首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The polymerase chain reaction (PCR) was used to amplify a fragment of the ribosomal DNA (rDNA) from species and undescribed populations of Aphelenchoides and Ditylenchus angustus. The PCR primers used were based on conserved sequences in the 18S and 26S ribosomal RNA genes of Caenorhabditis elegans. In C. elegans, these primers amplify a 1,292 base pair (bp) fragment, which consists of the two internal transcribed spacers and the entire 5.8S gene. Amplification products from crude DNA preparations of 12 species and populations of Aphelenchoides and from D. angustus ranged in size from approximately 860-1,100bp. Southern blots probed with a cloned ribosomal repeat from C. elegans confirmed the identity of these amplified bands as ribosomal fragments. In addition to the differing sizes of the amplified rDNA fragments, the relative intensity of hybridization with the C. elegans probe indicated varying degrees of sequence divergence between species and populations. In some cases, amplified rDNA from the fungal host was evident. Storage of A. composticola at - 45 C for 2 years did not affect the ability to obtain appropriate amplified products from crude DNA preparations. Amplified rDNA fragments were cut with six restriction enzymes, and the restriction fragments produced revealed useful diagnostic differences between species and some undescribed populations. These results were consistent with previous studies based on morphology and isoenzymes. Three undescribed populations of Aphelenchoides were found to be different from all the species examined and from each other.  相似文献   

2.
Isolation and sequence organization of human ribosomal DNA.   总被引:6,自引:0,他引:6  
The genes coding for 28 S and 18 S ribosomal RNA have been purified from leukemic leukocytes of one human individual by density gradient centrifugation. The purified ribosomal DNA was analyzed by restriction endonuclease digestion and electron microscopy. The location of cleavage sites for the restriction endonuclease EcoRI was established by R-loop mapping of restriction fragments by electron microscopy. The results are in agreement with gel analysis and gel transfer hybridization. One type of ribosomal DNA repeating unit contains four cleavage sites for EcoRI. Two of these cuts are located in the genes coding for 28 S and 18 S rRNA, while the other two are in the non-transcribed spacer. Thus, one of the restriction fragments generated contains non-transcribed spacer sequences only and is not detected by gel transfer hybridization if labeled rRNA is used as the hybridization probe. A second type of repeating unit lacks one of the EcoRI cleavage sites within the non-transcribed spacer. This indicates that sequence heterogeneity exists in human rDNA spacers. R-loop mapping of high molecular weight rDNA in the electron microscope reveals that the majority of repeats are rather uniform in length. The average size of 22 repeats was 43.65(±1.27) kb. Two repeats were found with lengths of 28.6 and 53.9 kb, respectively. This, and additional evidence from gels, indicates that some length heterogeneity does exist in the non-transcribed spacer. The structure of the human rDNA repeat is summarized in Figure 10.  相似文献   

3.
The arrangement of the coding sequences for the 5 S, 5.8 S, 18 S and 25 S ribosomal RNA from Saccharomyces cerevisiae was analyzed in λ-yeast hybrids containing repeating units of the ribosomal DNA. After mapping of restriction sites, the positions of the coding sequences were determined by hybridization of purified rRNAs to restriction fragments, by R-loop analysis in the electron microscope, and by electrophoresis of S1 nuclease-treated rRNA/rDNA hybrids in alkaline agarose gels. The R-loop method was improved with respect to the length calibration of RNA/DNA duplexes and to the spreading conditions resulting in fully extended 18 S and 25 S rRNA R-loops. The qualitative results are: (1) the 5 S rRNA genes, unlike those in higher eukaryotes, alternate with the genes of the precursor for the 5.8 S, 18 S and 25 S rRNA; (2) the coding sequence for 5.8 S rRNA maps, as in higher eukaryotes, between the 18 S and 25 S rRNA coding sequences. The quantitative results are: (1) the tandemly repeating rDNA units have a constant length of 9060 ± 100 nucleotide pairs with one SstI, two HindIII and, dependent on the strain, six or seven EcoRI sites; (2) the 18 S and 25 S rRNA coding regions consist of 1710 ± 80 and 3360 ± 80 nucleotide pairs, respectively; (3) an 18 S rRNA coding region is separated by a 780 ± 70 nucleotide pairs transcribed spacer from a 25 S rRNA coding region. This is then followed by a 3210 ± 100 nucleotide pairs mainly non-transcribed spacer which contains a 5 S rRNA gene.  相似文献   

4.
The X chromosomal nucleolus organizer of Drosophila hydei contains about 500 ribosomal RNA genes. The 28 S rRNA coding region of about 50% of these genes is interrupted by an intervening sequence of 6.0 × 103 base-pairs. Restriction enzyme analysis revealed that more than 90% of the rRNA genes with intervening sequences are present as one or a few clusters within the X chromosomal nucleolus organizer. Furthermore, even though X chromosomal rRNA genes show several distinct size classes of non-transcribed spacers, the cluster of repeating units containing an intervening sequence has major spacer lengths of 4.4 × 103 and 4.6 × 103 base-pairs; spacers 5.1 × 103 base-pairs in length are mainly linked with genes lacking the intervening sequence.  相似文献   

5.
The restriction endonuclease map of the 25 S and 18 S ribosomal RNA genes of a higher plant is presented. Soybean (Glycine max) rDNA was enriched by preparative buoyant density centrifugation in CsCl-actinomycin D gradients. The buoyant density of the rDNA was determined to be 1.6988 g cm–3 by analytical centrifugation in CsCl. Saturation hybridization showed that 0.1% of the total DNA contains 25 S and 18 S rRNA coding sequences. This is equivalent to 800 rRNA genes per haploid genome (DNA content: 1.29 pg) or 3200 for the tetraploid genome. Restriction endonuclease mapping was performed with Bam H I, Hind III, Eco R I, and BstI. The repeating unit of the soybean ribosomal DNA has a molecular weight of 5.9·106 or approximately 9,000 kb. The 25 S and 18 S rRNA coding sequences were localized within the restriction map of the repeating unit by specific hybridization with either [125I]25 S or [125I]18 S rRNA. It was demonstrated that there is no heterogeneity even in the spacer region of the soybean rDNA.  相似文献   

6.
7.
8.
Chloroplast ribosomal DNA from Euglena gracilis was partially purified, digested with restriction endonucleases BamHI or EcoRI and cloned into bacterial plasmids. Plasmids containing the ribosomal DNA were identified by their ability to hybridize to chloroplast ribosomal RNA and were physically mapped using restriction endonucleases BamHI, EcoRI, HindIII and HpaI. The nucleotide sequences coding for the 16S and the 23S chloroplast ribosomal RNAs were located on these plasmids by hybridizing the individual RNAs to denatured restriction endonuclease DNA fragments immobilized on nitrocellulose filters. Restriction endonuclease fragments from chloroplast DNA were analyzed in a similar fashion. These data permitted the localization on a BamHI map of the chloroplast DNA three tandemly arranged chloroplast ribosomal RNA genes. Each ribosomal RNA gene consisted of a 4.6 kilobase pair region coding for the 16S and 23S ribosomal RNAs and a 0.8 kilobase pair spacer region. The chloroplast ribosomal DNA represented 12% of the chloroplast DNA and is G + C rich.  相似文献   

9.
The chloroplast ribosomal unit of Chlamydomonas reinhardii displays two features which are not shared by other chloroplast ribosomal units. These include the presence of an intron in the 23 S ribosomal RNA gene and of two small genes coding for 3 S and 7 S rRNA in the spacer between the 16 S and 23 S rRNA genes (Rochaix & Malnoë, 1978). Sequencing of the 7 S and 3 S rRNAs as well as their genes and neighbouring regions has shown that: (1) the 7 S and 3 S rRNA genes are 282 and 47 base-pairs long, respectively, and are separated by a 23 base-pair A + T-rich spacer. (2) A sequence microheterogeneity exists within the 3 S RNA genes. (3) The sequences of the 7 S and 3 S rRNAs are homologous to the 5′ termini of prokaryotic and other chloroplast 23 S rRNAs, indicating that the C. reinhardii counterparts of 23 S rRNA have a composite structure. (4) The sequences of the 7 S and 3 S rRNAs are related to that of cytoplasmic 5.8 S rRNA, suggesting that these RNAs may perform similar functions in the ribosome. (5) Partial nucleotide sequence complementarity is observed between the 5′ ends of the 7 S and 3 S RNAs on one hand and the 23 S rRNA sequences which flank the ribosomal intron on the other. These data are compatible with the idea that these small rRNAs may play a role in the processing of the 23 S rRNA precursor.  相似文献   

10.
11.
In order to define functional regions within ribosomal RNA, we have identified areas of the molecule which have been conserved during evolution. Our previous studies showed that there is evolutionary conservation between the rRNAs of different eukaryotes and that the sequences conserved between distantly related species are a subset of those conserved between closely related species. In the present work, we have employed DNA-DNA and DNA-RNA hybridization techniques to localize these conserved regions to mapped restriction fragments 50 to 300 base-pairs in length within cloned Xenopus laevis ribosomal DNA. Our experiments have detected evolutionary conservation only within the coding regions, suggesting that if there is any conservation within the spacers, these sequences must be very short. Regions of conservation can be classified either by evolutionary distance or by the extent of conservation between two species. Three regions, including one near the 3' end of 18 S and two near the 3' end of 28 S rRNA are conserved over great evolutionary distance, that is between Escherichia coli and X. laevis. In addition, several fragments in the central portions of the 188 and 28 S rRNAs are exceptional in the extent of their conservation between yeast and Xenopus. We have been able to correlate the regions we have defined as conserved with certain structural or functional roles, such as initiation of translation, possible interaction with transfer RNA, rRNA methylation, and the site where intervening sequences interrupt some eukaryotic rRNAs. As a result, these studies serve to define relatively short (less than 300 base-pairs) segments within the almost 11,000 base X. laevis rDNA repeat unit which are worthy of further investigation.  相似文献   

12.
The ribosomal protein genes are present in two to four copies per haploid genome of Xenopus laevis. Using cloned complementary DNA probes, we have isolated, from a genomic library of X. laevis, several clones containing genes for two different ribosomal proteins (L1 and L14). These genes contain intervening sequences. In the case of the L1 gene, the exons are 100 to 200 base-pairs long and the introns, on average, 400 base-pairs. Along the genomic fragments, two different classes of repetitive DNA are present: highly and middle repetitive DNA. Both are evolutionarily unstable as shown by hybridization to Xenopus tropicalis DNA. Several introns of the gene coding for protein L1 contain middle repetitive sequences. Hybridization and hybrid-released translation experiments have shown that sequences inside the two genes hybridize to several poly(A) messenger RNAs. Some of the products encoded by these mRNA have electrophoretic properties of ribosomal proteins.  相似文献   

13.
The nematode Caenorhabditis elegans (C. elegans) is an ideal model organism to study the cell fate specification mechanisms during embryogenesis. It is generally believed that cell fate specification in C. elegans is mainly mediated by lineage-based mechanisms, where the specification paths are driven forward by a succession of asymmetric cell divisions. However, little is known about how each binary decision is made by gene regulatory programs. In this study, we endeavor to obtain a global understanding of cell lineage/fate divergence processes during the early embryogenesis of C. elegans. We reanalyzed the EPIC data set, which traced the expression level of reporter genes at single-cell resolution on a nearly continuous time scale up to the 350-cell stage in C. elegans embryos. We examined the expression patterns for a total of 131 genes from 287 embryos with high quality image recordings, among which 86 genes have replicate embryos. Our results reveal that during early embryogenesis, divergence between sister lineages could be largely explained by a few genes. We predicted genes driving lineage divergence and explored their expression patterns in sister lineages. Moreover, we found that divisions leading to fate divergence are associated with a large number of genes being differentially expressed between sister lineages. Interestingly, we found that the developmental paths of lineages could be differentiated by a small set of genes. Therefore, our results support the notion that the cell fate patterns in C. elegans are achieved through stepwise binary decisions punctuated by cell divisions. Our predicted genes driving lineage divergence provide good starting points for future detailed characterization of their roles in the embryogenesis in this important model organism.  相似文献   

14.
15.
We report molecular genetic studies of three genes involved in early germ-line proliferation in Caenorhabditis elegans that lend unexpected insight into a germ-line/soma functional separation of autosomal/X-linked duplicated gene pairs. In a genetic screen for germ-line proliferation-defective mutants, we identified mutations in rpl-11.1 (L11 protein of the large ribosomal subunit), pab-1 [a poly(A)-binding protein], and glp-3/eft-3 (an elongation factor 1-α homolog). All three are members of autosome/X gene pairs. Consistent with a germ-line-restricted function of rpl-11.1 and pab-1, mutations in these genes extend life span and cause gigantism. We further examined the RNAi phenotypes of the three sets of rpl genes (rpl-11, rpl-24, and rpl-25) and found that for the two rpl genes with autosomal/X-linked pairs (rpl-11 and rpl-25), zygotic germ-line function is carried by the autosomal copy. Available RNAi results for highly conserved autosomal/X-linked gene pairs suggest that other duplicated genes may follow a similar trend. The three rpl and the pab-1/2 duplications predate the divergence between C. elegans and C. briggsae, while the eft-3/4 duplication appears to have occurred in the lineage to C. elegans after it diverged from C. briggsae. The duplicated C. briggsae orthologs of the three C. elegans autosomal/X-linked gene pairs also display functional differences between paralogs. We present hypotheses for evolutionary mechanisms that may underlie germ-line/soma subfunctionalization of duplicated genes, taking into account the role of X chromosome silencing in the germ line and analogous mammalian phenomena.  相似文献   

16.
Summary Hybridization of cytoplasmic ribosomal RNA (rRNA) to restriction endonuclease digests of nuclear DNA of Chlamydomonas reinhardii reveals two BamHI ribosomal fragments of 2.95 and 2.35×106 d and two SalI ribosomal fragments of 3.8 and 1.5×106 d. The ribosomal DNA (rDNA) units, 5.3×106 d in size, appear to be homogeneous since no hybridization of rDNA to other nuclear DNA fragments can be detected. The two BamHI and SalI ribosomal fragments have been cloned and a restriction map of the ribosomal unit has been established. The location of the 25S, 18S and 5.8S rRNA genes has been determined by hibridizing the rRNAs to digests of the ribosomal fragments and by observing RNA/DNA duplexes in the electron microscope. The data also indicate that the rDNA units are arranged in tandem arrays. The 5S rRNA genes are not closely located to the 25S and 18S rRNA genes since they are not contained within the nuclear rDNA unit. In addition no sequence homology is detectable between the nuclear and chloroplast rDNA units of C. reinhardii.Abbreviations used rRNA ribosomal RNA - rDNA ribosomal DNA d, dalton  相似文献   

17.
All eukaryotes so far studied, including animals, plants, yeasts and trypanosomes, have two pathways to target proteins to peroxisomes. These two pathways are specific for the two types of peroxisome targeting signal (PTS) present on peroxisomal matrix proteins. Remarkably, the complete genome sequence of Caenorhabditis elegans lacks the genes encoding proteins specific for the PTS2 targeting pathway. Here we show, by expression of green fluorescent protein (GFP) reporters for both pathways, that the PTS2 pathway is indeed absent in C. elegans. Lack of this pathway in man causes severe disease due to mislocalization of PTS2-containing proteins. This raises the question as to how C. elegans has accommodated the absence of the PTS2 pathway. We found by in silico analysis that C. elegans orthologues of PTS2-containing proteins have acquired a PTS1. We propose that switching of targeting signals has allowed the PTS2 pathway to be lost in the phylogenetic lineage leading to C. elegans.  相似文献   

18.
19.
20.
Precursor and mature ribosomal RNA molecules from Xenopus laevis were examined by electron microscopy. A reproducible arrangement of hairpin loops was observed in these molecules. Maps based on this secondary structure were used to determine the arrangement of sequences in precursor RNA molecules and to identify the position of mature rRNAs within the precursors. A processing scheme was derived in which the 40 S rRNA is cleaved to 38 S RNA, which then yields 34 S plus 18 S RNA. The 34 S RNA is processed to 30 S, and finally to 28 S rRNA. The pathway is analogous to that of L-cell rRNA but differs from HeLa rRNA in that no 20 S rRNA intermediate was found. X. laevis 40 S rRNA (Mr = 2.7 × 106) is much smaller than HeLa or L-cell 45 8 rRNA (Mr = 4.7 × 106), but the arrangement of mature rRNA sequences in all precursors is very similar. Experiments with ascites cell 3′-exonuclease show that the 28 S region is located at or close to the 5′-end of the 40 S rRNA.Secondary structure maps were obtained also for single-stranded molecules of ribosomal DNA. The region in the DNA coding for the 40 S rRNA could be identified by its regular structure, which closely resembles that of the RNA. Regions corresponding to the 40 S RNA gene alternate with non-transcribed spacer regions along strands of rDNA. The latter have a large amount of irregular secondary structure and vary in length between different repeating units. A detailed map of the rDNA repeating unit was derived from these experiments.Optical melting studies are presented, showing that rRNAs with a high (G + C) content exhibit significant hypochromicity in the formamide/urea-containing solution that was used for spreading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号