首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Transverse sections (approximately 140 nm thick) of solid myosin filaments of the flight muscles of the fleshfly, Phormia terrae-novae, the honey bee, Apis mellifica, and the waterbug, Lethocerus uhleri, were photographed in a JEM model 200A electron microscope at 200 kV. The images were digitized and computer processed by rotational filtering. In each of these filaments it was found that the symmetry of the core and the wall was not the same. The power spectra of the images showed sixfold symmetry for the wall and threefold symmetry for the core of the filaments. The images of the filaments in each muscle were superimposed according to the sixfold center of the wall. These averaged images for all three muscles showed six pairs of subunits in the wall similar to those found in the wall of tubular filaments. From serial sections of the fleshfly filaments, we conclude that the subunits in the wall of the filaments represent subfilaments essentially parallel to the long axis of the filament. In each muscle there are additional subunits in the core, closely related to the subunits in the wall. Evaluation of serial sections through fleshfly filaments suggests that the relationship of the three subunits observed in the core to those in the wall varies along the length of the filaments. In waterbug filaments there are three dense and three less dense subunits for a total of six all closely related to the wall. Bee filaments have three subunits related to the wall and three subunits located eccentrically in the core of the filaments. The presence of core subunits can be related to the paramyosin content of the filaments.  相似文献   

2.
《Micron (1969)》1981,12(2):123-130
A computer-controlled scanning two-dimensional microdensitometer suitable for the digitisation of electron micrographs for computer processing has been constructed. The design uses a Joyce-Loebl MK III Densitometer as a basis, and employs commercially available translation stages, and simple solid-state electronic circuitry. A similar performance to commercially available instruments has been obtained for approximately one-tenth of the cost.  相似文献   

3.
Transverse sections (100 to 140 nm thick) of the flight muscles of the fleshfly Phormia terrae-novae and the housefly Musca domestica were studied. The images of 56 tubular myosin filaments of the fleshfly and 62 filaments of the housefly were digitized and computer processed by rotational averaging. The rotational power spectra of more than 80% of the filaments showed peaks for 6-fold rotational frequency. The average of these images for each species showed a characteristic pattern consisting of 12 subunits arranged in six pairs around the wall of the filament. This pattern was enhanced by rotationally filtering the average images using the 6-fold components of the rotational power spectrum. On tilting individual images, the subunits behaved like rods perpendicular to the plane of the transverse section and they were therefore considered to be subfilaments essentially parallel to the long axis of the filament. The center-to-center spacing between the subfilaments of a pair is 2.8 nm, and the center-to-center spacing between the adjacent subfilaments of neighboring pairs is 4.0 nm. The observation of 12 subfilaments is consistent with a four-stranded helical arrangement of myosin cross-bridges on the surface of the filaments.  相似文献   

4.
5.
Transverse serial sections (100-140 nm thick) of solid myosin filaments of the honeybee, Apis mellifica, were photographed in a JEM-200 electron microscope at 200 kV. The images were digitized and computer processed by rotational filtering. 87% of the myosin filaments showed 6-fold symmetry in their power spectra, confirming the results of earlier works (Beinbrech et al., 1988, 1991). To determine if the subfilaments were arranged parallel to the filament backbone, two methods were used. First, the three images of each myosin filament in the three serial sections were superimposed. 85% of the resulting images showed a strong peak for 6-fold symmetry and the averaged images showed 6 pairs of subfilaments, which gives evidence for parallel arrangement of the subfilaments relative to the filament axis. This result was confirmed by the second method in which a 3-dimensional reconstruction was made. An average image was made from the images of the same 17 myosin filaments from each of the three sections. The data for the 3-dimensional reconstruction were collected by tracing the outlines of the structures in the three successive sections. The resulting stereo image shows a parallel arrangement of the subfilaments.  相似文献   

6.
The critical parameters required for the assembly of myosin filaments with a length distribution comparable to that for native myosin filaments were examined. It was found that: Two steps are required in the dilution of a myosin solution from 0.6M KCl to 0.15M KCl. In Step I the KCl concentration is reduced from 0.6 to 0.3M KCl and in Step II from 0.3 to 0.15M KCl. The rate of change of KCl required for Step I is different than that required for Step II. Increasing the total time of dilution in either Step I or II alone leads to an increase in length and a broadening of the length distribution. In Step I assembly of myosin molecules into nonsedimentable units occurs. These may be the basic units from which the filaments are assembled in Step II. Rapid dilution in Step I alone has no effect on the length distribution obtained at 0.15M KCl, but rapid dilution in Step II alone leads to short filaments (about 0.6 micron). Increasing the time of dilution in Step II alone to 3 hrs or 6 hrs gives a bimodal distribution in lengths with one peak at about 0.8 micron and the other at about 2.2 microns. The length distribution obtained at 0.15M KCl is not critically dependent on information contained in the portion of the filament previously assembled in Step II, but is critically dependent on the rate of change of KCl concentration during the assembly of the rest of the filament.  相似文献   

7.
8.
F T Ashton  J Weisel    F A Pepe 《Biophysical journal》1992,61(6):1513-1528
The substructure of the thick filaments of chemically skinned chicken pectoralis muscle was investigated by electron microscopy. Images of transverse sections of the myosin filaments were determined to have threefold symmetry by cross-correlation analysis, which gives an unbiased determination of the rotational symmetry of the images. Resolution, using the phase residual test (Frank et al. 1981. Science [Wash. DC]. 214:1353-1355), was found to be between 3.2 and 3.6 nm. Three arrangements of nine subfilaments in the backbone were found in all regions of the filament at ionic strengths of 20 and 200 mM. In the average images of two of these, there were three dense central subfilaments and three pairs of subfilaments on the surface of the thick filament. In the average image of the third arrangement, all of the protein mass of the nine subfilaments was on the surface of the filament with three of them showing less variation in position than the others. A fourth arrangement appearing to be transitional between two of these was seen often at 200 mM ionic strength and only rarely at 20 mM. On average, the myosin subfilaments were parallel to the long axis of the filament. The different arrangements of subfilaments appear to be randomly distributed among the filaments in a transverse section of the A-band. Relative rotational orientations with respect to the hexagonal filament lattice, using the three densest subfilaments as reference showed a major clustering (32%) of filaments within one 10 degrees spread, a lesser clustering (15%) at 90 degrees to the first, and the remainder scattered thinly over the rest of the 120 degrees range. There was no obvious pattern of distribution of the two predominant orientations that could define a superlattice in the filament lattice.  相似文献   

9.
Using a 200 kV electron microscope (JEM 200 A), thick (up to 0.4 μm) crosssections of the myosin filaments of vertebrate striated muscle were studied. It was found that: (a) with increasing section thickness the cross-sectional profiles of the shaft of the filament were increasingly more triangular and in sections 0.4 μm thick each apex of the triangle was clearly blunted. This unique cross-sectional profile is predicted by the model proposed by Pepe (1966,1967) in which 12 parallel structural units are packed to form a triangular profile with a structural unit missing at each apex of the triangle. (b) With increasing section thickness the substructure of the myosin filament was enhanced, with the best substructure visible in sections 0.2 μm to 0.3 μm thick. This strongly supports parallel alignment of structural units in the shaft of the filament as proposed by Pepe (1966,1967). (c) The substructure spacing, determined by optical diffraction from electron micrographs of cross-sections of individual myosin filaments or groups of filaments is about 4 nm. (d) The different optical diffraction patterns observed from individual myosin filaments can be explained if the projection of each structural unit in the plane of the section has an elongated profile. With a substructure spacing of 4 nm an elongated cross-sectional profile could be produced by having two myosin molecules per structural unit. Models drawn with two myosin molecules per structural unit in the model proposed by Pepe (1966,1967) gave optical diffraction patterns similar to those observed from individual filaments. (e) The different optical diffraction patterns observed from individual myosin filaments can be explained if the elongated profiles in each structural unit are similarly oriented but with the orientation changing along the length of the filament. The change in orientation per unit length of the filament must be small enough to maintain an elongated profile for the projection of the structural unit in the plane of the sections 0.3 μm thick. All of these observations and conclusions strongly support the model for the myosin filament proposed by Pepe (1966,1967).  相似文献   

10.
There has been some disagreement about the number of myosin molecules in vertebrate skeletal myosin filaments calculated from the myosin to actin weight ratio determined by quantitative sodium dodecyl sulfate/polyacrylamide gel electrophoresis (Tregear &; Squire, 1973; Potter, 1974; Morimoto &; Harrington, 1974). In this work it was found that (1) thoroughly washed fibrils are required to obtain the true value for the myosin to actin weight ratio. (2) Neither actin nor myosin is extracted preferentially during the required washing procedure. (3) There are four myosin molecules per 14.3 nm interval along the myosin filament or about 400 myosin molecules per filament.From published estimates of the number of molecules of C-protein per myosin filament (Offer et al., 1973; Morimoto &; Harrington, 1974) and the findings in this work, we conclude that there are four molecules of C-protein at each of the 14 C-protein binding positions along the filament, i.e. one C-protein molecule for each of the four myosin molecules contributing to the cross-bridges at each position.  相似文献   

11.
12.
《Micron (1969)》1978,8(4):181-191
The problem of the interpretation of images of biological objects in the scanning electron microscope is discussed. The influence of preparative techniques, drying and coating methods on the final image is illustrated by reference to higher plant protoplasts. Methods for confirming the presence of new structural detail are suggested. An attempt is made to illustrate and introduce the need for a higher standard of interpretative and critical skill in the presentation of results obtained by means of scanning electron microscopy.  相似文献   

13.
Improved fixation procedures have enabled substructure to be observed by electron microscopy in transverse sections of vertebrate skeletal muscle thick filaments as thin as 140 nm. Optical diffraction combined with digital autocorrelation analysis, focal series and tilting experiments have confirmed the presence of a regular substructure having a repeat near 4 nm and shown that it is highly unlikely to be an artifact associated with the electron microscope imaging system. The results obtained strongly suggest that the thick filament is constructed from a bundle of rod-like subfilaments arranged parallel to the thick filament axis to within less than a degree. This cannot easily be reconciled with the general theory of thick filament structure proposed by Squire (1973), but it is consistent with the model proposed by Pepe, 1966, Pepe, 1967. Optical diffraction of 140 nm thick serial transverse sections has also suggested a structural change along the length of the filament that is manifest by a variation in the proportion of filaments showing strong diffraction maxima in one, two or three directions.  相似文献   

14.
15.
We have investigated the restoration of electron micrographs exhibiting blurring due to drift and rotation. Blurring due to drift arises in micrographs taken of a specimen which is moving relative to the image plane. A related problem is that of rotational blurring which arises in micrographs of thin sections of helical particles viewed in cross section. The twist of the particle within the finite thickness of the section causes the image to appear rotationally blurred about the helical axis. Restoration algorithms were evaluated by applying them to the restoration of blurred model images degraded by additive Gaussian noise. Model images were also used to investigate how an incorrect estimate of the point spread function describing the blur would effect the restoration. Images were, if necessary, geometrically transformed to a space in which the point spread function of the blur can be considered as linear and space invariant as, under these conditions, the restoration algorithms are greatly simplified. In the case of the rotationally blurred images this procedure was accomplished by transforming the image to polar coordinates. The restoration techniques were successfully applied to blurred micrographs of bacteriophage T4 and crystals of catalase. The quality of the restoration was judged by comparisons of the restored images to undegraded images. Application to micrographs of rotationally blurred cross sections of helical macrofibers of sickle hemoglobin resulted in a reduction in the amount of rotational blurring.  相似文献   

16.
Human alpha 2-macroglobulin (alpha 2M), a large tetrameric plasma glycoprotein, inhibits a wide spectrum of proteinases by a particular "trapping" mechanism resulting from the proteolysis of peptide bonds at specific "bait" regions. This induces the hydrolysis of four thiol esters triggering both the possible covalent bonding of the proteinases and a considerable structural change in the alpha 2M molecule, also observed following direct cleavage of the thiol esters by methylamine. By subtracting average images of electron micrographs from two populations of alpha 2M molecules in the same biochemical state (with both the four cleaved bait regions and thiol esters), but containing either two or zero chymotrypsins, we are able to demonstrate the position of the two proteinases inside the tetrameric alpha 2M molecule. The comparison of the alpha 2M molecules transformed either by immobilized chymotrypsin or methylamine shows that the proteolysis of the bait regions seems of minimal importance for the general shape of the molecule and provides a direct visualization of the actual role of the thiol esters in the conformational change.  相似文献   

17.
We have analyzed the interactions between two types of sarcomeric proteins: myosin heavy chain (MyHC) and members of an abundant thick filament-associated protein family (myosin-binding protein; MyBP). Previous work has demonstrated that when MyHC is transiently transfected into mammalian nonmuscle COS cells, the expressed protein forms spindle-shaped structures consisting of bundles of myosin thick filaments. Co-expression of MyHC and MyBP-C or -H modulates the MyHC structures, resulting in dramatically longer cables consisting of myosin and MyBP encircling the nucleus. Immunoelectron microscopy indicates that these cable structures are more uniform in diameter than the spindle structures consisting solely of MyHC, and that the myosin filaments are compacted in the presence of MyBP. Deletion analysis of MyBP-H indicates that cable formation is dependent on the carboxy terminal 24 amino acids. Neither the MyHC spindles nor the MyHC/MyBP cables associate with the endogenous actin cytoskeleton of the COS cell. While there is no apparent co-localization between these structures and the microtubule network, colchicine treatment of the cells promotes the formation of longer assemblages, suggesting that cytoskeletal architecture may physically impede or regulate polymer formation/extension. The data presented here contribute to a greater understanding of the interactions between the MyBP family and MyHC, and provide additional evidence for functional homology between MyBP-C and MyBP-H.  相似文献   

18.
19.
Human alpha 2-macroglobulin is a tetrameric plasma inhibitor of proteinases. Its dissociation by Cd2+ gives functional dimers. Electron microscopy of negatively stained dimers shows their round-ended cylindrical shape with furrows delimiting 3 main stain-excluding domains. Image processing of electron micrographs shows the existence of 2 main orientations of the dimers on the carbon support film. The dimer is composed of 2 curved monomers linked in a central domain, and related by a 90 degree rotation. Taking into account the known primary structure of alpha 2-macroglobulin and the linkage of the 2 constitutive monomers by 2 disulfide bonds, the molecular organization of the dimer is discussed, extended to the tetrameric molecule and compared to the published models of human alpha 2-macroglobulin.  相似文献   

20.
Regulation of myosin filament assembly by light-chain phosphorylation   总被引:4,自引:0,他引:4  
Myosins isolated from vertebrate smooth muscles and non-muscle cells such as lymphocytes and platelets contain regulatory light chains (Mr = 20000), which are phosphorylated by a Ca2+-calmodulin-dependent kinase and dephosphorylated by a Ca2+-insensitive phosphatase. Phosphorylation of the regulatory light chains of these myosins in vitro regulates not only their interactions with actin but also their assembly into filaments. Under approximately physiological conditions (0.15 M NaCl, pH 7.0) stoichiometric levels of Mg-ATP disassemble these non-phosphorylated myosin filaments into species with sedimentation coefficients (So20,w) of approximately 11S. Hydrodynamic and electron microscope observations have indicated that this 11S species is a monomer with a folded conformation (Trybus et al., Proc. natn. Acad. Sci. U.S.A. 79, 6151 (1982)). Rotary shadowing reveals that the tails of disassembled gizzard and thymus myosins are folded twice at two hinge points to form a folded three-segment structure. Phosphorylation of the regulatory light chains of these myosins causes these folded 11S molecules to unfold into the conventional extended monomeric form (6S), which is able to assemble into filaments. Thus in vitro these myosin filaments can be assembled or disassembled by phosphorylation or dephosphorylation of their light chains. Whether these results have any relevance to the situation within living non-muscle and smooth muscle cells remains to be established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号