首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mutagenicity of the commonly used glutathione S-transferase substrates 1-chloro-2,4-dinitrobenzene (CDNB) and 1,2-dichloro-4-nitrobenzene (DCNB) was investigated in the Salmonella mutagenicity assay. CDNB induced a concentration-dependent mutagenic response in Salmonella typhimurium strain TA98. Incorporation of an activation system derived from Aroclor 1254-induced rats did not influence mutagenic response. Under the same conditions DCNB failed to display mutagenic activity. The mutagenic activity of CDNB was attenuated in bacterial strains under-expressing nitroreductase or O-acetylase activity but, in contrast, it was exaggerated in an O-acetylase over-expressing strain. It is inferred that CDNB exhibits a mutagenic response following reduction of the nitro-group to the hydroxylamine, which is further acetylated to form the acetoxy derivative that presumably breaks down spontaneously to generate the nitrenium ion, the likely ultimate mutagen.  相似文献   

2.
We studied the action of the glutathione transferase substrate, 1-chloro-2,4-dinitrobenzene (CDNB) on the synaptosomal production of H2O2. We found that CDNB (30-40 microM) readily depletes the cytosolic glutathione but is almost without effect on the mitochondrial fraction. The depletion of the cytosolic glutathione induced by CDNB affords the detection in the extracellular space of H2O2 produced intrasynaptosomally upon increasing the cytosolic Ca2+ concentration that is otherwise destroyed by glutathione peroxidase. Higher concentrations of CDNB induce a H2O2 production which is not related to the glutathione content. This H2O2 is of mitochondrial origin and requires that NAD be reduced. The primary product of the mitochondrial CD-NB-dependent oxygen reduction is at least in part the superoxide anion.  相似文献   

3.
The nucleophilic substitution reaction between glutathione and 1-chloro-2,4-dinitrobenzene has been studied at temperatures between 4 and 42°C and pH values between 6.99 and 10.80. The apparent enthalpy, entropy and free energy of ionization of the thiol group have been estimated as have the apparent enthalpy, entropy and free energy of activation of the reaction between the glutathione thiolate anion and the aromatic electrophile. The results obtained permit the calculation of values of the second order rate constant governing the reaction at a range of temperatures and pHs. These values are in accord with those reported in the literature from experimental work by others. The major glutathione S-transferase from Galleria mellonella has been studied with respect to its kinetic responses to changes in pH and temperature. There appear to be two kinetically critical ionizations governing the reaction at high pH. These ionization events are characterized by apparent pKa values of 8.61 ± 0.15 and 9.16 ± 0.22. A thermodynamic model of the kinetic behavior of the enzyme permits the prediction of its activity over a range of pH and temperature values. The apparent free energy of activation for the enzyme catalyzed reaction is only 7% lower than that for the non-catalyzed reaction between 1-chloro-2,4-dinitrobenzene and glutathione thiolate anion. This observation is compatible with the suggestion that promotion of the ionization of the glutathione thiol group is the major mechanism of catalysis.  相似文献   

4.
Modeling methods allow the identification and analysis of determinants of reactivity and specificity in enzymes. The reaction between glutathione and 1-chloro-2,4-dinitrobenzene (CDNB) is widely used as a standard activity assay for glutathione S-transferases (GSTs). It is important to understand the causes of differences between catalytic GST isoenzymes and the effects of mutations and genetic polymorphisms. Quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulations have been performed here to investigate the addition of the glutathione anion to CDNB in the wild-type M1-1 GST isoenzyme from rat and in three single point mutant (Tyr6Phe, Tyr115Phe, and Met108Ala) M1-1 GST enzymes. We have developed a specifically parameterized QM/MM method (AM1-SRP/CHARMM22) to model this reaction by fitting to experimental heats of formation and ionization potentials. Free energy profiles were obtained from molecular dynamics simulations of the reaction using umbrella sampling and weighted histogram analysis techniques. The reaction in solution has also been simulated and is compared to the enzymatic reaction. The free energies are in excellent agreement with experimental results. Overall the results of the present study show that QM/MM reaction pathway analysis provides detailed insight into the chemistry of GST and can be used to obtain mechanistic insight into the effects of specific mutations on this catalytic process.  相似文献   

5.
6.
Cell glutathione scavenges free radicals, degrades peroxides, removes damaging electrophiles and maintains the redox state. The aim of this study was to develop an effective and efficient method to measure the rate of glutathione synthesis from its constituent amino acids in whole erythrocytes (RBCs). RBCs (10% haematocrit) were exposed to 0.3 mM 1-chloro-2,4-dinitrobenzene (CDNB) to lower their total glutathione content by 70% and then incubated with glucose, and N-acetylcysteine as a cysteine source. Over 3 h, glutathione levels increased at a constant rate of 1.2 micromol (L RBC)(-1)min(-1), almost 5 times faster than the rate of glutathione synthesis in RBCs with normal glutathione levels. Glutathione at concentrations normally found in RBCs is known to inhibit glutamate cysteine ligase (the major rate controlling enzyme for glutathione synthesis). The rate of glutathione recovery was substantially reduced in RBCs treated with buthionine sulfoximine, a specific inhibitor of glutamate cysteine ligase. Our results indicate that the measurement of glutathione recovery rate after CDNB treatment can be used to estimate de novo synthesis of glutathione. Application of this direct method for measuring glutathione synthesis will increase understanding of the interactions of effectors that determine glutathione levels in RBCs under various physiological and pathological conditions.  相似文献   

7.
Recently we have shown that Salmonella typhimurium tester strains have high levels of the tripeptide glutathione (GSH) and activity of GSH S-transferases (Summer et al., 1979). In continuation of the GSH-dependent suppression of mutagenicity of 1-chloro-2,4-dinitrobenzene in presence of S9 fraction (Summer et al., 1979), this paper is focused on the GSH-dependent detoxifying capacity of the bacterial tester strains. 1-Fluoro-2,4-dinitrobenzene (FDNB), an electrophilic agent, which is used to identify terminal amino acids in proteins (Sanger reagent), readily reacts with GSH leading to a dose-dependent depletion of bacterial GSH. Additionally, FDNB is a strong mutagen for Salmonella typhimurium TA100, TA1538 and TA98 without metabolic activation.Presumably owing to conjugation with bacterial GSH, FDNB in concentrations which were lower or equal to those of bacterial GSH were found to be not mutagenic. Accordingly, increasing amounts of bacteria in the test system require increasing amounts of FDNB for expression of mutagenicity.  相似文献   

8.
The mutagenicity of the commonly used glutathione S-transferase substrates 1-chloro-2,4-dinitrobenzene (CDNB) and 1,2-dichloro-4-nitrobenzene (DCNB) was investigated in the Salmonella mutagenicity assay. CDNB induced a concentration-dependent mutagenic response in Salmonella typhimurium strain TA98. Incorporation of an activation system derived from Aroclor 1254-induced rats did not influence mutagenic response. Under the same conditions DCNB failed to display mutagenic activity. The mutagenic activity of CDNB was attenuated in bacterial strains under-expressing nitroreductase or O-acetylase activity but, in contrast, it was exaggerated in an O-acetylase over-expressing strain. It is inferred that CDNB exhibits a mutagenic response following reduction of the nitro-group to the hydroxylamine, which is further acetylated to form the acetoxy derivative that presumably breaks down spontaneously to generate the nitrenium ion, the likely ultimate mutagen.  相似文献   

9.
Repletion of depleted cellular reduced glutathione (GSH) levels in oxidative stress and exposure to arylating agents is a strategy for the development of antidotes to chemical toxicity. The effect of GSH, reduced glutathione ethyl monoester (GSHEt), and reduced glutathione ethyl diester (GSHEt2) on the cytotoxicity of hydrogen peroxide, 1-chloro-2,4-dinitrobenzene (CDNB), and menadione to P388D1 macrophages in vitro was investigated. The median toxic concentration TC50 values of the toxicants were hydrogen peroxide 24 ± 2 mM (N = 19), CDNB 63 ± 6 μM (N = 18), and menadione 30 ± 4 μM (N = 22). Reduced glutathione, GSHEt, and GSHEt2 were poor antidotes to hydrogen peroxide toxicity. Indeed, the observed antidote effects were attributed to the nonenzymatic reaction of the GSH derivatives with hydrogen peroxide in the extracellular medium. Reduced glutathione ethyl diester was a more potent antidote of CDNB- and menadione-mediated toxicity than GSHEt and GSH. For cell incubations with the approximate median toxic concentration TC50 values of hydrogen peroxide, CDNB, and menadione, the respective median effective antidote concentration EC50 values were GSHEt 23.8 ± 4.1 mM (N = 9), 3.6 ± 0.6 mM (N = 11), and 226 ± 93 μM (N = 12); and GSHEt2 20.4 ± 1.9 mM (N = 6), 603 ± 2 μM (N = 9), and 7.6 ± 2.3 μM (N = 12). Reduced glutathione ethyl diester was a potent antidote to CDNB- and menadione-induced toxicities but not to hydrogen peroxide-induced toxicity under acute intoxication conditions. © 1996 John Wiley & Sons, Inc.  相似文献   

10.
We developed and validated an HPLC method for determination of 1-chloro-2,4-dinitrobenzene (CDNB) and its glutathione conjugate 2,4-dinitrophenyl-S-glutathione (DNP-SG) to study the kinetics and mechanisms involved in DNP-SG formation and efflux, as a probe for human placental metabolism and transport. This method combines use of 3 microm solid phase, rapid mobile phase gradient with dual wavelength ultraviolet detection to permit determination of a lipophilic parent compound and its hydrophilic metabolites in a single short run. The selectivity, linearity, accuracy, precision, relative recovery and stability of the assay are sufficient for determining CDNB, DNP-SG and its metabolites from buffer and tissue samples to support placental drug metabolism and transport studies.  相似文献   

11.
Human placenta glutathione transferase pi is irreversibly inhibited when incubated with 1-chloro-2,4-dinitrobenzene (CDNB) in the absence of the cosubstrate glutathione. The enzyme is protected against CDNB inactivation by the presence of S-methylglutathione and glutathione. The kinetics of inactivation is pseudo-first-order with k(obs) = 0.04 min-1 when 44 microM enzyme is incubated in presence of 1 mM CDNB at pH 6.5. The inhibition is saturable with respect to the CDNB concentration and the enzyme-CDNB complex shows a K(i) = 2.7 mM. Concomitant to the inhibition process is formation of an absorption band at 340 nm. After trypsin digestion and HPLC analysis, the CDNB-reacted enzyme gives a single peptide absorbing at 340 nm. Automated Edman degradation of this peptide indicates cysteine 47 to be the residue alkylated by CDNB.  相似文献   

12.
Because of the low hepatic activity of gamma-glutamyl-transferase in the rat, the liver is generally considered to play only a minor role in the degradation of glutathione conjugates, a limiting step in mercapturic acid formation. Recent findings indicate, however, that the liver has a prominent role in glutathione catabolism, particularly in species other than rat. To examine the contributions of liver to mercapturic acid biosynthesis, mercapturate formation was compared in isolated perfused livers from rats and guinea pigs dosed with either 0.3 or 3.0 mumol of 1-chloro-2,4-dinitrobenzene (CDNB). Chemically synthesized glutathione conjugate, mercapturic acid, and intermediary metabolites of CDNB were used as standards in the high performance liquid chromatography analysis of bile and perfusate samples. Biliary excretion accounted for almost all of the recovered metabolites. A marked species difference was observed in the pattern of CDNB metabolism. Rat livers dosed with 0.3 mumol of CDNB excreted 55% of total biliary metabolites as the glutathione conjugate and 8.2% as the mercapturic acid, whereas guinea pig livers excreted only 4.8% as the glutathione conjugate and 47% as the mercapturate. Mercapturic formation was also dose-dependent, with a larger fraction formed at the 0.3- versus the 3.0-mumol dose (8.2 versus 3.7% in the rat; 47 versus 19% in the guinea pig). Hepatic conversion of the glutathione conjugate to the mercapturic acid was markedly inhibited in both species after retrograde intrabiliary infusion of acivicin, an inhibitor of gamma-glutamyltransferase activity. These findings provide direct evidence for intrahepatic biosynthesis of mercapturic acids. Thus, glutathione conjugates synthesized within hepatocytes are secreted into bile and broken down to cysteine conjugates; the latter are then presumably reabsorbed by the liver, N-acetylated to form the mercapturic acid and re-excreted into bile.  相似文献   

13.
Several chemical agents have been used to exert oxidative stress in the study of stress response, but differences in the effects of different reagents have received little attention. To elucidate whether such differences exist, the response of Schizosaccharomyces pombe to menadione (MD), 1-chloro-2,4-dinitrobenzene (CDNB), hydrogen peroxide and cumene hydroperoxide (CHP), which are frequently used to exert oxidative stress, was investigated. Sensitivity to these reagents differed among mutants deficient in genes involved in oxidative stress resistance. N-Acetylcysteine restored resistance to MD, CHP and hydrogen peroxide but did not change sensitivity to CDNB. The induction kinetics of genes induced by oxidative stress differed for each reagent. MD, CDNB and hydrogen peroxide caused a transient induction of genes, but the peak times of induction differed among the reagents. CHP gave quite different kinetics in that the induction continued for up to 2 h. The ctt1(+) gene was not induced by CHP. GSH rapidly decreased in the cells treated with high concentrations of these reagents, but at a low concentration only CDNB decreased GSH. These results indicated that S. pombe responded differently to the oxidative stress exerted by these different reagents.  相似文献   

14.
15.
[18F]1-Fluoro-2,4-dinitrobenzene (FDNB), a substrate for the detoxification enzyme glutathione-S-transferase, was prepared by 18F-Cl exchange. It was administered as a rapid bolus in the perfused working rat heart and the kinetics of the label were followed by external coincidence detection and by analysis of the coronary effluents and tissue homogenates. The data suggest that part of the extracted tracer was released, part was dehalogenated and part was reversibly incorporated into a large tissue pool of FDNB that was not a substrate for defluorination. The rates of the specific processes, estimated from the residue data, may be sensitive to changes in the glutathione detoxification system and therefore applicable to investigation of the compromised myocardium.  相似文献   

16.
Microtubule drugs, which block cell cycle progression through mitosis, have seen widespread use in cancer chemotherapies. Although microtubules are subject to regulation by signal transduction mechanisms, their pharmacological modulation has so far relied on compounds that bind to the tubulin subunit. A new microtubule pharmacophore, diphenyleneiodonium, causing disassembly of the microtubule cytoskeleton is described here. Although this synthetic compound does not affect the assembly state of purified microtubules, it profoundly suppresses microtubule assembly in vivo, causes paclitaxel-stabilized microtubules to cluster around the centrosomes, and selectively disassembles dynamic microtubules. Similar to other microtubule drugs, this new pharmacophore blocks mitotic spindle assembly and mitotic cell division.  相似文献   

17.
Summary. Elevated levels of glutathione S-transferases (GSTs) are among the factors associated with an increased resistance of tumors to a variety of antineoplastic drugs. Hence a major advancement to overcome GST-mediated detoxification of antineoplastic drugs is the development of GST inhibitors. Two such agents have been synthesized and tested on the human Alpha, Mu and Pi GST classes, which are the most representative targets for inhibitor design. The novel fluorescent glutathione S-conjugate L-γ-glutamyl-(S-9-fluorenylmethyl)-L-cysteinyl-glycine (4) has been found to be a highly potent inhibitor of human GSTA1-1 in vitro (IC50=0.11±0.01 μM). The peptide is also able to inhibit GSTP1-1 and GSTM2-2 isoenzymes efficiently. The backbone-modified analog L-γ-(γ-oxa)glutamyl-(S-9-fluorenylmethyl)-L-cysteinyl-glycine (6), containing an urethanic junction as isosteric replacement of the γ-glutamyl-cysteine peptide bond, has been developed as γ-glutamyl transpeptidase-resistant mimic of 4 and evaluated in the same inhibition tests. The pseudopeptide 6 was shown to inhibit the GSTA1-1 protein, albeit to a lesser extent than the lead compound, with no effect on the activity of the isoenzymes belonging to the Mu and Pi classes. The comparative loss in biological activity consequent to the isosteric change confirms that the γ-glutamyl moiety plays an important role in modulating the affinity of the ligands addressed to interact with GSH-dependent proteins. The new specific inhibitors may have a potential in counteracting tumor-protective effects depending upon GSTA1-1 activity.  相似文献   

18.
The acquisition of resistance to anticancer agents used in chemotherapy is the main cause of treatment failure in malignant disorders, provoking tumours to become resistant during treatment, although they initially respond to it. The main multidrug resistance (MDR) mechanism in tumour cells is the expression of P-gly-coprotein (P-gly), that acts as an ATP-dependent active efflux pump of chemotherapeutic agents. Furthermore, an increased detoxification of compounds mediated by high levels of glutathione (GSH) and glutathione S-transferase (GST), has been found in resistant cells. We developed a study aiming to evaluate the evolution of the main drug resistance markers in tumour cells: P-gly, GSH and GST, during the acquisition of resistance to colchicine, for the purpose of studying the adaptation process and its contribution to the MDR phenomenon. A human colon adenocarcinoma cell line was exposed to colchicine during 82 days, being P-gly, GSH levels and GST activity evaluated by flow cytometry, spectrofluorimetry and spectrophotometry, during exposure time. P-gly and GSH levels increased gradually during the exposure to colchicine, reaching 2.35 and 3.21 fold each. On day 82, GST activity increased 1.84 fold at the end of the exposure period. Moreover, an increment in drug cross-resistance was obtained that ranges from 2.62 to 5.22 fold for colchicine, vinblastine, vincristine and mitomycin C. The increments obtained in P-gly, GSH and GST could probably contribute to the MDR phenomenon in this human colon adenocarcinoma cell line.  相似文献   

19.
The glutathione S-transferase (GST) isoenzyme A1–1 from rat contains a single tryptophan, Trp 21, which is expected to lie within α-helix 1 based on comparison with the X-ray crystal structures of the pi- and mu-class enzymes. Steady-state and multifrequency phase/modulation fluorescence studies have been performed in order to characterize the fluorescence parameters of this tryptophan and to document ligand-induced conformational changes in this region of the protein. Addition of S-hexyl glutathione to GST isoenzyme A1–1 causes an increase in the steady-state fluorescence intensity, whereas addition of the substrate glutathione has no effect. Frequency-domain excited-state lifetime measurements indicate that Trp 21 exhibits three exponential decays in substrate-free GST. In the presence of S-hexyl glutathione, the data are also best described by the sum of three exponential decays, but the recovered lifetime values change. For the substrate-free protein, the short lifetime component contributes 9–16% of the total intensity at four wavelengths spanning the emission. The fractional intensity of this lifetime component is decreased to less than 3% in the presence of S-hexyl glutathione. Steady-state quenching experiments indicate that Trp 21 is insensitive to quenching by iodide, but it is readily quenched by acrylamide. Acrylamide-quenching experiments at several emission wavelengths indicate that the long-wavelength components become quenched more easily in the presence of S-hexyl glutathione. Differential fluorescence polarization measurements also have been performed, and the data describe the sum of two anisotropy decay rates. The recovered rotational correlation times for this model are 26 ns and 0.81 ns, which can be attributed to global motion of the protein dimer, and fast local motion of the tryptophan side chain. These results demonstrate that regions of GST that are not in direct contact with bound substrates are mobile and undergo microconformational rearrangement when the “H-site” is occupied.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号