首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Levels of fructose 6-phosphate and glucose 6-phosphate were measured in chloroplasts which had been isolated non-aqueously from leaves of various plants. a large decrease in the ratio of glucose 6-phosphate to fructose 6-phosphate in the light indicated considerable displacement of the hexosephosphate isomerase reaction from equilibrium in leaves of spinach and red beet which were photosynthesizing at high rates. The decrease in the ratio of glucose 6-phosphate to fructose 6-phosphate was correlated with an increase in the chloroplastic level of 3-phosphoglyceric acid, which proved to be a competitive inhibitor of chloroplast hexosephosphate isomerase. Other metabolites, especially the product of the reaction, glucose 6-phosphate, and ions in concentrations as present in the stroma under natural conditions, cause a further reduction in the rate of the forward reaction of the hexosemonophosphate isomerase. When the concentration of O2 in air was decreased from 21 to 2%, both the rate of leaf photosynthesis and the ratio of glucose 6-phosphate to fructose 6-phosphate increased, whereas the concentration of 3-phosphoglyceric acid and starch synthesis decreased. The results are explained in terms of activation of ADPglucose pyrophosphorylase and of inhibition of hexosephosphate isomerase by 3-phosphoglyceric acid. Hexosephosphate isomerase appears to assume a rate-limiting function in starch synthesis in the light when ADPglucose pyrophosphorylase is activated.  相似文献   

2.
In plant cells, the reversible isomerization between fructose 6-phosphate (Fru6P) and glucose 6-phosphate (Glc6P) is catalyzed by a cytosolic and a chloroplastic isoenzyme of phosphoglucose isomerase (PGI, EC 5.3.1.9). The extractable activities of both PGI isoenzymes are in large excess compared with the flux required for product synthesis, but the measured Glu6P/Fru6P ratio in illuminated chloroplasts and in whole leaves is always displaced from equilibrium. Cytosolic (PGI 2) and stromal (PGI 1) isoenzymes were purified from spinach leaves and used to investigate the possibility of metabolic regulation at this step. Several metabolites were found to inhibit PGI, but within the physiological concentration range, only erythrose 4-phosphate (Ery4P) inhibited significantly. The inhibition was competitive, with Ki values below 10 μM for PGI 2 and 1. The physiological significance of the inhibition of PGI by Ery4P was assessed in isolated intact spinach chloroplasts. We conclude that, in vivo, this inhibition is probably responsible for the observed displacement from equilibrium in the chloroplasts, but limits the carbon flow towards starch synthesis only when Fru6P is low. In contrast, the inhibition by Ery4P is unlikely to play any role in the cytosolic carbon metabolism because both Fru6P concentration and PGI activity, are much higher than in the chloroplast stroma.  相似文献   

3.
Uptake of glycerate into the stroma of isolated spinach chloroplasts has been studied by silicone oil filtering centrifugation. In the dark, glycerate uptake was slow but it was increased more than five-fold by illumination of the chloroplasts. The stimulatory effect of light was reversed by uncoupling agents. By chromatography of chloroplast extracts it was demonstrated that the concentration of glycerate in the chloroplast stroma exceeded that in the surrounding medium. Glycerate uptake was dependent on temperature and pH and showed saturation kinetics. A number of weak acids inhibited glycerate uptake. It is concluded that glycerate uptake in chloroplasts is mediated by a carrier which is stimulated by illumination of the chloroplasts.  相似文献   

4.
Sicher RC 《Plant physiology》1989,89(2):557-563
Phosphoglucomutase (PGM) activity was measured in spinach (Spinacia oleracea L.) chloroplasts. Initial enzyme activity in a chloroplast lysate was 5 to 10% of total activity measured with 1 micromolar glucose 1,6-bisphosphate (Glc 1,6-P2) in the assay. Initial PGM activity increased 2- to 3-fold when chloroplasts were illuminated for 10 minutes prior to enzyme measurement and then decreased slowly in the dark. Measurements of total enzyme activity were unchanged by prior light treatment. Initial PGM activity from light treated chloroplasts was sufficient to account for in vivo rates of starch synthesis. Changes in PGM activity were affected by stromal pH and orthophosphate concentration. Photosynthetic inhibitors, dl-glyceraldehyde, glycolaldehyde, and glyoxylate, decreased and 3-phosphoglyceric acid increased light induced changes of PGM activity. Dark preincubation of chloroplasts with 10 millimolar dithiothreitol had no effect upon initial PGM activity, suggesting that light effects did not involve a sulfhydryl mechanism. Hexose monophosphate levels increased in illuminated chloroplasts. Activation of PGM in a chloroplast lysate by Glc 1,6-P2 was maximal between pH 7.5 and 8.5. Stromal concentrations of Glc 1,6-P2 were between 20 and 30 micromolar for both light and dark incubated chloroplasts and these levels should saturate PGM activity. Light dependent alterations of enzyme activity may be due to changes of phosphorylated PGM levels in the stroma or are the result of changes in residual activity by the dephosphorylated form of the enzyme. The above results indicate that PGM activity in spinach chloroplasts may be regulated by light, stromal pH, and Glc 1,6-P2 concentration.  相似文献   

5.
The role of hexokinase in carbohydrate degradation in isolated, intact chloroplasts was evaluated. This was accomplished by monitoring the evolution of 14CO2 from darkened spinach (Spinacia oleracea), maize (Zea mays) mesophyll, and Chlamydomonas reinhardtii chloroplasts externally supplied with 14C-labeled fructose, glucose, mannose, galactose, maltose, and ribose. Glucose and ribose were the preferred substrates with the Chlamydomonas and maize chloroplasts, respectively. The rate of CO2 release from fructose was about twice that from glucose in the spinach chloroplast. Externally supplied ATP stimulated the rate of CO2 release. The pH optimum for CO2 release was 7.5 with ribose and fructose and 8.5 with glucose as substrates. Probing the outer membrane polypeptides of the intact spinach chloroplast with two proteases, trypsin and thermolysin, decreased 14CO2 release from glucose about 50% but had little effect when fructose was the substrate. Tryptic digestion decreased CO2 release from glucose in the Chlamydomonas chloroplast about 70%. 14CO2 evolution from [1-14C]-glucose-6-phosphate in both chloroplasts was unaffected by treatment with trypsin. Enzymic analysis of the supernatant (stroma) of the lysed spinach chloroplast indicated a hexokinase active primarily with fructose but with some affinity for glucose. The pellet (membranal fraction) contained a hexokinase utilizing both glucose and fructose but with considerably less total activity than the stromal enzyme. Treatment with trypsin and thermolysin eliminated more than 50% of the glucokinase activity but had little effect on fructokinase activity in the spinach chloroplast. Tryptic digestion of the Chlamydomonas chloroplast resulted in a loss of about 90% of glucokinase activity.  相似文献   

6.
The regulation of CO(2) assimilation by intact spinach (Spinacia oleracea) chloroplasts by exogenous NADP-linked nonreversible d-glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.9) was investigated. This dehydrogenase mediated a glyceraldehyde 3-phosphate/glycerate 3-phosphate shuttle for the indirect transfer of NADPH from chloroplast to the external medium. The rate of NADPH formation in the medium reflected glyceraldehyde 3-phosphate efflux from the chloroplast. Increasing enzyme concentrations stimulated NADP reduction and, in turn, CO(2) fixation. Pyrophosphate increased CO(2) fixation by apparently inhibiting glyceraldehyde 3-phosphate efflux. Increasing the glycerate 3-phosphate concentration above 0.1 mm stimulated glyceraldehyde 3-phosphate efflux but inhibited CO(2) fixation. Addition of up to 0.5 mm orthophosphate enhanced both glyceraldehyde 3-phosphate efflux and CO(2) fixation while each was inhibited by higher orthophosphate concentrations. The mechanism by which the extent of glyceraldehyde 3-phosphate efflux regulated the rate of CO(2) fixation in chloroplasts was discussed.  相似文献   

7.
R Dumas  J Joyard    R Douce 《The Biochemical journal》1989,259(3):769-774
During the course of NH4+ (or NO2-)-plus-alpha-oxoglutarate-dependent O2 evolution in spinach (Spinacia oleracea) chloroplasts, glutamate was continuously excreted out of the chloroplasts. Under these conditions, for each molecule of NO2- or NH4+ which disappeared, one molecule of glutamate accumulated in the medium and the concentration of glutamate in the stroma space was maintained constant. SO4(2-) (or SO3(2-) behave as inhibitors of NH4+ incorporation into glutamate by intact chloroplasts. This considerable inhibition of glutamate synthesis by SO4(2-) was correlated with a rapid decline in the stromal Pi concentration. The reloading of stromal Pi with either external Pi or PPi4- relieved SO4(2-)-induced inhibition of glutamate synthesis by intact chloroplasts. It was concluded that SO4(2-) induced a rapid efflux of stromal Pi out of the chloroplast, leading to a limitation of ATP synthesis and therefore to an arrest of ATP-dependent glutamine synthetase functioning.  相似文献   

8.
Abstract. Starch synthesis by developing wheat endosperm slices incubated in liquid media was more rapid, at optimum concentration, from sucrose as external substrate than from glucose and/or fructose. Fructose inhibited conversion of sucrose or glucose. The results are consistent with the hypothesis that sucrose is not hydrolysed in the apoplast before uptake.
Besides a diffusional influx and efflux of labelled sucrose there was a non-diffusional influx; it was inhibited by dinitrophenol, potassium arsenate, potassium iodide, and parachloromercuribenzene sulphonate (PCMBS). PCMBS inhibited both uptake and conversion of label from 150 molm−314C-sucrose by 75%. Uptake and conversion of sucrose were stimulated by lowering pH and by fusicoccin, a promoter of proton extrusion.
Extracellular solutes like raffinosc and polyethylene glycol stimulated net uptake of label from 14C-sucrose — the larger molecule being more effective — this being due to a non-specific inhibition of diffusional efflux. At too high an osmotic concentration such solutes reduced net uptake; the larger the molecule the lower this transitional concentration.
In conclusion, wheat endosperm is better equipped to convert apoplastic sucrose rather than the hydrolysis products to starch; active loading of sucrose possibly involves proton co-transport; and large molecules in the extracellular solution reduce the diffusional elllux of loaded substrate.  相似文献   

9.
Light increased the initial rate and the extent of glycerate uptake by intact isolated chloroplasts. Half-maximum stimulation occurred with 10 to 20 watts per square meter of red light. Preillumination of chloroplasts enhanced uptake in a subsequent dark period. The light effect was abolished by DCMU and also by uncoupling agents such as nigericin and carbonyl cyanide p-trifluoromethoxyphenyl hydrazone.

Arsenate and phlorizin only inhibited glycerate uptake to the extent that metabolism in the chloroplast was decreased by insufficient ATP. The concentration of glycerate accumulated in the chloroplast stroma was not significantly decreased. Chloroplasts isolated from young pea shoots (Pisum sativum, L. cv Massey Gem) were depleted of ATP by incubation with inorganic pyrophosphate or with ATP analogs. These treatments also decreased metabolism of glycerate but the actual concentration of glycerate accumulated in the chloroplast stroma was not decreased.

The results indicate that glycerate uptake is driven by ion gradients established across the chloroplast envelope in the light. ATP is not involved in the transport of glycerate into chloroplasts, being required only for the subsequent metabolism of glycerate in the chloroplast stroma. It is proposed that glycerate transport may be coupled to the proton gradient established in the light across the chloroplast envelope.

  相似文献   

10.
Karl Werdan  Hans Walter Heldt 《BBA》1972,283(3):430-441
With silicone layer filtering centrifugation the uptake of radioactively labelled bicarbonate into isolated spinach chloroplasts was followed. This uptake was shown to have the following properties:

1. (a) It is so rapid that the kinetics of uptake usually cannot be resolved.

2. (b) Bicarbonate is accumulated in the stroma. The factor between the internal and external concentrations increases greatly when the pH of the medium is lowered from pH 8.5 to pH 7.0.

3. (c) The accumulation factor is independent of the concentration in the medium for a long concentration range.

4. (d) The accumulation of bicarbonate is increased when the chloroplasts are illuminated. This increase is abolished by the addition of uncoupler.

5. (e) Diamox, an inhibitor of carbonic anhydrase, inhibits the rate of bicarbonate uptake.

The activity of carbonic anhydrase was assayed in isolated chloroplasts and in leaf homogenates. In agreement with earlier reports the main activity was found to be located in the chloroplasts. This activity is latent; it can be only assayed if the chloroplasts are osmotically shocked.

From these results the following conclusions have been drawn:

1. (a) The inner membrane is impermeable to protons. Light-driven proton transport into the thylakoid space causes an alkalisation of the stroma.

2. (b) The uptake of bicarbonate proceeds via diffusion of CO2 across the inner membrane. There are no indications for a specific transport of bicarbonate.

3. (c) The CO2 concentration in the chloroplasts may be equal to the CO2 concentration in the external space. The distribution of bicarbonate between the two compartments is inversely proportional to the distribution of protons.

A possible involvement of carbonic anhydrase and the bicarbonate pool in the stroma in increasing the CO2 affinity of CO2 fixation is discussed.  相似文献   


11.
G. H. Krause 《BBA》1977,460(3):500-510
The metallochromic indicator Eriochrome Blue SE was used to measure light-induced internal movement of Mg2+ in intact chloroplasts. By dual-wavelength spectroscopy (measuring wavelength 554 nm, reference 592 nm) a light-induced, dark-reversible absorbance increase of Eriochrome Blue in samples of isolated intact chloroplasts was observed. The light/dark difference spectrum of Eriochrome Blue between 550 and 590 nm (reference wavelength 562 nm) indicated that this absorbance increase was caused by an increased concentration of free Mg2+ in a neutral or slightly alkaline chloroplast compartment.

The signal was seen only with intact, but not with broken, envelope-free chloroplasts, which had lost most of their divalent cations. This is interpreted to show that the indicator responds to an increase of Mg2+ concentration in the chloroplast stroma, which represents an efflux of Mg2+ from the intra-thylakoid space caused by light-dependent proton pumping.

As calculated from corrected values of the absorbance increase of Eriochrome Blue, the light-induced internal release of Mg2+ was close to 100 nequiv per mg chlorophyll at pH 7.6 and 250 nequiv at pH 7.1. This corresponds to a light-dependent increase in the concentration of free Mg2+ in the stroma of about 2 and 5 mM, respectively.  相似文献   


12.
Potassium movement across the limiting membrane of the chloroplast inner envelope is known to be linked to counterex-change of protons. For this reason, K+ efflux is known to facilitate stromal acidification and the resultant photosynthetic inhibition. However, the specific nature of the chloroplast envelope proteins that facilitate K+ fluxes, and the biophysical mechanism which links these cation currents to H+ counterflux, is not characterized. It was the objective of this work to elucidate the nature of the system regulating K+ flux linked to H+ counterflux across the chloroplast envelope. In the absence of external K+, exposure of spinach (Spinacia oleracea) chloroplasts to the K+ ionophore valinomycin was found to increase the rate of K+ efflux and H+ influx. These data were interpreted as suggesting that H+ counterexchange must be indirectly linked to movement of K+ across the envelope. Studies using the K+ channel blocker tetraethylammonium indicated that K+ likely moves, in a uniport fashion, into or out of the stroma through a monovalent cation channel in the envelope. Blockage of K+ efflux from the stroma by exposure to tetraethylammonium was found to restrict H+ influx, further substantiating an indirect linkage of these cation currents. Further studies comparing the effect of exogenous H+ ionophores and K+/H+ exchangers suggested that K+ uniport through this ion channel likely is the main endogenous pathway for K+ currents across the envelope. These experiments were also consistent with the presence of a proton channel in the envelope. Movement of H+ through this channel was speculated to be regulated and rate limited by an electroneutral requirement for K+ countercurrents through the separate K+ uniport pathway. K+ and H+ fluxes across the chloroplast envelope were envisioned to be interrelated via this mechanism. The significant effect of cation currents across the envelope, as mediated by these channels, on photosynthetic capacity of the isolated chloroplast was also demonstrated.  相似文献   

13.
It has been reported in quite a number of literatures that doubled CO2 concentration increased the photosynthetic rate and dry matter production of C3 plants, but substantially affected C4 plants little. However, why may CO2 enrichment promote growth and either no change or decrease reproductive allocation of the C3 species, but havinag no effects on growth characteristics of the C4 plants? So far, there has been no satisfactory explanation on that mentioned above, except the differences in their CO2 compensatory points. In the past, although some studies on ultrastructure of the chloroplasts under doubled CO2 concentration were limitedly conducted. Almost all the relevant experimental materials were only from C3 plants not from C4 plants, and even though the results were of inconsistancy. Thereby, it needs to verify whether the differences in photosynthesis of C3 and C4 plants at doubled CO2 level is caused by the difference in their chloroplast deterioration. Experiments to this subject were conducted at the Botanical Garden of Institute of Botany, Academia Sinica in 1993 and 1994. Both experimental materials from C3 plant alfalfa (Medicago sativa) and C4 plant foxtail millet (Setaria italica) were cultivated in the cylindrical open-top chambers (2.2 m in diameter × 2.4 m in height) with aluminum frames covered by polyethylene film. Natural air or air with 350× 10-6 CO2 were blown from the bottom of the chamber space with constant temperature between inside and outside of the chamber 〈0.2℃〉. Electron microscopic observation revealed that the ultrastructure of the chloroplasts from C3 plant Medicago sativa and C4 plant Seteria italica growing under the same doubled CO2 concentration were quite different from each other. The differential characteristics in ultrastructure of chloro plasts displayed mainly in the configuration of thylakoid membrances and the accumulation of starch grains. They were as follows: 1. The most striking feature was the building up of starch grains in the chloroplasts of the bundle sheath cells (BSCs) and the mesophyll cells (MCs) at doubled CO2 concentra tion. The starch grains appeared centrifugally first in the BSCs and then in the chloroplast of the other MCs. It was worthy to note that the starch grains in the chloroplasts of C4 plant Setaria ira/ica were much more than those of the C3 plant Medicago sativa . The decline of photosynthesis in the doubled CO2-grown C4 plants might be caused by an over accumulation of starch grains, that deformed the chloroplast even demaged the stroma thylakoids and grana. There might exsist a correlation between the comformation of thylakoid system and starch grain accumulation, namely conversion and transfer of starch need energy from ATP, and coupling factor (CF) for ATP formation distributed mainly on protoplastic surface (PSu) of stroma thylakoid membranes, as well as end and margin membranes of grana thylakoids. Thereby, these results could provide a conclusive evidence for the reason of non effectiveness on growth characteristics of C4 plant. 2. Under normal condition , the mature chlolroplats of higher plants usually develop complete and regularly arranged photosynthetic membrane systems . Chloroplasts from the C4 plant Setaria italica, however, exerted significant changes on stacking degree, grana width and stroma thylakoid length under doubled CO2 concentration; In these changes, the grana stacks were smaller and more numerous, and the number of thylakoids per granum was greatly increased, and the stroma thylakoid was greatly lengthened as compared to those of the control chloroplasts. But the grana were mutually intertwined by stroma thylakoid. The integrity of some of the grana were damaged due to the augmentation of the intrathylakoid space . Similarly, the stroma thylakoids were also expanded. In case. the plant was seriously effected by doubled CO2 concentration as observed in C4 plant Setaria italica , its chloroplasts contained merely the stroma (matrix) with abundant starch grains, while grana and stroma thylakoid membranes were unrecognizable, or occasionally a few residuous pieces of thylakoid membranes could be visualized, leaving a situation which appeared likely to be chloroplast deterioration. However, under the same condition the C3 plant Medicago sativa possessed normally developed chloroplasts, with intact grana and stroma thylakoid membranes. Its chloroplasts contained grana intertwined with stroma thylakoid membranes, and increased in stacking degree and granum width, in spite of more accumulated starch grains within the chloroplasts. These configuration changes of the thylakoid system were in consistant with the results of the authors another study on chloroplast function, viz. the increased capacity of chloroplasts for light absorption and efficiency of PSⅡ.  相似文献   

14.
Sicher RC 《Plant physiology》1984,74(4):962-966
The light-dependent accumulation of radioactively labeled inorganic carbon in isolated spinach (Spinacia oleracea L.) chloroplasts was determined by silicone oil filtering centrifugation. Intact chloroplasts, dark-incubated 60 seconds at pH 7.6 and 23°C with 0.5 millimolar sodium bicarbonate, contained 0.5 to 1.0 millimolar internal inorganic carbon. The stromal pool of inorganic carbon increased 5- to 7-fold after 2 to 3 minutes of light. The saturated internal bicarbonate concentration of illuminated spinach chloroplasts was 10- to 20-fold greater than that of the external medium. This ratio decreased at lower temperatures and with increasing external bicarbonate. Over one-half the inorganic carbon found in intact spinach chloroplasts after 2 minutes of light was retained during a subsequent 3-minute dark incubation at 5°C. Calculations of light-induced stromal alkalization based on the uptake of radioactively labeled bicarbonate were 0.4 to 0.5 pH units less than measurements performed with [14C]dimethyloxazolidine-dione. About one-third of the binding sites on the enzyme ribulose 1,5-bisphosphate carboxylase were radiolabeled when the enzyme was activated in situ and 14CO2 bound to the activator site was trapped in the presence of carboxypentitol bisphosphates. Deleting orthophosphate from the incubation medium eliminated inorganic carbon accumulation in the stroma. Thus, bicarbonate ion distribution across the chloroplast envelope was not strictly pH dependent as predicted by the Henderson-Hasselbach formula. This finding is potentially explained by the presence of bound CO2 in the chloroplast.  相似文献   

15.
1. The ATP analog, adenylyl-imidodiphosphate rapidly inhibited CO2-dependent oxygen evolution by isolated pea chloroplasts. Both alpha, beta- and beta, gamma-methylene adenosine triphosphate also inhibited oxygen evolution. The inhibition was relieved by ATP but only partially relieved by 3-phosphoglycerate. Oxygen evolution with 3-phosphoglycerate as substrate was inhibited by adenylyl-imidodiphosphate to a lesser extent than CO2-dependent oxygen evolution. The concentration of adenylylimidodiphosphate required for 50% inhibition of CO2-dependent oxygen evolution was 50 micronM. 2. Although non-cyclic photophosphorylation by broken chloroplasts was not significantly affected by adenylyl-imidodiphosphate, electron transport in the absence of ADP was inhibited by adenylyl-imidodiphosphate to the same extent as by ATP, suggesting binding of the ATP analog to the coupling factor of phosphorylation. 3. The endogenous adenine nucleotides of a chloroplast suspension were labelled by incubation with [14C]ATP and subsequent washing. Addition of adenylyl-imidodiphosphate to the labelled chloroplasts resulted in a rapid efflux of adenine nucleotides suggesting that the ATP analog was transported into the chloroplasts via the adenine nucleotide translocator. 4. It was concluded that uptake of ATP analogs in exchange for endogenous adenine nucleotides decreased the internal ATP concentration and thus inhibited CO2 fixation. Oxygen evolution was inhibited to a lesser extent in spinach chloroplasts which apparently have lower rates of adenine nucleotide transport than pea chloroplasts.  相似文献   

16.
Anions of several weak acids inhibited photosynthesis in isolated spinach chloroplasts. Inhibition was drastic at low pH and weak or absent at high pH. Glyoxylate was particularly effective and inhibition decreased in the order: glyoxylate, nitrite, glycerate, formate, hydroxypyruvate, glycolate, propionate, acetate, pyruvate. These anions operated as indirect proton shuttles across the chloroplast envelope. They compensated active proton fluxes into the medium, minimized gradients in proton activity across the chloroplast envelope, and so prevented light-dependent stroma alkalization. This caused inhibition of sugar bisphosphatases which are known to be pH-regulated. At concentrations that caused potosynthesis inhibition, the proton shuttles were not effective in decreasing the proton gradient across the thylakoids. Some anions also inhibited fructose-bisphosphatase directly, when present at concentratins higher than needed for photosynthesis inhibition.  相似文献   

17.
1. Mesophyll chloroplasts of the C4 plant Digitaria sanguinalis contain endogenous phosphoenolpyruvate which appears to distribute across the envelope according to the existing pH gradient. The phosphoenolpyruvate remaining in the stroma can be rapidly released by external inorganic phosphate or 3-phosphoglycerate while external pyruvate did not affect the distribution. 2. Phosphoenolpyruvate (PEP) was a competitive inhibitor (Ki (PEP) = 450 micrometer) of 32Pi uptake (Km(Pi)=200 micrometer) by chloroplasts in the dark and also reduced the steady-state internal concentration of 32Pi, which is consistent with phosphate and phosphoenolpyruvate sharing a common carrier. 3. Phosphoenolpyruvate formation by chloroplasts in the light in the presence of pyruvate but in the absence of inorganic phosphate was slow and the concentration ratio of phosphoenolpyruvate (internal/external) was high. Addition of 0.1 mM phosphate induced a high rate of phosphoenolpyruvate formation and the concentration ratio (internal/external) decreased 15-fold. It is proposed that external phosphate is required both for phosphoenolpyruvate formation and efflux from the chloroplast.  相似文献   

18.
A species of RNA that migrates on 10% (w/v) polyacrylamide gels between 5S and 4S RNA was detected in spinach chloroplasts. This RNA (referred to as 4.5 S RNA) was present in amounts equimolar to the 5S RNA and its molecular weight was estimated to be approx. 33 000. Fractionation of the chloroplast components showed that the 4.5S RNA was associated with the 50 S ribosomal subunit and that it could be removed by washing the ribosomes with a buffer containing 0.01 M-EDTA and 0.5 M-KCl. It did not appear to be a cleavage product of the labile 23 S RNA of spinach chloroplast ribosomes. When 125I-labelled 4.5 S RNA was hybridized to fragments of spinach chloroplast DNA produced by SmaI restriction endonuclease, a single fragment (mol.wt. 1.15 times 10(6)) became labelled. The same DNA fragment also hybridized to chloroplast 5 S RNA and part of the 23 S RNA. It was concluded that the coding sequence for 4.5 S RNA was part of, or immediately adjacent to, the rRNA-gene region in chloroplast DNA . A comparable RNA species was observed in chloroplasts of tobacco and pea leaves.  相似文献   

19.
Zellnig G  Zechmann B  Perktold A 《Protoplasma》2004,223(2-4):221-227
Summary. Selected cell organelles were investigated at a high level of resolution with the transmission electron microscope, using ultrathin serial sections to create three-dimensional reconstructions. On the basis of these reconstructions, morphological data of chloroplast fine structures, mitochondria, and peroxisomes from control and drought-stressed spinach leaves were evaluated and compared. Mesophyll cell chloroplasts of control plants contained 60% stroma, 23% thylakoids, and 16% starch. In drought-stressed plants, the volume of both the stroma and the thylakoids increased to 68% and 32%, respectively. The amount of plastoglobuli was about 0.3% in both samples. Chloroplasts of stressed plants differed from control plants not only in the thylakoid and stroma values but also in the lack of starch grains. Mitochondria occurred in variable forms in control and stressed samples. In stressed plants, mitochondria had only 65% of the volume compared with control plants. Peroxisomes were inconspicuous.  相似文献   

20.
In organello starch biosynthesis was studied using intact chloroplasts isolated from spinach leaves (Spinacia oleracea). Immunoblot analysis using a specific antiserum against the mitochondrial adenylate (ADP/ATP) translocator of Neurospora crassa shows the presence of an adenylate translocator protein in the chloroplast envelope membranes, similar to that existing in mitochondria and amyloplasts from cultured cells of sycamore (Acer pseudoplatanus). The double silicone oil layer-filtering centrifugation technique was employed to study the kinetic properties of adenylate transport in the purified chloroplasts; ATP, ADP, AMP, and most importantly ADP-Glc were shown to be recognized by the adenylate translocator. Similar to the situation with sycamore amyloplasts, only ATP and ADP-Glc uptake was inhibited by carboxyatractyloside, an inhibitor of the mitochondrial adenylate translocator. Evidence is presented to show that the ADP-Glc transported into the chloroplast stroma is utilized for starch synthesis catalyzed by starch synthase (ADP-Glc:1,4-α-d-glucan 4-α-d-glucosyltransferase). The high activity of sucrose synthase producing ADP-Glc observed in the extrachloroplastic fractions suggests that starch biosynthesis in chloroplasts may be coupled with the direct import of ADP-Glc from the cytosol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号