首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
We present the DNA sequence of a 914-base pair fragment from Saccharomyces cerevisiae that contains the GAL1-GAL10 divergent promoter, 140 base pairs of GAL10 coding sequence, and 87 base pairs of GAL1 coding sequence. From this fragment, we constructed four pairs of GAL1-lacZ and GAL10-lacZ fusions on various types of yeast plasmid vectors. On each type of vector, the fused genes were induced by galactose and repressed by glucose. The response of a GAL1-lacZ fusion to gal4 and gal80 regulatory mutations was similar to the response of intact chromosomal GAL1 and GAL10 genes. A set of deletions that removed various portions of the GAL10 regulatory sequences from a GAL10-CYC1-lacZ fusion was constructed in vitro. These deletions defined a relatively guanine-cytosine-rich region of 45 base pairs that contained sequences necessary for full-strength galactose induction and an adjacent guanine-cytosine rich 55 base pairs that contained sequences sufficient for weak induction.  相似文献   

4.
5.
6.
Of the genes involved in galactose metabolism, GAL7, GAL10, and GAL1 are tightly linked in this order on chromosome II in Saccharomyces cerevisiae. While several species of the order Saccharomycetales have similar gene organization, Kazachstania naganishii is unique, in which GAL7 and GAL1 are close to each other whereas GAL10 is substantially apart from them on chromosome XI. In this study, we inserted the recognition sequence of I-SceI homing-endonuclease into GAL10 and also into the intervening segment of GAL7-GAL1. By cleaving chromosome DNA of the gene-manipulated strain with I-SceI, we obtained evidence that chromosome XI (610 kbp) was replaced with three fragments (305, 265, and 40 kbp). Using appropriate probes, we further found that GAL10 was about 40 kbp apart from the GAL7-GAL1 cluster and that orientation of GAL10 was reversed comparing to the S. cerevisiae counter part. We, therefore, contend that comparison of the organization of the GAL cluster among Saccharomycetales is of importance to elucidate evolution of chromosomes and that the experimental scheme developed in this study is useful for this line of investigation.  相似文献   

7.
8.
9.
Streptomyces lividans 1326 carries inducible mercury resistance genes on the chromosome, which are arranged in two divergently transcribed operons. Expression of the genes is negatively regulated by the repressor MerR, which binds in the intercistronic region between the two operons. The merR gene was expressed in E. coli using a T7 RNA polymerase/promoter expression system, and MerR was purified to around 95% homogeneity by ammonium sulfate precipitation, gel filtration and affinity chromatography. Gel filtration showed that the native MerR is a dimer with a molecular mass of 31?kDa. Two DNA binding sites were identified in the intercistronic mer promoter region by footprinting experiments. No evidence for cooperativity in the binding of MerR to the adjacent operator sequences was observed in gel mobility shift assays. The dissociation constants (KD) for binding of MerR were: binding site I, 8.5?×?10?9?M; binding site II, 1.2?×?10?8?M; and for the complete promoter/operator region 1?×?10?8?M. The half-life of the MerR-DNA complex was 19.4?min and 18.8?min for binding site I and binding site II, respectively. The KD value for binding of mercury(II)chloride to MerR, again determined by mobility shift assay, was 1.1?×?10?7?M.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
Indigenous oil-degrading bacteria play an important role in efficient remediation of polluted marine environments. In this study, we investigated the diversity and abundance of indigenous oil-degrading bacteria and functional genes in crude oil-contaminated seawater of the Dalian coast. The gene copy number bacterial 16S rRNA in total were determined to be about 1010 copies L?1 in contaminated seawater and 109 copies L?1 in uncontaminated seawater. Bacteria of Alcanivorax, Marinobacter, Novosphingobium, Rhodococcus, and Pseudoalteromonas were found to be predominant oil-degrading bacteria in the polluted seawater in situ. In addition, bacteria belonging to Algoriphagus, Aestuariibacter, Celeribacter, Fabibacter, Zobellia, Tenacibaculum, Citreicella, Roseivirga, Winogradskyella, Thioclava, Polaribacter, and Pelagibaca were confirmed to be the first time as an oil-degrading bacterium. The indigenous functional enzymes, including AlkB or polycyclic aromatic hydrocarbons ring-hydroxylating dioxygenases α (PAH-RHDα) coding genes from Gram-positive (GP) and Gram-negative bacteria (GN), were revealed and quite diverse. About 1010 to 1011 copies L?1 for the expression of alkB genes were recovered and showed that the two-thirds of all the AlkB sequences were closely related to widely distributed Alcanivorax and Marinobacter isolates. About 109 copies L?1 seawater for the expression of RHDαGN genes in contaminated seawater and showed that almost all RHDαGN sequences were closely related to an uncultured bacterium; however, RHDαGP genes represented only about 105 copies L?1 seawater for the expression of genes in contaminated seawater, and the naphthalene dioxygenase sequences from Rhodococcus and Mycobacterium species were most abundant. Together, their data provide evidence that there exists an active aerobic microbial community indigenous to the coastal area of the Yellow sea that is capable of degrading petroleum hydrocarbons.  相似文献   

18.
Lineage-dependent transcription of globin genes   总被引:12,自引:0,他引:12  
  相似文献   

19.
The enzymes for galactose metabolism in Saccharomyces cerevisiae are encoded by three tightly linked genes. Data presented in this paper show that, in contrast to enzymes encoded by other gene clusters in yeast, these three enzymes are translated as separate polypeptides. First, two of the enzymes encoded by the cluster, galactokinase and uridylyl transferase. purified to near homogeneity, are separate polypeptides. Second, no precursor polypeptide-containing sequences common to both these enzymes is detectable in extracts from galactose-induced yeast cells. Third, no partial or absolute polarity of expression of the enzymes is observed in strains containing nonsense mutations in any of the genes of the cluster.Expression of the three galactose metabolic enzymes is co-ordinate, both during induction and during steady-state synthesis. This is true both for wild-type yeast strains and for strains carrying the long-term galactose adaptation mutation, gal3. In GAL3+ strains mutations within the galactose gene cluster have no effect on this co-ordinate expression. However, in gal3? strains, mutations in any of the genes of the cluster completely eliminate expression of the other two genes. These results suggest that the GAL3 gene product is responsible for inducer synthesis and that the actual inducer is an intermediate in galactose metabolism.  相似文献   

20.
Non-viral gene delivery is a safe and suitable alternative to viral vector-mediated delivery to overcome the immunogenicity and tumorigenesis associated with viral vectors. Using the novel, human-origin Hph-1 protein transduction domain that can facilitate the transduction of protein into cells, we developed a new strategy to deliver naked DNA in vitro and in vivo. The new DNA delivery system contains Hph-1-GAL4 DNA-binding domain (DBD) fusion protein and enhanced green fluorescent protein (EGFP) reporter plasmid that includes the five repeats of GAL4 upstream activating sequence (UAS). Hph-1-GAL4-DBD protein formed complex with plasmid DNA through the specific interaction between GAL4-DBD and UAS, and delivered into the cells via the Hph-1-PTD. The pEGFP DNA was successfully delivered by the Hph-1-GAL4 system, and the EGFP was effectively expressed in mammalian cells such as HeLa and Jurkat, as well as in Bright Yellow-2 (BY-2) plant cells. When 10 μg of pEGFP DNA was intranasally administered to mice using Hph-1-GAL4 protein, a high level of EGFP expression was detected throughout the lung tissue for 7 days. These results suggest that an Hph-1-PTD-mediated DNA delivery strategy may be an useful non-viral DNA delivery system for gene therapy and DNA vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号