首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The apparently complete refolding of reduced bovine pancreatic trypsin inhibitor (BPTI) is shown to produce a mixture of two species. One of these is native BPTI, but the other lacks the disulphide bond between cysteines 30 and 51. The latter species has a folded conformation very like that of native BPTI, and is oxidized by air to native BPTI on warming in aqueous solution. The two unreactive cysteine thiol groups appear to be buried in the interior of the molecule, which restricts access by reagents that can alkylate them or oxidize them to form the disulphide bond. The implications of this intermediate and its conformation for the understanding of protein folding are discussed.  相似文献   

2.
Intermediates in the refolding of reduced pancreatic trypsin inhibitor   总被引:9,自引:0,他引:9  
The thiol-disulphide exchange reaction used to renature the reduced pancreatic trypsin inhibitor has been rapidly quenched by acidification or by the addition of iodoacetate or iodoacetamide. The species so trapped at various times during the renaturation of the inhibitor have been analysed by acrylamide gel electrophoresis, which resolved the reduced and renatured inhibitors and several transient species with intermediate electrophoretic mobilities. The intermediates have been tentatively assigned contents of either one or two disulphide bonds by their relative electrophoretic mobilities when free Cys residues were carboxymethylated.The kinetic properties of the species have been determined during renaturation with varying concentrations of several disulphide reagents. The three separable intermediate species with one disulphide bond appear to be in rapid equilibrium via an intramolecular transition and fulfil the kinetic criteria for alternative intermediates on the folding pathway. Several species with two disulphide bonds accumulate under some circumstances. Their kinetic roles have not been fully elucidated, but at least some of them seem to be kinetically trapped species not on the main folding pathway. They appear to be particularly unstable species, one disulphide bond being readily broken.  相似文献   

3.
Renaturation of the reduced bovine pancreatic trypsin inhibitor   总被引:5,自引:0,他引:5  
Refolding of the reduced pancreatic trypsin inhibitor has been investigated using thiol-disulphide exchange with various disulphide reagents to regenerate the three disulphide bonds. Essentially quantitative renaturation was routinely achieved. The refolded inhibitor was indistinguishable from the original protein in interaction with trypsin and chymotrypsin, electrophoretic mobility, and nature of disulphide bonds.The kinetics of refolding using oxidized dithiothreitol to form the disulphide bonds have been studied in some detail. The renaturation reaction is usually of second-order, being first-order in both inhibitor and disulphide reagent concentrations. A short lag period in the appearance of inhibitor activity and the inhibition of the rate, but not the extent, of renaturation by low levels of reduced dithiothreitol suggest the accumulation of metastable intermediates. In addition, heterogeneity of the refolding reaction is apparent at high concentrations of disulphide reagent, with a fraction of the material being only slowly renatured.  相似文献   

4.
The intermediate species with one disulphide bond in the renaturation of reduced pancreatic trypsin inhibitor have been trapped, isolated, and the Cys residues involved in the disulphide bonds determined. Approximately half the intermediate species had the disulphide bond between Cys-30 and 51, a disulphide bond also present in the native inhibitor. The next most predominant species, representing one-quarter of the total, had a disulphide bond between Cys-5 and 30, and two more minor species involving Cys-30 and 55 and Cys-5 and 51 were detected; these disulphide bonds are not present in the native inhibitor.The nature of the disulphide bonds present are concluded to reflect primarily the conformational forces acting at this stage of folding, which may be primarily interactions between segments with propensities for secondary structure, either helices or β-sheet. The general importance of such interactions in protein folding is discussed.  相似文献   

5.
Refolding of reduced pancreatic trypsin inhibitor has been examined under a variety of environmental conditions, varying the temperature, pH and ions of the solution, and determining the transient intermediates that accumulate and the kinetics of refolding. The effects of these variables on the rate of the thiol-disulphide exchange reaction, which is involved in each refolding step observed, were determined so that the kinetic effects on refolding could be interpreted in terms of the effect on protein conformation.Low temperature favoured the initial one-and two-disulphide intermediates with native-like disulphide bonds; the differences in enthalpy, entropy and heat capacity of the various species were estimated. Varying the pH somewhat had little effect on the pathway, as did variation of the ionic strength, although there were significant effects on the reactivities of various cysteine thiol groups at low ionic strength, which were apparently due to enhanced electrostatic interactions between charged groups of the protein. Varying the ions of the solution according to the Hofmeister series produced effects like those observed by others on protein stability: stabilizing salts produced the same effect as lower temperatures, destabilizing salts as higher temperatures, while indifferent salts had little effect. Low concentrations of the denaturants urea and guanidinium chloride had effects similar to those of destabilizing Hofmeister salts.All these effects point to the important intermediate states that are most populated having the greatest extent of stabilizing hydrophobic interactions.  相似文献   

6.
The six cysteine residues of the reduced pancreatic trypsin inhibitor have been found to be equally reactive toward iodoacetate under the conditions used for refolding of the protein. The rates of reaction of each residue were comparable to those observed with model thiol compounds. It is concluded that the reduced inhibitor has no stable conformational properties that affect the cysteine residues. The results corroborate the previous conclusion that all six cysteine residues participate in forming the first disulphide bond during refolding of the reduced inhibitor and confirm that disulphide bond formation is an accurate probe of the conformational transitions that occur during protein folding.  相似文献   

7.
The native conformation of a protein may be expressed in terms of the dihedral angles, phi's and psi's for the backbone, and kappa's for the side chains, for a given geometry (bond lengths and bond angles). We have developed a method to obtain the dihedral angles for a low-energy structure of a protein, starting with the X-ray structure; it is applied here to examine the degree of flexibility of bovine pancreatic trypsin inhibitor. Minimization of the total energy of the inhibitor (including nonbonded, electrostatic, torsional, hydrogen bonding, and disulfide loop energies) yields a conformation having a total energy of -221 kcal/mol and a root mean square deviation between all atoms of the computed and experimental structures of 0.63 A. The optimal conformation is not unique, however, there being at least two other conformations of low-energy (-222 and -220 kcal/mol), which resemble the experimental one (root mean square deviations of 0.66 and 0.64 A, respectively). These three conformations are located in different positions in phi, psi space, i.e., with a total deviation of 81 degrees, 100 degrees and 55 degrees from each other (with a root mean square deviation of several degrees per dihedral angle from each other). The nonbonded energies of the backbones, calculated along lines in phi, psi space connecting these three conformations, are all negative, without any intervening energy barriers (on an energy contour map in the phi, psi plane). Side chains were attached at several representative positions in this plane, and the total energy was minimized by varying the kappa's. The energies were of approximately the same magnitude as the previous ones, indicating that the conformation of low energy is flexible to some extent in a restricted region of phi, psi space. Interestingly, the difference delta phi i+1 in phi i+1 for the (i + 1)th residue from one conformation to another is approximately the same as -delta psi i for the ith residue; i.e., the plane of the peptide group between the ith and (i + 1)th residues re-orient without significant changes in the positions of the other atoms. The flexibility of the orientations of the planes of the peptide groups is probably coupled in a cooperative manner to the flexibility of the positions of the backbone and side-chain atoms.  相似文献   

8.
D Amir  S Krausz  E Haas 《Proteins》1992,13(2):162-173
The structure of BPTI and reduced BPTI in concentrated guanidinium HCl (GUHCl) in the presence of glycerol has been probed by measurements of dynamic nonradiative excitation energy transfer between probes attached to its amino groups. Interprobe distance distributions were obtained from analysis of donor fluorescence decay curves and used to characterize local structures in unordered states of the protein. Site specifically fluorescently labeled BPTI derivatives (1-n)BPTI (n = 15, 20, 41, 46) were used, each carrying a 2-methoxy-naphthyl-1-methylenyl group (MNA) at the N-terminal amino group of arg1 and 7-(dimethylamino)-coumarin-4-yl-acetyl residue (DA-coum) at one of its epsilon-NH2 groups of the lysine side chains. Analysis of donor fluorescence decay kinetics gave the interprobe distance distributions in the native and denatured states. The N-terminal-segment, residues 1-15, is in an extended conformation (with an average interprobe distance of 34 +/- 2 A) in the native state. Upon unfolding by reduction with DTT or beta-mercapto ethanol in 6 M GUHCl/glycerol mixture, the conformation of this segment relaxed to a state characterized by a reduced average interprobe distance and a larger width of the distances distribution. The average distance between residues 1 and 26, i.e., between the N-terminus and the turn of the twisted beta sheet element (residues 18-35), increased upon unfolding. At -30 degrees C in the above solvent, the distribution between these two sites was probably composed of two conformational subpopulations. About 45 +/- 20% of the molecules were characterized by a short interprobe distance (like the native state) representing a compact conformation, and 55 +/- 20% of the molecules showed large interprobe distances representing an expanded (unfolded) conformation. Thus local structures seem to exist in reduced denatured BPTI even under denaturing conditions in 6 M GUHCl/glycerol mixtures. Some of those structures are unstable in guanidinium isothiocyanate (GUSCN). The method introduced here is suitable for probing local structures and very long range interactions in unfolded proteins and for search for folding initiation sites (FISs) and early folding intermediates.  相似文献   

9.
P Brandt  C Woodward 《Biochemistry》1987,26(11):3156-3167
Hydrogen exchange rates of six beta-sheet peptide amide protons in bovine pancreatic trypsin inhibitor (BPTI) have been measured in free BPTI and in the complexes trypsinogen-BPTI, trypsinogen-Ile-Val-BPTI, bovine trypsin-BPTI, and porcine trypsin-BPTI. Exchange rates in the complexes are slower for Ile-18, Arg-20, Gln-31, Phe-33, Tyr-35, and Phe-45 NH, but the magnitude of the effect is highly variable. The ratio of the exchange rate constant in free BPTI to the exchange rate constant in the complex, k/kcpIx, ranges from 3 to much greater than 10(3). Gln-31, Phe-45, and Phe-33 NH exchange rate constants are the same in each of the complexes. For Ile-18 and Tyr-35, k/kcpIx is much greater than 10(3) for the trypsin complexes but is in the range 14-43 for the trypsinogen complexes. Only the Arg-20 NH exchange rate shows significant differences between trypsinogen-BPTI and trypsinogen-Ile-Val-BPTI and between porcine and bovine trypsin-BPTI.  相似文献   

10.
The structure of the complex between anhydro-trypsin and pancreatic trypsin inhibitor has been determined by difference Fourier techniques using phases obtained from the native complex (Huber et al., 1974). It was refined independently by constrained crystallographic refinement at 1.9 å resolution. The anhydro-complex has Ser 195 converted to dehydro-alanine. There were no other significant structural changes. In particular, the high degree of pyramidalization of the C atom of Lys 15 (I) of the inhibitor component observed in the native complex is maintained in the anhydro-species.  相似文献   

11.
D S Gottfried  E Haas 《Biochemistry》1992,31(49):12353-12362
To further our understanding of the protein folding process, it is desirable to examine the structural intermediates (equilibrium and kinetic) that are populated between the statistical coil state and the folded molecule. X-ray crystallography and NMR structural studies are unable to determine long-range distances in proteins under denaturing solution conditions. Nonradiative (F?rster) energy transfer, however, has been shown to be a spectroscopic ruler for the measurement of distance distributions and diffusion between selected sites in proteins under a range of different solution conditions. The distributions of distances between a donor probe at the N-terminal residue and an acceptor attached to one of the four lysine residues (15, 26, 41, 46) of reduced and unfolded (in 6 M guanidine hydrochloride and 20 mM dithiothreitol) bovine pancreatic trypsin inhibitor (BPTI) were measured as a function of temperature. Even in strong denaturant and reducing agent, BPTI does not exist as a statistical coil polypeptide. It appears that nonlocal (long-range) interactions are already beginning to "fold" the protein toward a more compact, native conformation. As the temperature is increased under these conditions, hydrophobic interactions lead to an even more compact structure consistent with the predictions of phase diagrams for globular proteins.  相似文献   

12.
13.
The most productive folding pathway of reduced bovine pancreatic trypsin inhibitor (BPTI) proceeds through the disulphide intermediates (30-51), (30-51, 5-14), and (30-51, 5-38); these are important kinetic intermediates in folding, even though the latter pair contain non-native disulphide bonds. Analogues of these intermediates have been prepared by protein engineering methods and their conformational properties examined by circular dichroism and 1H-nuclear magnetic resonance. The (30-51), (30-51, 5-14) and (30-51, 5-38) analogues exhibit comparable degrees of stable structure, which cannot include those portions of the polypeptide chain involving Cys5, Cys14 and Cys38. These properties are consistent with the roles of (30-51, 5-14) and (30-51, 5-38) in the folding pathway of BPTI, which demand that they exhibit a considerable degree of conformational flexibility in part of the molecule.  相似文献   

14.
E E Gussakovsky  E Haas 《FEBS letters》1992,308(2):146-148
Reduced bovine pancreatic trypsin inhibitor (BPTI) has been shown to be in a compact state [(1988) Biochemistry 27, 8889-8893]. This leads to the proposal that this compact state may be a compact molten globule folding intermediate. Optical rotatory dispersion in the visible region failed to show the presence of pronounced secondary structures in the reduced BPTI and no binding of 8-anilino-1-naphthalenesulphonic acid to reduced BPTI could be detected. Yet, no cooperative thermal transition was detected by tyrosine fluorescence. These experiments show that reduced BPTI is not in the compact molten globule state.  相似文献   

15.
The stability of native and reduced bovine pancreatic trypsin inhibitor (Kunitz inhibitor) in anhydrous hydrogen fluoride and their reaction with acetamidomethanol, in the same solvent, have been investigated. The bovine Kunitz inhibitor appears to be stable in liquid hydrogen fluoride but the reduced molecule loses about 50% of its ability to regain inhibitory power, upon air oxidation, by exposure to this solvent. Tyrosine residues appear to be affected by acetamidomethylation of the native protein to give a modified inhibitor which is still highly active in inhibiting trypsin. The extent of correct refolding, upon reoxidation, of the reduced tyrosine modified-inhibitor is greatly diminished. Tyrosine modification can be prevented by carrying out the acetamidomethylation reaction in the presence of excess anisole. The stability constants and the standard free energies of binding of the complexes between trypsin and the native and the tyrosine modified-inhibitor have been determined.  相似文献   

16.
Reduced bovine pancreatic trypsin inhibitor has a compact structure   总被引:4,自引:0,他引:4  
D Amir  E Haas 《Biochemistry》1988,27(25):8889-8893
The conformation of reduced bovine pancreatic trypsin inhibitor (R-BPTI) under reducing conditions was monitored by measurements of nonradiative excitation energy-transfer efficiencies (E) between a donor probe attached to the N-terminal Arg1 residue and an acceptor attached to one of the lysine residues (15, 26, 41, or 46) [Amir, D., & Haas, E. (1987) Biochemistry 26, 2162-2175]. High-excitation energy-transfer efficiencies that approach those found in the native state were obtained for the reduced labeled BPTI derivatives in 0.5 M guanidine hydrochloride (Gdn.HCl) and 4 mM DTT. Unlike the dependence expected for a random coil chain, E does not decrease as a function of the number of residues between the labeled sites. The efficiency of energy transfer between probes attached to residues 1 and 15 in the reduced state is higher than that found for the same pair of sites in the native state or reduced unfolded (in 6 M Gdn.HCl) state. This segment also shows high dynamic flexibility. These results indicate that the overall structure of reduced BPTI under folding (but still reducing) conditions shows a high population of conformers with interprobe distances similar to those of the native state. Reduced BPTI seems to be in a molten globule state characterized by a flexible, compact structure, which probably reorganizes into the native structure when the folding is allowed to proceed under oxidizing conditions.  相似文献   

17.
Summary A Kunitz-type inhibitor family has been biochemically and histochemically characterized in bovine liver. This family includes the well-known pancreatic trypsin inhibitor (BPTI) and three BPTI-related molecular forms (isoinhibitors I, II and III). The purification of the inhibitors was performed by affinity chromatography on immobilized trypsin followed by fast protein liquid chromatography. The inhibitors were identical to those identified previously in bovine spleen and lung. Light immunohistochemical experiments were done by a streptavidin-biotin-peroxidase method using two different immunoglobulin preparations, which selectively discriminated between BPTI and the other isoinhibitors. BPTI-related immunoreactivity was found exclusively at the level of isolated cells, of which many were identified as mast cells by toluidine blue staining. By contrast, isoinhibitor-related immunoreactivity showed a more widespread distribution, including hepatocytes, mast cells and biliary duct epithelial cells. Finally, specific immunoreactivity was also present in plasma. These results suggest that: i) BPTI and related isoinhibitors may be involved in the regulation of the activity of some mast cell proteases, as it happens in other bovine organs (Businaro et al. 1987, 1988); ii) BPTI isoinhibitors, but not BPTI itself, may also control proteolytic activities in hepatic specific structures (hepatocytes and biliary duct epithelial cells).  相似文献   

18.
19.
Structure of form III crystals of bovine pancreatic trypsin inhibitor   总被引:18,自引:0,他引:18  
The structure of bovine pancreatic trypsin inhibitor has been solved in a new crystal form III. The crystals belong to space group P2(1)2(1)2 with a = 55.2 A, b = 38.2 A, c = 24.05 A. The structure was solved on the basis of co-ordinates of forms I and II of the inhibitor by molecular replacement, and the X-ray data extending to 1.7 A were used in a restrained least-squares refinement. The final R factor was 0.16, and the deviation of bonded distances from ideality was 0.020 A. Root-mean-square discrepancy between C alpha co-ordinates of forms III and I are 0.47 A, whilst between forms II and III the discrepancy is 0.39 A. These deviations are about a factor of 3 larger than the expected experimental errors, showing that true differences exist between the three crystal forms. Two residues (Arg39 and Asp50) were modeled with two positions for their side-chains. The final model includes 73 water molecules and one phosphate group bound to the protein. Sixteen water molecules occupy approximately the same positions in all three crystal forms studied to date, indicating their close association with the protein molecule. Temperature factors also show a high degree of correlation between the three crystal forms.  相似文献   

20.
Folding of the twisted beta-sheet in bovine pancreatic trypsin inhibitor   总被引:2,自引:0,他引:2  
The dominant role of local interactions has been demonstrated for the formation of the strongly twisted antiparallel beta-sheet structure consisting of residues 18-35 in bovine pancreatic trypsin inhibitor. Conformational energy minimization has indicated that this beta-sheet has a strong twist even in the absence of the rest of the protein molecule. The twist is maintained essentially unchanged when energy minimization is carried out by starting from the native conformation. By starting from a nontwisted beta-sheet conformation of residues 18-35, a strongly twisted structure (higher in energy than the native) is obtained. The high twist of the native-like beta-sheet is a consequence of its amino acid sequence, but it is enhanced strongly by interchain interactions that operate within the beta-sheet. The existence of the twisted beta-sheet structure does not require the presence of a disulfide bond between residue 14 and residue 38. It actually may facilitate the formation of this bond. Therefore, it is likely that the beta-sheet structure forms during an earlier stage of folding than the formation of this disulfide bond. This study provides an example of the manner in which conformational energy calculations can be used to provide information about the probable pathway of the folding of a protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号