首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
The CYC7–1 mutation in the yeast Saccharomyces cerevisiae causes the production of approximately 30 times the normal amount of iso-2-cytochrome c. Genetic analysis established that the CYC7–1 mutation is a reciprocal translocation involving the left arm of chromosome V and the right arm of chromosome XVI. The chromosome V arm was broken adjacent to the gene CYC7, which determines the primary structure of iso-2-cytochrome c, and this fragment containing the CYC7 gene was joined to the segment of chromosome XVI. It appears as though the elevation of iso-2-cytochrome c is caused by an abnormal controlling region adjacent to the structural region of the CYC7 gene.  相似文献   

2.
Tryptophan located at position 59 in vertebrate cytochromes c and at position 64 in yeast iso-1-cytochrome c is an evolutionarily invariant residue that is believed to be essential to the operation of the cytochrome c molecule. We show that this residue is replaced in at least partially functional iso-1-cytochromes c from cyc1 revertants of the yeast Saccharomyces cerevisiae. Tryptophan, tyrosine and leucine are found at position 64 in the revertants from the cyc1-84 mutant, confirming the genetic evidence (Sherman et al., 1974) that the mutant contains an UAG nonsense codon and establishing that the site of the mutation corresponds to the normal tryptophan 64. In a revertant from the cyc1.189 mutant, position 64 is occupied by a residue of phenylalanine. All three altered proteins are unstable, implying that tryptophan 64 has an essential and unique role for maintaining the normal structure of the cytochrome c molecule. In addition the iso-1-cytochrome c with leucine 64 and tyrosine 64 have greatly reduced biological activities, while iso-1-cytochrome c with the phenylalanine replacement has at least 20% of the wild-type activity or more. It remains uncertain whether the reduced specific activities are due to distorted tertiary structures or due to the specific lack of the tryptophan residue that may also have a direct functional role.  相似文献   

3.
The eight class I, set 1 super-suppressor genes, SUP2, SUP3, SUP4, SUP5, SUP6, SUP7, SUP8 and SUP11 are not closely linked and map at distinct loci throughout the genome of yeast. Each of these suppressors causes the production of 5 to 10% of the normal amount of iso-1-cytochrome c when it is individually coupled to the ochre (UAA) mutant cy1-2. All eight iso-1-cytochromes c contain a residue of tyrosine at position 20 which corresponds to the site of the ochre codon. Several of these super-suppressors also were shown to act on cy1-9, but at a much lower efficiency. It was shown that iso-1-cytochrome c from one of the suppressed cy1-9 strains contains a tyrosine at position 2, which corresponds to the site of the ochre codon in this mutant. It is suggested that the gene product of the eight super-suppressors is tyrosine transfer RNA.  相似文献   

4.
Structural gene for yeast iso-2-cytochrome c.   总被引:14,自引:0,他引:14  
Protein analysis and genetic studies have led to the identification of the structural genes of iso-1-cytochrome c and iso-2-cytochrome c, which constitute, respectively, 95% and 5% of the total amount of cytochrome c in the yeast Saccharomyces cerevisiae. The structural gene CYC1 for iso-1-cytochrome c was previously identified by Sherman et al. (1966) and the structural gene CYC7 for iso-2-cytochrome c is identified in this investigation. A series of the following mutations were selected by appropriate procedures and shown by genetic tests to be allelic: CYC7+ →CYC7-1 →cyc7-1-1 →CYC7-1-1-A, etc., where CYC7 + denotes the wild-type allele determining iso-2-cytochrome c; CYC7-1 denotes a dominant mutant allele causing an approximately 30-fold increase of iso-2-cytochrome c with a normal sequence, and was used as an aid in selecting deficient mutants; cyc7-1-1 denotes a recessive mutant allele causing complete deficiency of iso-2-cytochrome c; and CYC7-1-1-A denotes an intragenic revertant having an altered iso-2-cytochrome c at the same level as iso-2-cytochrome c in the CYC7-1 strains. The suppression of cyc7-1-1 with the known amber suppressor SUP7-a indicated that the defect in cyc7-1-1 was an amber (UAG) nonsense codon. Sequencing revealed a single amino acid replacement of a tyrosine residue for the normal glutamine residue at position 24 in iso-2-cytochrome c from the suppressed cyc7-1-1 strain and also in five revertants of cyc7-1-1, of which three were due to extragenic suppression and two to intragenic reversion. The nature of the mutation that elevated the level of normal iso-2-cytochrome c in the CYC7-1 strain was not identified, although it occurred at or very near the CYC7 locus but outside the translated portion of the gene and it may be associated with a chromosomal aberration. Genetic studies demonstrated that CYC7 is not linked to CYC1, the structural gene for iso-1-cytochrome c.  相似文献   

5.
The yeast mutant cy1–76 is more than 99% deficient in iso-1-cytochrome c. Twelve intragenic revertants of cy1–76 have approximately normal amounts of iso-1-cytochromes c, which are altered by replacement of glutamic acid 71 with either tryptophan, leucine, tyrosine, serine, glutamine or lysine. It is concluded that position 71 in functioning iso-1-cytochrome c can be radically varied, and that the defect in cy1–76 is a nonsense codon, UAG, corresponding to position 71.Tryptophan is the replacement in 4 of the 12 revertants of cy1–76. Tryptophan is similarly abundant as a replacement of lysine 9 in the previously studied 42 revertants ofcy1–179, but is not a replacement in the 45 previously studied revertants of cyl-9. Since amino acid replacements indicate that either UAA or UAG nonsense mutations occur in all three mutants, these new results confirm the previously recognized distinction between the two nonsense codons: one, evidently UAG, can be reverted to a tryptophan codon, while the other, apparently UAA, cannot; apparently UGA does not encode tryptophan in yeast.  相似文献   

6.
Evolutionary conservation of substructure architecture between yeast iso-1-cytochrome c and the well-characterized horse cytochrome c is studied with limited proteolysis, the alkaline conformational transition and global unfolding with guanidine-HCl. Mass spectral analysis of limited proteolysis cleavage products for iso-1-cytochrome c show that its least stable substructure is the same as horse cytochrome c. The limited proteolysis data yield a free energy of 3.8 ± 0.4 kcal mol−1 to unfold the least stable substructure compared with 5.05 ± 0.30 kcal mol−1 for global unfolding of iso-1-cytochrome c. Thus, substructure stabilities of iso-1-cytochrome c span only ∼1.2 kcal mol−1 compared with ∼8 kcal mol−1 for horse cytochrome c. Consistent with the less cooperative folding thus expected for the horse protein, the guanidine-HCl m-values are ∼3 kcal mol−1M−1 versus ∼4.5 kcal mol−1M−1 for horse versus yeast cytochrome c. The tight free energy spacing of the yeast cytochrome c substructures suggests that its folding has more branch points than for horse cytochrome c. Studies on a variant of iso-1-cytochrome c with an H26N mutation indicate that the least and most stable substructures unfold sequentially and the two least stable substructures unfold independently as for horse cytochrome c. Thus, important aspects of the substructure architecture of horse cytochrome c, albeit compressed energetically, are preserved evolutionally in yeast iso-1-cytochrome c.  相似文献   

7.
The SUP-RL1 suppressor in the yeast Saccharomyces cerevisiae causes lethality in haploid strains but not in diploid or aneuploid strains that are heterozygous for the suppressor locus. This recessive lethal suppressor acts on amber (UAG) nutritional markers, and can cause the production of approximately 50% of the normal amount of iso-1-cytochrome c in disomic strains that are heterozygous for the SUP-RL1 suppressor, and that contain the cyc1-179 allele which has an amber codon corresponding to amino acid position 9. The suppressed iso-1-cytochrome c contains a residue of serine at the position that corresponds to the site of the amber codon. SUP-RL1 was found to lie between thr4 and MAL2 on chromosome III, approximately 30 map units from the mating-type locus. It is suggested that the gene product of SUP-RL1 may be a species of serine transfer RNA that normally reads the serine codon UCG, and that is represented only once in the haploid genome.  相似文献   

8.
We present evidence that two non-allelic genes, located on two non-homologous chromosomes in the yeast Saccharomyces cerevisiae, recombine and in this process generate new composite genes containing portions of both genes. The two genes CYC1 and CYC7 encode, respectively, iso-1-cytochrome c and iso-2-cytochrome c; CYC1 is located on the right arm of chromosome X and CYC7 is located on the left arm of chromosome V. The coding regions of CYC1 and CYC7 and the corresponding iso-1-cytochrome c and iso-2-cytochrome c are approximately 80% homologous. Composite genes were uncovered among revertants of certain but not all cyc1 mutants lacking iso-1-cytochrome c; composite genes were observed in most revertants from the low-reverting strains cyc1-11, cyc1-136 and cyc1-158, and in low proportions of the revertants from the typically reverting strains cyc1-94 and cyc1-156. Protein analysis of 14 composite iso-cytochromes c and DNA sequencing of five composite genes indicated that recombinational events produced replacements of central portions of the cyc1 gene with a corresponding segment from the wild-type CYC7+ gene. The replacements varied in length from 13% to 61% of the translated portion of the CYC1 locus. The formation of composite genes occurred spontaneously at very low frequencies and at low but enhanced frequencies after treatments with mutagens including ultraviolet light, ethylmethane sulfonate, methylmethane sulfonate and nitrous acid. Genetic tests indicated that composite genes are formed mitotically by a conversion-like event in which the wild-type CYC1+ allele remains intact. Recombination between non-allelic genes can lead to identical sequences at different loci and to diverse composite genes. These results support the indirect evidence from other eukaryotic systems that non-allelic genes with extensive but not complete homology recombine during evolution.  相似文献   

9.
The structural gene CYC7 for yeast iso-2-cytochrome c was previously identified by isolating a mutant, cyc7-1-1, totally lacking iso-2-cytochrome c and demonstrating that revertants of this mutant contained iso-2-cytochrome c with an altered primary structure (Downie et al., 1977). In this paper we describe a variety of different types of mutants that completely or partially lack iso-2-cytochrome c due to mutations in either the structural gene, CYC7, or unlinked “regulatory” genes. The iso-2-cytochrome c-deficient mutants were isolated by benzidine staining of over 3 × 105 colonies from ?? strains (cytoplasmic petites) that lacked iso-1-cytochrome c due to the deletion cyc1-1 and that contain abnormally high levels of iso-2-cytochrome c due to a chromosomal translocation, CYC7-1, adjacent to the normal structural gene CYC7 +. The cytochrome c content of mutants not staining with the benzidine reagents was estimated by low temperature spectroscopy, and 139 mutants containing significantly decreased levels of iso-2-cytochrome c were analyzed genetically by complementation with previously identified cyc mutants. In this way 50 mutants at the cyc2 and cyc3 loci were identified along with a group of 62 mutants of the structural gene cyc7. The different types of mutants of the structural gene which were uncovered and which were more or less anticipated included those that completely lacked iso-2-cytochrome c, those that were suppressible by UAA or UAG suppressors, those that lacked iso-2-cytochrome c but had increased levels after growth at lower temperatures, and those that exhibited visibly altered ca absorption bands of iso-2-cytochrome c. Iso-2-cytochrome c mutants with altered primary structures were obtained from intragenic revertants of several of these mutants, confirming our earlier conclusion that cyc7 is the structural gene. In addition we observed an unexpected class of mutants that lacked iso-2-cytochrome c when in the ?? state but contained approximately the CYC7-1 parental level when in the ?+ state. Two of these mutants, cyc7-1-47 and cyc7-1-49, were shown to contain altered iso-2-cytochromes c. The different contents of the abnormal iso-2cytochromes c suggest that cytochrome c has different environments in ?+ and ?? mitochondria and that the ?+ condition may stabilize certain altered proteins.  相似文献   

10.
Previous work has established that the N57I amino acid replacement in iso-1-cytochrome c from the yeast Saccharomyces cerevisiae causes an unprecedented increase in thermodynamic stability of the protein in vitro, whereas the N57G replacement diminishes stability. Spectrophotometric measurements of intact cells revealed that the N57I iso-l-cytochrome c is present at higher than normal levels in vivo. Although iso-1-cytochrome c turnover is negligible during aerobic growth, transfer of fully derepressed, aerobically grown cells to anaerobic growth conditions leads to reduction in the levels of all of the cytochromes. Pulsechase experiments carried out under these anaerobic conditions demonstrated that the N57I iso-l-cytochrome c has a longer half-life than the normal protein. This is the first report of enhanced stability in vivo of a mutant form of a protein that has an enhanced thermodynamic stability in vitro. Although the N57I protein concentration is higher than the normal level, reduced growth in lactate medium indicated that the specific activity of this iso-l-cytochrome c in vivo is diminished relative to wild-type. On the other hand, the level of the thermodynamically labile N57G iso-1-cytochrome c was below normal. The in vivo levels of the N57I and N57G iso-l-cytochrome c suggest that proteins in the mitochondrial intermembrane space can be subjected to degradation, and that this degradation may play a role in controlling their normal levels.  相似文献   

11.
We used a specially constructed strain, cyc1–345, of the yeast Saccharomyces cerevisiae to isolate revertants that initiated translation of iso-1-cytochrome c at various sites along an extended region of the mRNA. Normal amounts of iso-1-cytochrome c occurred when translation initiated at the abnormal sites corresponding to amino acid positions ?3, ?2, 3 and 5, as well as the normal position ?1; 20% of the normal amounts occurred when translation initiated at the abnormal position 9. These results with cyc1–345 revertants indicate that translation of iso-1-cytochrome c can initiate with the normal efficiency at any site within the region spanning 25 nucleotides. Furthermore, because the lower amount of the short iso-1-cytochrome c in the mutant initiating at position 9 may not necessarily reflect an inefficiency of translation, we believe that translation can initiate with normal or near-normal efficiencies at any site within a 37 nucleotide region, and presumably at any site preceding and following that of the normal initiation codon. These results establish that there is no absolute requirement for a particular sequence 5′ to the initiation codon, and are consistent with our previous suggestion that translation starts at the AUG codon closest to the 5′ end of the mRNA.  相似文献   

12.
13.
Previous work has established that the N57I amino acid replacement in iso-1-cytochrome c from the yeast Saccharomyces cerevisiae causes an unprecedented increase in thermodynamic stability of the protein in vitro, whereas the N57G replacement diminishes stability. Spectrophotometric measurements of intact cells revealed that the N57I iso-l-cytochrome c is present at higher than normal levels in vivo. Although iso-1-cytochrome c turnover is negligible during aerobic growth, transfer of fully derepressed, aerobically grown cells to anaerobic growth conditions leads to reduction in the levels of all of the cytochromes. Pulsechase experiments carried out under these anaerobic conditions demonstrated that the N57I iso-l-cytochrome c has a longer half-life than the normal protein. This is the first report of enhanced stability in vivo of a mutant form of a protein that has an enhanced thermodynamic stability in vitro. Although the N57I protein concentration is higher than the normal level, reduced growth in lactate medium indicated that the specific activity of this iso-l-cytochrome c in vivo is diminished relative to wild-type. On the other hand, the level of the thermodynamically labile N57G iso-1-cytochrome c was below normal. The in vivo levels of the N57I and N57G iso-l-cytochrome c suggest that proteins in the mitochondrial intermembrane space can be subjected to degradation, and that this degradation may play a role in controlling their normal levels.  相似文献   

14.
15.
The cleavable, photoaffinity label precursor, N-(4-azidophenylthio)phthalimide has been synthesized and purified. The recrystallized product was identified by infrared spectroscopy and nuclear magnetic resonance spectroscopy. The compound modifies free thiol groups to yield the corresponding S-4-azidophenylthio derivatives. In order to examine the biological applications of this compound, yeast iso-1-cytochrome c, containing a single free cysteine residue, was modified and characterized. The 102-S-(4-azidophenylthio)-iso-1-cytochrome c was found to contain 1 mol of label/mol of cytochrome c. The photoaffinity labeling of purified, detergent-solubilized yeast cytochrome c oxidase was examined. Photolysis products of crosslinking could be analyzed on sodium dodecyl sulfate-polyacrylamide gels in the absence of reducing agents. The crosslinked products were readily cleaved by dithiothreitol. The use of this compound as a sulfhydryl-specific photolabile, bifunctional crosslinking reagent is discussed.  相似文献   

16.
The base-pair changes induced by the highly carcinogenic agent, 4-nitroquinoline-1-oxide, have been determined from the reversion rates of defined tester strains and from the amino acid replacements of revertant iso-1-cytochromes c. The mutant codons and the base-pair changes of reverse mutations of 14 cyc1 mutants were previously determined from alterations of iso-1-cytochromes c in intragenic revertants. These 14 cyc1 mutants, which were used as tester strains, included nine mutants with altered AUG initiation codons, an ochre (UAA) mutant, an amber (UAG) mutant and three frameshift mutants (Stewart et al., 1971,1972; Stewart &; Sherman, 1972,1974; Sherman &; Stewart, 1973). NQO2 induced a high rate of reversion in the initiation mutant cyc1-131, the only mutant in the group which reverts to normal iso-1-cytochrome c by a G · C → A · T transition. In addition, NQO produces a significant rate of reversion of all cyc1 mutants which revert by G · C transversions, e.g. the amber (UAG) mutant and the initiation mutants containing AGG, and probably CUG mutant codons. It did not revert the ochre mutant which contains no G · C base pairs. Ten NQO-induced revertants of the amber mutant cyc1-179 contained the expected replacements of residues of tyrosine, and ten NQO-induced revertants of each of the cyc1-131 and cyc1-133 initiation mutants all contained the expected normal iso-1-cytochrome c. The structures of these iso-1-cytochromes c and the pattern of reversion of the tester strains indicate that base-pair substitutions arise at G · C base pairs which are the site of NQO attack. Thus NQO induces G · C → A · T transitions, G · C → T · A transversions and possibly G · C → C · G transversions. Because of its mode of action, NQO may be useful in less-defined systems for identifying G · C base pairs in mutant codons.  相似文献   

17.
A molecular replacement approach, augmented with the results of predictive modeling procedures, solvent accessibility studies, packing analyses and translational coefficient searches, has been used to elucidate the 2.8 A (1 A = 0.1 nm) resolution structure of yeast iso-1-cytochrome c. An examination of the polypeptide chain folding of this protein shows it to have unique conformations in three regions, upon comparison with the structures of other eukaryotic cytochromes c. These include: residues -5 to +1 at the N-terminal end of the polypeptide chain, which are in an extended conformation and project in large part off the surface of the protein; residues 19 to 26, which form a surface beta-loop on the His18 ligand side of the central heme group; and, the C-terminal end of the helical segment composed of residues 49 to 56, which serves to form a part of the heme pocket. Structural studies also show that the highly reactive sulfhydryl group of Cys102 is buried within a hydrophobic region in the monomer form of yeast iso-1-cytochrome c. Dimerization of yeast iso-1-cytochrome c through disulfide bond formation between two such residues would require a substantial conformational change in the C-terminal helix of this protein. Another unique structural feature, the trimethylated side-chain of Lys72, is located on the surface of yeast iso-1-cytochrome c near the solvent-exposed edge of the bound heme prosthetic group. On the basis of the results of these and other structural studies, an analysis of the spatial conservation of structural features in the heme pocket of eukaryotic cytochromes c has been conducted. It was found that the residues involved could be divided into three general classes. The current structural analyses and additional modeling studies have also been used to explain the altered functional properties observed for mutant yeast iso-1-cytochrome c proteins.  相似文献   

18.
Over 200 revertants that suppressed three or more UAA markers were isolated in a haploid strain of yeast, Saccharomyces cerevisiae, containing the ψ+ cytoplasmic determinant which increases the efficiency of action of certain suppressors. These revertants were grouped into classes on the basis of suppression of four nutritional markers and the canavanine-resistant marker can1–100, and on the basis of the efficiency of suppression of the cyc1–72 marker which contains a defined UAA mutant codon corresponding to position 06 in iso-1-cytochrome c. Genetic analysis and other tests indicated that 40% of the suppressors were highly efficient and were allelic to one or another of the known tyrosine-inserting suppressors, that 59% of the suppressors were moderately efficient and were allelic to either the previously known serine-inserting suppressor SUP16 or to the newly discovered serine-inserting suppressor SUP17, and that 1% of the suppressors were inefficient and were allelic to the newly discovered SUP26 suppressor. The SUP16 suppressors were shown to be allelic to the previously characterized suppressor SUQ5 whose locus is on the right arm of chromosome XVI. This location and the pattern of suppression suggests that the SUP16 locus may be identical to the previously described SUP15 locus. Genetic analysis established that the newly discovered SUP17 locus is on the left arm of chromosome IX, between the his6 and lys11 markers. The examination of four different strains revealed that the SUP16 and SUP17 suppressors cause insertion of serine in iso-1-cytochrome c at the UAA site of the cyc1–72 mutant. It is suggested that the gene products of the SUP16 and SUP17 loci are redundant forms of the same serine transfer RNA. Because viable haploid strains containing both suppressors were obtainable, it was concluded that SUP16 and SUP17 could not be the sole genes coding for the only UCA-decoding species of serine tRNA.  相似文献   

19.
Fine-structure genetic mapping previously revealed numerous nonfunctional cyc1 mutations having alterations at or near the site corresponding to amino acid position 76 of iso-1-cytochrome c from the yeast Saccharomyces cerevisiae. DNA sequencing of the alterations in four of these cyc1 mutations indicated that the normal Pro-76 was replaced by Leu-76. Revertants containing at least partially functional iso-1-cytochromes c were isolated, and the alterations were analyzed by DNA sequencing and protein analysis. Specific activities of the altered iso-1-cytochromes c were estimated in vivo by growth of the strains in lactate medium; compared to normal iso-1-cytochrome c with Pro-76, the following activities were associated with the following replacements: approximately 90% for Val-76, approximately 60% for Thr-76, approximately 30% for Ser-76, approximately 20% for Ile-76, and 0% for Leu-76. In order to develop an understanding of the factors that determine whether or not an altered iso-1-cytochrome c will function, we undertook a theoretical analysis which led to the conclusion that the activity of the proteins was dependent on both short- and long-range interactions. Short-range interactions were estimated from studies on known protein structures which gave the likelihood that various amino acids would be found in a local backbone configuration similar to the native protein; long-range interactions with the rest of the molecule were analyzed by considering the size of the side chain. We believe this approach can be used to analyze a wide variety of mutant proteins.  相似文献   

20.
Serine insertion caused by the ribosomal suppressor SUP46 in yeast   总被引:9,自引:0,他引:9  
The ribosomal suppressor SUP46 isolated from the yeast Saccharomyces cerevisiae suppresses a broad range of mutations, including at least some UAA, UAG and UGA alleles. The SUP46 suppressor causes the insertion of serine into iso-1-cytochrome c at the site of the UAA mutation in the cyc1-72 allele. It is believed that the altered ribosomes in the SUP46 suppressor allow a serine tRNA to misread UAA codons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号