-sheets.  相似文献   

7.
Based on circular dichroism (CD) and the sequence-predictive method, the opioid-binding cell adhesion molecule (OBCAM) consisted of one half -sheets and one fourth -helices. This is consistent with significant sequence homology of the protein to several members of the immunoglobulin (Ig) superfamily, particularly cell adhesion molecules, which are rich in -sheets. Hydropathy analysis suggests that hydrophobic and hydrophilic regions were evenly distributed along the sequence, but the NH2- and COOH-termini were hydrophobic. Hydrophobic moments and Fourier-transform amphipathic analyses further suggest that residues 23–30 and 83–93 were amphiphathie -sheets. The overall conformation of OBCAM was unaltered by adding linoleic acid, which is required for opioid ligand binding.  相似文献   

8.
Amyloid diseases, including Alzheimer's disease, are characterized by aggregation of normally functioning proteins or peptides into ordered, β-sheet rich fibrils. Most of the theories on amyloid toxicity focus on the nuclei or oligomers in the fibril formation process. The nuclei and oligomers are transient species, making their full characterization difficult. We have isolated toxic protein species that act like an oligomer and may provide the first evidence of a stable reactive species created by disaggregation of amyloid fibrils. This reactive species was isolated by dissolving amyloid fibrils at high pH and it has a mass >100 kDa and a diameter of 48 ± 15 nm. It seeds the formation of fibrils in a dose dependent manner, but using circular dichroism and deep ultraviolet resonance Raman spectroscopy, the reactive species was found to not have a β-sheet rich structure. We hypothesize that the reactive species does not decompose at high pH and maintains its structure in solution. The remaining disaggregated insulin, excluding the toxic reactive species that elongated the fibrils, returned to native structured insulin. This is the first time, to our knowledge, that a stable reactive species of an amyloid reaction has been separated and characterized by disaggregation of amyloid fibrils.  相似文献   

9.
The frequency of occurrence of nearest neighbour residue pairs on adjacent antiparallel (βA) and parallel (βP) strands is obtained from 30 known protein structures. The specificity of interstrand recognition due to such pairing as a factor in the folding of β-sheets is studied by statistical methods. Residues of sufficiently high count for statistical analysis are treated individually while the rest are combined into small groups of similar size, polarity, and/or genetic exchangeability. The hypothesis of specific recognition between individuals and small groups is contrasted with the alternative hypothesis of non-specific recognition between broad classes (hydrophobia, neutral, polar) of residues. A χ2 test of pair correlations favours specific recognition against non-specific recognition with a high level of confidence. The largest and most significant correlations are: Ser/Thr (1.9 ± 0.3), Ile/Val (1.7 ± 0.3) and Lys-Arg/Asp-Gln (1.8 ± 0.3) in βA, and Ile/Leu (1.9 ± 0.4) in βP. The pair Gly/Gly never occurs in any β-sheet. The specific residue-pair correlations derived here may be useful in statistical prediction methods of protein tertiary structure.  相似文献   

10.
A method is proposed for predicting the adjacency order in which strands pack in a -sheet in a protein, on the basis of its amino acid sequence alone. The method is based on the construction of a predicted contact map for the protein, in which the probability that various residue pairs are close to each other is computed from statistically determined average distances of residue pairs in globular proteins of known structure. Compact regions, i.e., portions of the sequence with many interresidue contacts, are determined on the map by using an objective search procedure. The proximity of strands in a -sheet is predicted from the density of contacts in compact regions associated with each pair of strands. The most probable -sheet structures are those with the highest density of contacts. The method has been tested by computing the probable strand arrangements in a five-strand -sheet in five proteins or protein domains, containing 62–138 residues. Of the theoretically possible 60 strand arrangements, the method selects two to eight arrangements as most probable; i.e., it leads to a large reduction in the number of possibilities. The native strand arrangement is among those predicted for three of the five proteins. For the other two, it would be included in the prediction by a slight relaxation of the cutoff criteria used to analyze the density of contacts.  相似文献   

11.
12.
As a promising biomaterial with numerous potential applications, various types of synthetic spider silk fibers have been produced and studied in an effort to produce man-made fibers with mechanical and physical properties comparable to those of native spider silk. In this study, two recombinant proteins based on Nephila clavipes Major ampullate Spidroin 1 (MaSp1) consensus repeat sequence were expressed and spun into fibers. Mechanical test results showed that fiber spun from the higher molecular weight protein had better overall mechanical properties (70 KD versus 46 KD), whereas postspin stretch treatment in water helped increase fiber tensile strength significantly. Carbon-13 solid-state NMR studies of those fibers further revealed that the postspin stretch in water promoted protein molecule rearrangement and the formation of β-sheets in the polyalanine region of the silk. The rearrangement correlated with improved fiber mechanical properties and indicated that postspin stretch is key to helping the spider silk proteins in the fiber form correct secondary structures, leading to better quality fibers.  相似文献   

13.
14.
Summary There is currently great interest in the study of peptide aggregation by β-sheet formation because of its relevance in pathological states or in the design of self-assembling systems of technological interest. NMR studies of β-sheet aggregates are difficult because of their long correlation times and spectral degeneracy. In this communication we demonstrate the combination of a semiselective TOCSY-NOESY experiment with partial deuterium exchange of labile protons to assign inter-molecular NOE cross peaks and prove the presence of a soluble parallel β-sheet in fast exchange with monomeric Ac-ASTTNYT-NH2 (Ac-T-NH2) in solution.  相似文献   

15.
16.
Reaction of β-maltotriose hendecaacetate with phosphorus pentachloride gave 2′,2″,3,3′,3″,4″,6,6′,6″,-nona-O-acetyl-(2)-O-trichloroacetyl-β-maltotriosyl chloride (2) which was isomerized into the corresponding α anomer (8). Selective ammonolysis of 2 and 8 afforded the 2-hydroxy derivatives 3 and 9, respectively; 3 was isomerized into the α anomer 9. Methanolysis of 2 and 3 in the presence of pyridine and silver nitrate and subsequent deacetylation gave methyl α-maltotrioside. Likewise, methanolysis and O-deacetylation of 9 gave methyl β-maltotrioside which was identical with the compound prepared by the Koenigs—Knorr reaction of 2,2′,2″,3,3′,3″,4″,6,6′,6″-deca-O-acetyl-α-maltotriosyl bromide (12) with methanol followed by O-deacetylation. Several substituted phenyl β-glycosides of maltotriose were also obtained by condensation of phenols with 12 in an alkaline medium. Alkaline degradation of the o-chlorophenyl β-glycoside decaacetate readily gave a high yield of 1,6-anhydro-β-maltotriose.  相似文献   

17.
Massimo Aureli 《FEBS letters》2009,583(15):2469-6422
Human fibroblasts produce ceramide from sialyllactosylceramide on the plasma membranes. Sialidase Neu3 is known to be plasma membrane associated, while only indirect data suggest the plasma membrane association of β-galactosidase and β-glucosidase. To determine the presence of β-galactosidase and β-glucosidase on plasma membrane, cells were submitted to cell surface biotinylation. Biotinylated proteins were purified by affinity column and analyzed for enzymatic activities on artificial substrates. Both enzyme activities were found associated with the cell surface and were up-regulated in Neu3 overexpressing cells. These enzymes were capable to act on both artificial and natural substrates without any addition of activator proteins or detergents and displayed a trans activity in living cells.  相似文献   

18.
Enzymatic 5′-monophosphorylation and 5′-phosphatidylation of a number of β-l- and β-d-nucleosides was investigated. The first reaction, catalyzed by nucleoside phosphotransferase (NPT) from Erwinia herbicola, consisted of the transfer of the phosphate residue from p-nitrophenylphosphate (p-NPP) to the 5′-hydroxyl group of nucleoside; the second was the phospholipase d (PLD)-catalyzed transphosphatidylation of l-α-lecithin with a series of β-l- and β-d-nucleosides as the phosphatidyl acceptor resulted in the formation of the respective phospholipid-nucleoside conjugates. Some β-l-nucleosides displayed similar or even higher substrate activity compared to the β-d-enantiomers.  相似文献   

19.
20.
A β-xylosidase (β-d-xyloside xylohydrolase, EC 3.2.1.37) and β-glucosidase (β-d-glucoside glucohydrolase, EC 3.2.1.21) extracted from a wheat bran culture of Aspergillus fumigatus were purified up to 90-fold and 131-fold, respectively, by ammonium sulfate precipitation, gel filtration, ion exchange chromatography, and hydroxylapatite chromatography. Molecular weights of the β-xylosidase and β-glucosidase were 360,000 and 380,000, respectively, each consisting of four identical subunits. The isoelectric points of β-xylosidase and β-glucosidase were at pH 5.4 and 4.5, respectively. The optimum temperature for the β-xylosidase was 75°C, being stable up to 65°C for 20 min and for the β-glucosidase was 65°C, being stable up to 60°C for 20 min. The optimum pH for both enzymes was about 4.5, being stable between 2 and 8 at 50°C for 20 min. Both enzymes were inhibited by Fe3+, Cu2+, Hg2+, SDS, and p-chloromercuribenzoate. The apparent Michaelis constants of the β-xylosidase were 2.0 and 23.8 mM for p-nitrophenyl-β-xyloside and xylobiose, respectively, and those of the β-glucosidase were 1.4, 11.4, and 24.8 mM for p-nitrophenyl-β-glucoside, gentiobiose, and cellobiose, respectively. To produce xylose from crude xylooligosac-charides prepared by steam-explosion of cotton seed waste (DP ≤10, 53%, total sugars = 150 g/ liter), the crude enzyme from A. fumigatus (β-xylosidase activity = 14.7 units/ml, xylanase activity = 20 units/ml) could hydrolyze the substrate at 55°C and pH 4.5 resulting in almost complete conversion to xylose (160 g/liter).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号