首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— Diphtheria toxin (DT) did not produce measurable degradation of myelin proteins or sulphatide in sciatic nerves of chick embryos after incubation in vitro for 4 h. In contrast, DT inhibited the in vitro incorporation of L-[U-14C]leucine into myelin proteins by the nerves after a delay of 1 h. Separation of the myelin proteins by SDS-polyacrylamide gel electrophoresis indicated that the synthesis of Wolfgram proteins and proteins not entering the gel was inhibited by 21–22 per cent, whereas synthesis of myelin proteolipid and basic proteins was inhibited by 79–88 per cent. Incorporation of 35SO4 into myelin [35S]sulphatide was also inhibited by DT after a delay of 2 h. The inhibition of [35S]sulpha-tide incorporation into myelin caused by DT differed from that observed with puromycin in that it did not depend on depletion of an intracellular transport lipoprotein. Instead, the inhibition seemed to be secondary to the decreased synthesis of myelin proteolipid and basic proteins.  相似文献   

2.
Abstract— Brain slices from 17 day rats were incubated with [3H]galactose and [35S]sulphate to label cerebroside and sulphatide. Myelin was isolated by centrifugation on a sucrose density gradient. Following lipid extraction and alkaline methanolysis, cerebroside and sulphatide were isolated by tic, and radioactivity was measured. Appearance of [3H]cerebroside and [3H]sulphatide in myelin showed a lag of less than 15min, while appearance of [35S]sulphatide in myelin showed a longer lag of about 30min. In chase experiments, the rate of appearance of [3H]cerebroside and [3SS]sulphatide in the non-myelin fraction and of [3H]cerebroside in the myelin fraction slowed markedly after the chase. In contrast, [35S]sulphatide continued to increase in myelin at a normal rate for 30min after the chase, then stopped, while 3H from galactose continued to accumulate in myelin sulphatides for 60 min. These data are interpreted to demonstrate an interval of 30 min between synthesis of cerebroside and its sulphation in the non-myelin fraction, and another delay of 30 min between sulphation and appearance in myelin. The distribution of newly synthesized cerebroside and sulphatide between myelin and non-myelin fractions also supported the concept that a complex metabolic pool of cerebroside in the non-myelin fraction is precursor to sulphatide of myelin. For comparison, entry of phosphatidyl choline and phosphatidyl ethanolamine into myelin was followed with [2-3H]glycerol as precursor. Like cerebroside, both phospholipids showed little delay in their initial appearance in myelin, and prompt cessation of their addition after a chase with unlabeled precursor. These results are consonant with either rapid entry of these three lipids into myelin after synthesis at an extra-myelin site, or synthesis of the lipids within myelin itself.  相似文献   

3.
Purified myelin, isolated from rat brain, was subfractionated into light, medium and heavy myelin. The metabolism of [3H] leucine in myelin subfractions was studied at intervals from 1 to 24 hours and from 18 hours to 85 days after the injection of 12-day-old rats. The metabolism of [14C] glucose in myelin subfractions was also examined during the 85 day interval. In addition, the development of each of these subfractions, as reflected by protein accretion, was determined.Between 13 and 97 days of age, the amount of the three myelin subfractions increased 10- to 44-fold. At 13 days of age the heavy subfraction accounted for the greatest percentage of myelin protein. However, beyond 13 days, light myelin predominated.The total 3H-radioactivity in the light, medium and heavy subfractions increased throughout most of the 85 day interval examined. The 3H specific radioactivity (3H dpm/μgram protein) of light myelin peaked at 12 hours after injection. The specific radioactivity of both 3H and 14C (14C dpm/μgram lipid) in light myelin declined beyond the initial time point in the long term (18 hour – 85 day) study. In contrast, the specific radioactivity of both 3H and 14C peaked in the medium and heavy subfractions at 4 days after injection of radioactive precursor.The possible existence of a membranous precursor to myelin is discussed.  相似文献   

4.
Formation and turnover of myelin ganglioside   总被引:7,自引:6,他引:1  
—In young adult rats, the formation and turnover of GM1-ganglioside in myelin were compared with the formation and turnover of GM1-ganglioside in whole brain and of total lipids in whole brain and myelin, after injection of d-[1-14C]glucosamine. During the first 24 hr after injection, the specific activity of GM1-ganglioside in myelin was less than 25 per cent of that of GM1-ganglioside in whole brain. The specific activity of ganglioside in whole brain was maximal at 24 hr and then declined steadily during the next 3 months, whereas the specific activity of GM1-ganglioside in myelin continued to increase and did not reach a peak until about one month after injection, by which time its specific activity had increased five-fold. Consequently, the specific activity of GM1-ganglioside in myelin was 50 per cent higher than ganglioside in whole brain after one month. These differences in the formation and turnover of GM1-ganglioside in myelin and of whole brain are similar to those of other lipids of myelin and of whole brain, indicating that the metabolic activity of myelin ganglioside is similar to myelin lipids, but differs from whole brain lipids or whole brain gangliosides. These data provide additional evidence that ganglioside in myelin is an intrinsic constituent of the myelin sheath. GT1 (G1), GD1b, (G2), GD1a (G3), GM1 (G4), GM2 (G5), GM3 (G6).  相似文献   

5.
Abstract— Myelin fragments were isolated from bovine optic nerves and then exposed to solutions of NaCl, CaCl2, LaCl3 or to water. Measurements of the water content of myelin pellets and the hydrophobicity of myelin fragments indicated an apparent isoelectric point at about pH 4.0 which increased with increasing membrane counterion valence. The exposure of myelin to CaCl2 and LaCl3 solutions for 1 hr removed relatively more cholesterol and galactolipid than protein or phospholipid. The same changes were observed after 12 days of storage in all four solutions. Myelin ultrastructure was evaluated by electron microscopy after positive and negative staining. No pronounced changes in myelin ultra-structure were seen after exposure to any of these solutions although extensive beading of the lamellae was observed and the magnitude of the major period was greater than that reported for native myelin. While differences in the physical properties of myelin after exposure to Na+, Ca++, or La+++ ions could be explained by considering the fixed charge shielding capabilities of these cations, changes of state of the membrane infrastructure could not be ruled out. At pH values above 4.0 myelin fragments behaved like a cation exchange system.  相似文献   

6.
A time-sequence study of the incorporation and distribution of cholesterol in peripheral nerve myelin was carried out by electron microscope autoradiography. [1,2-3H]Cholesterol was injected into 10-day old mice and the sciatic nerves were dissected out at 10, 20, 40, 60, 90, 120, and 180 min after the injection. 20 min after injection the higher densities of grains due to the presence of [3H]cholesterol were confined to the outer and inner edges of the myelin sheath. Practically no cholesterol was detected in the midzone of the myelin sheath. 1 ½ h after injection, cholesterol showed a wider distribution within the myelin sheath, the higher densities of grains occurring over the two peripheral myelin bands, each approximately 3,100 Å wide. Cholesterol was also present in the center of the myelin sheath but to a considerably lesser extent. 3 h after injection cholesterol appeared homogeneously distributed within the myelin sheath. Schwann cell and axon compartments were also labeled at each time interval studied beginning 20 min postinjection. These observations indicate that preformed cholesterol enters myelin first and almost simultaneously through the inner and outer edges of the sheath; only after 90 min does the density of labeled cholesterol in the central zone of myelin reach the same density as that in the outer and inner zones. These findings suggest that cholesterol used by the nerve fibers in the formation and maintenance of the myelin sheath enters the lamellae from the Schwann cell cytoplasm and from the axon. The possibility of a bidirectional movement of molecules, i.e. from the Schwann cell to the axon and from the axon to the Schwann cell through the myelin sheath, is noted. The results are discussed in the light of recent observations on the exchange, reutilization, and transaxonal movement of cholesterol.  相似文献   

7.
Myelin was purified from rat brain and sciatic nerve after invivo labeling with [3H]fucose and [14C]glucosamine to provide a radioactive marker for glycoproteins. The glycoproteins in the isolated myelin were digested exhaustively with pronase, and glycopeptides were isolated from the digest by gel filtration on Bio-Gel P-10. The glycopeptides from brain myelin separated into large and small molecular weight fractions, whereas the glycopeptides of sciatic nerve myelin eluted as a single symmetrical peak. The large and small glycopeptide fractions from central myelin and the single glycopeptide fraction from peripheral myelin were analyzed for carbohydrate by colorimetric and gas liquid chromatographic techniques. The glycopeptides from brain myelin contained 2.4 μg of neutral sugar and 0.59 μg of sialic acid per mg total myelin protein, whereas sciatic nerve myelin glycopeptides contained 10 μg of neutral sugar and 3.8 μg of sialic acid per mg total protein. Similarly, the gas-liquid chromatographic analyses showed that the glycopeptides from peripheral myelin contained 4- to 7-fold more of each individual per mg total myelin protein than those from central myelin. Most of the sialic acid and galactose in the glycopeptides from central myelin were in the large molecular weight fraction, and the small molecular weight glycopeptides contained primarily mannose and N-acetylglucosamine. The considerably higher content of glycoprotein-carbohydrate in peripheral myelin supports the results of gel electrophoretic studies, which indicate that the major protein in peripheral myelin in glycosylated while the glycoproteins in purified central myelin are quantitatevely minor components.  相似文献   

8.
Abstract: Sciatic nerves from 13-day-old rats were incubated in vitro with [35S]methionine in the presence or absence of 0.22 μM monensin and total paniculate and myelin fractions prepared. The total particulate was further subfractionated by continuous density gradient centrifugation, after which the maximal specific activities of three marker enzymes, 2′,3′-cyclic nucleotide phospho-diesterase (myelin), 5′-nucleotidase (plasma membrane), and cerebroside sulphotransferase were recovered at 0.72, 0.82, and 0.92 M sucrose, respectively. The radiolabelled proteins present in the gradient subtractions were analysed by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and fluorography, and bands corresponding to the P0 and myelin basic proteins were identified by co-migration with unlabelled myelin marker proteins on both one-dimensional SDS-PAGE and two-dimensional nonequilibrium isoelectric focussing/SDS-PAGE systems. Following a 90-min incubation with [35S]methionine, newly synthesized myelin basic proteins were recovered in fractions between 0.5 and 0.7 M sucrose; this distribution was unaltered by monensin. In contrast, the distribution of newly synthesized P0 protein across the gradients was influenced by monensin: a bimodal distribution across the control gradients with peaks of recovery of 0.60 and 0.82 M sucrose was altered to give a single peak at an intermediate density of 0.72 M sucrose. The total proportions of newly synthesized P0 and myelin basic proteins (MBP) present across the entire gradients were calculated from the fluorograms, and the ratio was found to be 2.8 P0: (LBP + SBP), in both the presence and absence of the ionophore. However, only 70% and 50% of the control levels of MBP and P0 were recovered with a purified myelin fraction after incubation with monensin. The results are discussed with reference to different intracellular transport processes for the P0 glycoprotein and the MBP within the Schwann cell, and also to the differential compartmentation of the sites of synthesis and membrane export within the Golgi body.  相似文献   

9.
Abstract— Sciatic nerves from 18-day-old chick embryos incorporated 35SO4 into myelin sulphatide in vitro. Sulphatide in a microsomal subfraction of the nerve was rapidly labelled with 35SO4, and a lipoprotein fraction in the nerve served to transfer the [35S]sulphatide from the microsomal subfraction to myelin. Puromycin and cycloheximide inhibited the incorporation of [35S]sulphatide into myelin after a lag period of about 2 h. These agents did not alter the rate of appearance of [35S]sulphatide in the microsomal subfraction, and did not diminish the capacity of myelin to take up [35S]sulphatide from the lipoprotein fraction; instead, they appeared to interfere with the incorporation of [35S]sulphatide into myelin by decreasing the available pool of the transport lipoprotein. Partial characterization of the [35S]labelled lipoprotein fraction indicated that it had a density of 1.06–1.08. The lipoprotein was highly aggregated, but, after incubation with SDS and mercaptoethanol, it was dissociated into sulphatide-containing micelles and proteins.  相似文献   

10.
The metabolism of myelin undergoing breakdown as a result of edema induced by chronic administration of triethyl tin (TET) dissolved in the drinking water (10 mg/l.) was examined. The spinal cord showed more edema and loss of myelin than the brain. Uptake in vitro of [1-14C]acetate into myelin lipids of slices of brain or spinal cord from TET-treated rats was depressed until 4–5 weeks after the beginning of the regime, then rose to above normal levels. The uptake of [l-14C]leucine into myelin protein rose within several weeks of TET treatment to levels averaging over 300 per cent of normal and remained high even after the TET was removed. The high levels of [l-14C]leucine incorporation were inhibited by cycloheximide and were not explained by an increase in the size of the free amino acid pool. The three classes of myelin proteins, basic, proteolipid protein, and Wolfgram protein shared in the increased incorporation. Spinal cord myelin showed the greatest metabolic response, brain stem myelin less, and myelin from the forebrain was minimally affected by the TET treatment. Myelin prelabelled by intracisternal injection of [l-14C]acetate and [l-14C]leucine before the onset of TET administration showed faster turnover in myelin proteins in relation to the myelin lipids than the control in the most severely affected animals, but not in others less affected. A ‘floating fraction’ was observed floating on 10.5% (w/v) sucrose during the myelin purification. This fraction showed metabolic characteristics typical of myelin, and myelin-labelling studies at various stages of the animal's development showed it to be derived from recently synthesized myelin. The floating fraction from the brain contained less cerebroside and more lecithin than myelin, while the spinal cord floating fraction composition was much like that of myelin. The floating fractions contained less protein typical of myelin (basic and proteolipid protein) and more highmolecular-weight protein which may have been derived from contaminating microsomes. The floating fraction was presumed to be partially deproteinated myelin. The use of TET-treatment as model for demyelination as a result of edema and proceeding in the absence of macrophages is discussed.  相似文献   

11.
Turnover rate of individual molecular species of sphingomyelin of adult rat brain myelin and microsomal membranes was determined after an intracerebral injection of 100 Ci of [C3H3]choline. Myelin and microsomal membrane sphingomyelins were isolated from the rest of the lipids. The individual molecular species of benzoylated sphingomyelin were separated and quantitated by reversed-phase high performance liquid chromatography. All individual major molecular species of microsomal and myelin sphingomyelin had maximum incorporation at 6 and 15 days, respectively, after the injection. The specific radioactivity of all the various molecular species of both myelin and microsomal sphingomyelin declined at a similar rate after reaching a maximum. There was no significant difference in the turnover rate of short chain (16:0, 18:0) and long chain (>22:0) fatty acid containing sphingomyelin. The average apparent turnover rate of myelin and microsomal sphingomyelin molecular species was about 14–16 days for the fast pool and about 45 days for the slow pool. It is concluded that individual molecular species of sphingomyelin of myelin and microsomal membranes turned over at a similar rate. Thus, turnover rate of sphingomyelin in myelin and microsomal membranes is not affected by the fatty acyl composition of the lipid.  相似文献   

12.
Brain slices from 18 day old normal and malnourished rats were incubated in the presence of [35S]sulfate to explore its incorporation into sulfatides of a total brain homogenate and the appearance of labeled sulfatides in different subcellular fractions. While the incorporation of label into sulfatides of the total homogenate was similar in both groups of animals, in subcellular fractions separated on a linear sucrose density gradient, labeling of sulfatides in malnourished animals was relatively higher in the region corresponding to the microsomal fraction. Time course incorporation and pulse-chase experiments were carried out to explore the kinetics of labeling of microsomal and myelin sulfatides. In pulse-chase experiments, normal controls showed a decrease in the specific radioactivity of sulfatides in the microsomal fraction after the chase, which was not observed in malnourished animals, while the appearance of labeled sulfatides in the myelin fraction of the latter group of animals was found to be lower than in normals. These results suggest that in neonatal malnutrition there is a defect in the transport of de novo synthesized sulfatides towards myelin or/and a problem in the assembly of these lipids into the myelin membrane.  相似文献   

13.
Myelin purified from the central nervous system of Xenopus laevis contained the same major lipid and protein components as human myelin. However, some minor differences in the myelin proteins were noted. The Xenopus basic protein had a higher apparent mol wt. on sodium dodecyl sulfate gels than the corresponding mammalian protein. The absolute specific activity of 2′,3′-cyclic nucleotide 3′-phosphohydrolase in the Xenopus myelin was considerably higher than in mammals. There were differences in the high mol wt. proteins, and the glycoproteins in Xenopus myelin were more heterogeneous than those in mammals. Peripheral myelin from Xenopus sciatic nerve was compared with that from the rat. The lipids in the two types of myelin were similar. There was a major glycoprotein in the Xenopus myelin corresponding to the P0 protein and a basic protein of slightly larger mol wt. than the P1 protein of rat myelin.  相似文献   

14.
Mice ranging in age from 16 to 44 days were injected intracerebrally with 3H-leucine, and incorporation into total brain proteolipids and the myelin proteolipid protein was measured. All proteolipids were isolated from whole brain by ether precipitation and separated into their individual components by SDS polyacrylamide gel electrophoresis. Two major proteolipids with apparent molecular weights of 20,700 and 25,400 were observed in these preparations, and their proportion increased over the developmental period examined. A Ferguson plot analysis comparing these proteins with those of isolated myelin showed that the 25,400-dalton proteolipid component from whole brain was the myelin proteolipid protein. Rates of incorporation of 3H-leucine into total brain proteolipids peaked at 22 days of age. Synthesis of the myelin proteolipid protein increased rapidly to a maximum value at 22 days and decreased rather slowly until at 44 days it was about 83% of its maximum rate of synthesis. The data indicate that the developmental pattern of synthesis of the myelin proteolipid protein is unlike that of the myelin basic proteins. Synthesis of the major myelin proteins is developmentally asynchronous in that peak synthesis of the myelin proteolipid appears to occur several days later than the basic proteins. In addition, it maintains its maximum rate of synthesis over a longer period of time than do the basic proteins.  相似文献   

15.
The localization of 3H-labeled cholesterol in nerves undergoing degeneration and regeneration was studied by radioautography at the electron microscope level. Two types of experiments were carried out: (a) Cholesterol-1,2-3H was injected intraperitoneally into suckling mice. 5 wk later, Wallerian degeneration was induced in the middle branch of the sciatic nerve, carefully preserving the collateral branches. The animals were then sacrificed at various times after the operation. During degeneration, radioactivity was found over myelin debris and fat droplets. In early stages of regeneration, radioactivity was found in myelin debris and regenerating myelin sheaths. Afterwards, radioactivity was found predominantly over the regenerated myelin sheaths. Radioactivity was also associated with the myelin sheaths of the unaltered fibers, (b) Wallerian degeneration was induced in the middle branch of the sciatic nerves of an adult mouse, preserving the collateral branches. Cholesterol-1,2-3H was injected 24 and 48 hr after the operation and the animal was sacrificed 6 wk later. Radioactivity was found in the myelin sheaths of the regenerated and unaltered fibers. The results from these experiments indicate that: (a) exogenous cholesterol incorporated into peripheral nerve during myelination remains within the nerve when it undergoes degeneration. Such cholesterol is kept in the myelin debris as an exchangeable pool from which it is reutilized for the formation of the newly regenerating fibers, especially myelin. (b) exogenous cholesterol incorporated into the nerves at the time that degeneration is beginning is also used in the formation of new myelin sheaths during regeneration, (c) mature myelin maintains its ability to incorporate cholesterol.  相似文献   

16.

Upper limb nerve injuries are common, and their treatment poses a challenge for physicians and surgeons. Experimental models help in minimum exploration of the functional characteristics of peripheral nerve injuries of forelimbs. This study was conducted to characterize the functional recovery (1, 3, 7, 10, 14, and 21 days) after median and ulnar nerve crush in mice and analyze the histological and biochemical markers of nerve regeneration (after 21 days). Sensory–functional impairments appeared after 1 day. The peripheral nerve morphology, the nerve structure, and the density of myelin proteins [myelin protein zero (P0) and peripheral myelin protein 22 (PMP22)] were analyzed after 21 days. Cold allodynia and fine motor coordination recovery occurred on the 10th day, and grip strength recovery was observed on the 14th day after injury. After 21 days, there was partial myelin sheath recovery. PMP22 recovery was complete, whereas P0 recovery was not. Results suggest that there is complete functional recovery even with partial remyelination of median and ulnar nerves in mice.

  相似文献   

17.
Biochemical studies of myelin in Wallerian degeneration of rat optic nerve   总被引:3,自引:1,他引:2  
Abstract— Wallerian degeneration of the optic nerves of the rat was induced by removal of the eyes. After 54, 66, 76 or 90 days of degeneration a myelin fraction of the nerves was obtained by the procedure of Laatsch et al. (1962). The yield of myelin from the degenerated nerves was decreased, but the isolated myelin appeared to be morphologically normal. The proportion of cholesterol in the myelin lipids was slightly increased, whereas that of the ethanolamineglycerophosphatides was decreased and galactolipids were normal. After one‘cycle’of myelin purification, the high-molecular-weight fraction formed a much greater percentage of the total protein in myelin isolated from degenerated optic nerves. After 2–3‘cycles’of purification, the distribution of protein in myelin isolated from degenerated and normal optic nerves was similar, an observation suggesting that the high-molecular-weight fraction in‘1-cycle myelin’from degenerated optic nerves may have been partly attributable to contamination. With the possible exception of ethanolamineglycerophosphatides, our data suggest that there was no preferential breakdown of myelin lipid constituents nor of protein constituents during Wallerian degeneration of rat optic nerve. As assessed by SDS-gel electrophoresis of the water-insoluble particulate fraction, the percentage of myelin protein was markedly decreased after 76 days of degeneration. However, the major myelin protein constituents in this fraction (the two basic proteins and proteolipid protein) appeared to decrease in the same relative proportions.  相似文献   

18.
The role of phospholipases from inflammatory macrophages in demyelination   总被引:3,自引:0,他引:3  
Activated macrophages harvested from rat peritoneum were shown to contain phospholipase A1, A2 and lysophospholipase activities which were defined on a series of radiolabelled phospholipid substrates. During in vitro culture of these elicited macrophage populations, phospholipase enzymes were secreted into the culture medium. Radiolabelled myelin, prepared from young rats after intracerebral injection of14C acetate, was used as a substrate to analyze the susceptibility of central nervous system (CNS) myelin to attack by cell-associated and secreted macrophage enzymes. Homogenates of peritoneal macrophages degraded the myelin lipids at acid pH; phosphatidyl choline (PC) and ethanolamine phosphatide (EP) were both degraded with liberation of free fatty acid and small amounts of lysolipids. The ethanolamine lipids were most vulnerable; up to 20% of this fraction was degraded in six hours. Selected batches of macrophage culture supernatant similarly degraded the myelin EP at acid pH. These results suggest that phospholipase enzymes, released from activated macrophages in close proximity to the myelin sheath, may participate in primary demyelination in inflammatory CNS lesions.  相似文献   

19.
Loss of myelin in the central nervous system (CNS) leads to debilitating neurological deficits. High-resolution optical imaging of myelin in the CNS of animal models is limited by a lack of in vivo myelin labeling strategies. We demonstrated that third harmonic generation (THG) microscopy—a coherent, nonlinear, dye-free imaging modality—provides micrometer resolution imaging of myelin in the mouse CNS. In fixed tissue, we found that THG signals arose from white matter tracts and were colocalized with two-photon excited fluorescence (2PEF) from a myelin-specific dye. In vivo, we used simultaneous THG and 2PEF imaging of the mouse spinal cord to resolve myelin sheaths surrounding individual fluorescently-labeled axons, and followed myelin disruption after spinal cord injury. Finally, we suggest optical mechanisms that underlie the myelin specificity of THG. These results establish THG microscopy as an ideal tool for the study of myelin loss and recovery.  相似文献   

20.
R G Peterson 《Life sciences》1976,18(8):845-849
Whole mouse sciatic nerves were split and incubated in phosphate buffered saline (PBS) and in PBS containing various amounts of trypsin. After 24 hours of exposure to PBS alone there were no changes in the gel electrophoresis pattern of myelin proteins. During the same period of time, trypsin digested major amounts ofboth the main myelin protein (PO) and the two basic proteins of myelin (P1, P2). The basic proteins were undetectable after 24 hours of 1% trypsin digestion while the main myelin protein was not completely digested. The amount of digestion of the myelin proteins was related to the concentration of trypsin and the time of digestion. Myelin proteins were demonstrated by staining with Coomassie blue, periodic acid Schiff (PAS) and by special indirect lighting techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号