首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The (Ca2+ + Mg2+)-ATPase purified from rabbit muscle sarcoplasmic reticulum has been reconstituted into a series of phosphatidylcholines in the liquid crystalline phase. For phosphatidylcholines containing monounsaturated fatty acyl chains, optimal activity is observed for a chain length of C18, with longer or shorter chains supporting lower activities. Phospholipids with methyl-branched chain saturated fatty acids support somewhat lower activities than the corresponding phospholipids with mono-unsaturated fatty acids. Mixed chain phospholipids support ATPase activities comparable to those shown by an unmixed chain phospholipid with the same average chain length. However, the response of the ATPase reconstituted with mixed chain phospholipids to the addition of oleyl alcohol is dominated by the longest fatty acyl chain. Based on their ability to displace brominated phospholipids, relative binding constants to the ATPase of a series of phosphatidylcholines have been determined. Binding to the ATPase is virtually unaffected by fatty acyl chain length or the presence of methyl branches.  相似文献   

2.
R J Froud  J M East  O T Jones  A G Lee 《Biochemistry》1986,25(23):7544-7552
The ATPase activity of the (Ca2+-Mg2+)-ATPase reconstituted into bilayers of phosphatidylcholines depends on the fatty acyl chain length of the phospholipids. It is shown that the fluorescence response to Ca2+ of the ATPase modified with fluorescein isothiocyanate is also dependent on phospholipid structure and is interpreted in terms of a change in the equilibrium between two forms of the ATPase, E1 and E2. A kinetic scheme for the ATPase is presented in which ATPase activity is markedly dependent on the rate of the transition between two phosphorylated forms of the ATPase, E1'PCa2 and E2'PCa2, and it is postulated that changing the phospholipid structure changes this rate. The rate of dephosphorylation of the ATPase and the ATP dependence of the E1'PCa2-E2'PCa2 transition are also lipid dependent. Binding of oleyl alcohol causes large, lipid-dependent changes in ATPase activity, and these are interpreted in terms of changes in the rates of these same steps. Oleylamine, which has been shown to bind more strongly at annular sites than at nonannular sites, inhibits ATPase activity irrespective of lipid structure, whereas fatty acids, which bind less strongly at annular sites, only inhibit at high concentrations. Methyl oleate, which binds more strongly at nonannular sites than at annular sites, causes marked stimulation for the ATPase reconstituted with short-chain lipids.  相似文献   

3.
The (Ca2(+)-Mg2(+)-ATPase purified from skeletal muscle sarcoplasmic reticulum binds two Ca2+ ions per ATPase molecule. On reconstitution into bilayers of dioleoylphosphatidylcholine [C18:1)PC) or dinervonylphosphatidylcholine [C24:1)PC) the stoichiometry of binding remains unchanged, but when the ATPase is reconstituted into bilayers of dimyristoleoylphosphatidylcholine [C14:1)PC) the stoichiometry changes to one Ca2+ ion per ATPase molecule. Nevertheless, the level of phosphorylation is the same for the ATPase reconstituted with (C18:1)PC or (C14:1)PC. The effect of (C14:1)PC on the stoichiometry of Ca2+ binding is prevented by androstenol at a 1:1 molar ratio with the phospholipid.  相似文献   

4.
J D Pilot  J M East  A G Lee 《Biochemistry》2001,40(28):8188-8195
We have developed a procedure for the reconstitution of Escherichia coli diacylglycerol kinase (DGK) into phospholipid bilayers containing diacylglycerol substrate. When DGK is reconstituted into a series of phosphatidylcholines containing monounsaturated fatty acyl chains, activity against dihexanoylglycerol (DHG) as a substrate was found to be markedly dependent on the fatty acyl chain length with the highest activity in dioleoylphosphatidylcholine [di(C18:1)PC] and a lower activity in bilayers with shorter or longer fatty acyl chains. Low activities in the short chain phospholipid dimyristoleoylphosphatidylcholine [di(C14:1)PC] followed from an increase in the K(m) value for DHG and ATP, with no effect on v(max). In contrast, in the long chain lipid dierucoylphosphatidylcholine [di(C24:1)PC], the low activity followed from a decrease in v(max) with no effect on K(m). In mixtures of two phosphatidylcholines with different chain lengths, the activity corresponded to that expected for the average chain length of the mixture. Cholesterol increased the activity in di(C14:1)PC but slightly decreased it in di(C18:1)PC or di(C24:1)PC, effects that could follow from changes in bilayer thickness caused by cholesterol.  相似文献   

5.
Cholesterol hemisuccinate has been shown to equilibrate readily with liposomes and with the (Ca2+-Mg2+)-ATPase from sarcoplasmic reticulum and has been used to modify the sterol content of these membranes. Cholesterol hemisuccinate incorporates into dioleoylphosphatidylcholine (DOPC) up to a molar ratio of 3:1 sterol to DOPC. Effects on lipid order as detected by electron spin resonance and fluorescence polarization are comparable to those of cholesterol. Binding constants have been determined, and the uncharged form of the sterol binds more strongly than the anionic form. Binding to DOPC and to the lipid component of the ATPase system is comparable. From use of the fluorescence quenching properties of 1,2-bis(9,10- dibromooleoyl )phosphatidylcholine and dibromocholesterol hemisuccinate, two classes of binding sites on the ATPase have been deduced. At the lipid/protein interface, the binding constant for cholesterol hemisuccinate is considerably less than that for DOPC. At the second set of sites ( nonannular sites), binding occurs with Kd = 0.55 in molar ratio units. The effect of cholesterol hemisuccinate on the activity of the ATPase depends on the phospholipid present in the system: ATPase reconstituted with DOPC is inhibited whereas ATPase reconstituted with dimyristoleoylphosphatidylcholine is activated. We conclude that changes in membrane fluidity are not important in determining ATPase activity in these systems.  相似文献   

6.
The (Na+ + Mg2+)-ATPase purified from Acholeplasma laidlawii B membranes was reconstituted into large, unilamellar vesicles formed from dimyristoylphosphatidylcholine (DMPC) and varying amounts of cholesterol or epicholesterol. The ATP hydrolytic activity of the reconstituted enzyme was then determined over a range of temperatures and the phase state of the DMPC in the ATPase-containing vesicles was characterized by high-sensitivity differential scanning calorimetry. In the vesicles containing only DMPC, the ATPase activity is higher in association with lipids in the liquid-crystalline state than with gel-state phospholipids, resulting in a curvilinear, biphasic Arrhenius plot with a pronounced change in slope at the elevated gel to liquid-crystalline phase transition temperature of the DMPC. The incorporation of increasing amounts of cholesterol into the DMPC vesicles results in a progressively greater degree of inhibition of ATPase activity at higher temperatures but a stimulation of activity at lower temperatures, thus producing Arrhenius plots with progressively less curvature and without an abrupt change in slope at physiological temperatures. As cholesterol concentration in the ATPase-DMPC vesicles increases, the calorimetric phase transition of the phospholipid is further broadened and eventually abolished. The incorporation of epicholesterol into the DMPC proteoliposomes results in similar but less pronounced effects on ATPase activity, and its effect on the phase behavior of the DMPC-ATPase vesicles is also similarly attenuated in comparison with cholesterol. Moreover, cholesterol added to the purified enzyme in the absence of phospholipid does not show any significant effect on either the activity or the temperature dependence of the detergent-solubilized ATPase. These findings are consistent with the suggestion that cholesterol exerts its effect on the ATPase activity by altering the physical state of the phospholipid, since the ordering effect of cholesterol (or epicholesterol) on liquid-crystalline lipid results in a reduction of ATPase activity while the disordering of gel-state lipid results in an increase in activity.  相似文献   

7.
8.
The ATPase activity for the (Ca2(+)-Mg2+)-ATPase purified from rabbit skeletal muscle sarcoplasmic reticulum is lower when reconstituted into bilayers of dimyristoleoylphosphatidylcholine [(C14:1)PC] than when it is reconstituted into dioleoylphosphatidylcholine [(C18:1)PC]. The rate of formation of phosphoenzyme on addition of ATP is slower for (C14:1)PC-ATPase than for the native ATPase or (C18:1)PC-ATPase. The reduction in rate of phosphoenzyme formation is attributed to a reduction in the rate of a conformational change on the ATPase following binding of ATP but before phosphorylation. The level of phosphoenzyme formed from Pi is also less for (C14:1)PC-ATPase than for (C18:1)PC-ATPase. At steady state at pH 6.0 in the presence of ATP Ca2+ is released from (C18:1)PC-ATPase into the medium, but not from (C14:1)PC-ATPase. These effects of (C14:1)PC on the ATPase are reversed by addition of androstenol to a 1:1 molar ratio with (C14:1)PC. The results are interpreted in terms of a kinetic model for the ATPase.  相似文献   

9.
J M East  A G Lee 《Biochemistry》1982,21(17):4144-4151
1,2-Bis(9,10-dibromooleoyl)phosphatidylcholine (BRPC) has been prepared from dioleoylphosphatidylcholine (DOPC). It is shown that the gel to liquid-crystalline phase transition for BRPC occurs below ca. 5 degrees C and that the motional properties of bilayers of BRPC and DOPC as detected by spin-labeled fatty acids are similar. The ATPase activities of the (Ca2+-Mg2+)-ATPase from rabbit muscle sarcoplasmic reticulum reconstituted with BRPC and DOPC are similar. The brominated lipid quenches the fluorescence of the ATPase and can be used to determine selectivity of lipid binding to the ATPase. We show that there is little selectivity on the basis of fatty acyl chain length. Binding constants for phosphatidylcholines and phosphatidylserines are similar in the absence of calcium, although that for phosphatidylserine decreases in the presence of calcium. Phosphatidylethanolamines binds less strongly than phosphatidylcholines, although the difference is small. The largest difference in binding constants is seen between phosphatidylcholines in the gel and liquid-crystalline phases, with a distribution coefficient of 30 in favor of the liquid-crystalline phase. It is shown that the distribution of the ATPase in mixtures of dipalmitoylphosphatidylcholine and BRPC can be understood in terms of the phase diagram for this mixture of lipids. Activities of the ATPase in the presence of mixtures of lipids can be explained in terms of the relative binding constants obtained from the fluorescence experiments.  相似文献   

10.
The fluorescence quenching properties of a series of brominated and iodinated pyrethroids have been used to study the binding of pyrethroids to the (Ca2(+) + Mg2+)-ATPase purified from skeletal muscle sarcoplasmic reticulum. It is suggested that binding at the lipid/protein interface of the ATPase is weak but that binding can occur at other (non-annular sites) on the ATPase. Pyrethroids containing either a brominated fatty acyl or iodinated alcohol moiety quench the tryptophan fluorescence of the ATPase, suggesting that the pyrethroids bound to the ATPase adopt a folded conformation with both the acid and alcohol moieties in contact with hydrophobic regions of the ATPase. Whereas effects of the pyrethroids on the activity of the ATPase in bilayers of dioleoylphosphatidylcholine are small, large increases are observed in the activity of the ATPase reconstituted into bilayers of the short-chain phospholipid, dimyristoleoylphosphatidylcholine (DMPC). The rate of phosphorylation of DMPC-ATPase by ATP is slow, but is increased on addition of pyrethroid. The level of phosphorylation of the ATPase by Pi is reduced on reconstitution into bilayers of DMPC, and this is also increased by addition of pyrethroid.  相似文献   

11.
1. The role of length and unsaturation of phospholipid acyl chains in the activation of ATPase complex was studied with synthetic phosphatidylcholines and a phospholipid-dependent preparation obtained after cholate-extraction of submitochondrial particles (Kagawa, Y. and Racker, E. (1966) J. Biol. Chem. 241, 2467--2474). 2. Micelle-forming, short-chain phosphatidylcholines produced activation only at critical micellar concentration. The reactivated complex was cold-stable but the oligomycin sensitivity was low. 3. Bilayer-forming saturated phosphatidylcholines produced activation which was maximal at 9 carbon atoms in each chain but decreased sharply as the chain-length was increased and essentially disappeared at 14 carbon atoms. By contrast the oligomycin-sensitivity increased with the increase in chain length. 4. Activation of ATPase complex reappeared when bilayers were formed with long-chain unsaturated phosphatidylcholines. The activity was oligomycin sensitive. Significant inhibition of activity was observed also after incorporation of cholesterol into the bilayers. 5. By contrast the activation induced by negatively charged liposomes of diacylphosphatidylglycerol was independent on acyl-chain composition and occurred at very low amounts of phospholipid. 6. The discontinuity in the Arrhenius plot of activity of the ATPase complex reactivated with saturated phospholipids was found at temperatures close to the gel-to-liquid crystalline transition of the lipid showing that the activity of ATPase complex was sensitive to the physical state of membrane phospholipids. 7. It is concluded that (a) reactivation of ATPase complex by isoelectric phospholipids is an interfacial activation, the minimum requirement for the lipid effect being micelle formation. (b) In order to gain the properties of the native complex a stable lamellar phase is needed. Both activity and oligomycin sensitivity are regulated by the chain length and degree of unsaturation of phospholipid acyl chains.  相似文献   

12.
The (Ca2+ + Mg2+)-ATPase from skeletal muscle sarcoplasmic reticulum was reconstituted into phospholipid bilayers. The permeability of lipid bilayers to Co2+ and glucose was increased slightly by incorporation of the ATPase, and the permeability of mixed bilayers of phosphatidylethanolamine and phosphatidylcholine increased with increasing content of phosphatidylethanolamine both in the presence and absence of the ATPase. The presence of the ATPase, however, resulted in a marked increase in permeability to Ca2+, the permeability decreasing with increasing phosphatidylethanolamine content. Permeability to Ca2+ was found to be dependent on pH and the external concentrations of Mg2+ and Ca2+, was stimulated by adenine nucleotides but was unaffected by inositol trisphosphate. A kinetic model is presented for Ca2+ efflux mediated by the ATPase. It is shown that the kinetic parameters that describe Ca2+ efflux from vesicles of sarcoplasmic reticulum also describe efflux from the vesicles reconstituted from the purified ATPase and phosphatidylcholine. It is shown that the effects of phosphatidylethanolamine on efflux can be simulated in terms of changes in the rates of the transitions linking conformations of the ATPase with inward- and outward-facing Ca2+-binding sites, and that effects of phosphatidylethanolamine on the ATPase activity of the ATPase can also be simulated in terms of effects on the corresponding conformational transitions. We conclude that the ATPase can act as a specific pathway for Ca2+ efflux from sarcoplasmic reticulum.  相似文献   

13.
研究了山莨菪碱对处于不同脂双层的兔肾外髓质(Na~++K~+)-ATP酶活性的影响,结果表明山莨菪碱对(Na~++K~+)-ATP酶的抑制作用与该酶所处的脂环境密切相关,如对去脂后的酶活性无明显影响,而对重组于酸性磷脂脂质体的酶比对重组于中性磷脂脂质体的酶有更大的抑制作用。园二色性实验表明,山莨菪碱使带349个界面脂分子的(Na~++K~+)-ATP酶二级结构发生明显变化,而对带189个界面脂分子的酶无明显作用。另外利用差示量热扫描研究表明山莨菪碱对酸性磷脂和中性磷脂脂质体或脂酶体相变行为有不同的影响。  相似文献   

14.
研究了山莨菪碱对处于不同脂双层的兔肾外髓质(Na~++K~+)-ATP酶活性的影响,结果表明山莨菪碱对(Na~++K~+)-ATP酶的抑制作用与该酶所处的脂环境密切相关,如对去脂后的酶活性无明显影响,而对重组于酸性磷脂脂质体的酶比对重组于中性磷脂脂质体的酶有更大的抑制作用。园二色性实验表明,山莨菪碱使带349个界面脂分子的(Na~++K~+)-ATP酶二级结构发生明显变化,而对带189个界面脂分子的酶无明显作用。另外利用差示量热扫描研究表明山莨菪碱对酸性磷脂和中性磷脂脂质体或脂酶体相变行为有不同的影响。  相似文献   

15.
The (Ca2+ + Mg2+)-ATPase was purified from skeletal muscle sarcoplasmic reticulum and reconstituted into sealed phospholipid vesicles by solution in cholate and deoxycholate followed by detergent removal on a column of Sephadex G-50. The level of Ca2+ accumulated by these vesicles, either in the presence or absence of phosphate within the vesicles, increased with increasing content of phosphatidylethanolamine in the phospholipid mixture used for the reconstitution. The levels of Ca2+ accumulated in the absence of phosphate were very low for vesicles reconstituted with egg yolk phosphatidylcholine alone at pH 7.4, but increased markedly with decreasing pH to 6.0. Uptake was also relatively low for vesicles reconstituted with dimyristoleoyl- or dinervonylphosphatidylcholine, and addition of cholesterol had little effect. The level of Ca2+ accumulated increased with increasing external K+ concentration, and was also increased by the ionophores FCCP and valinomycin. Vesicle sizes changed little with changing phosphatidylethanolamine content, and the sidedness of insertion of the ATPase was close to random at all phosphatidylethanolamine contents. It is suggested that the effect of phosphatidylethanolamine on the level of Ca2+ accumulation follows from an effect on the rate of Ca2+ efflux mediated by the ATPase.  相似文献   

16.
The purified (Na+ + Mg2+)-ATPase from Acholeplasma laidlawii B membranes was reconstituted with dimyristoylphosphatidylcholine using a cholate solubilization and dialysis procedure. The incorporation of this enzyme into the phospholipid bilayer is accompanied by an enhancement of its specific activity and by a restoration of its lipid phase state-dependent properties which were lost during solubilization and purification from native membranes. Moreover, reconstitution of this ATPase with phospholipid also stabilizes it against cold inactivation at low temperatures (approximately equal to 0 degrees C), oxidative degradation at room temperature, and thermal denaturation at elevated temperatures (approximately equal to 55 degrees C). The elution profile from a Sepharose 4B-CL column indicates that all of the ATPase protein is associated with the phospholipid vesicles and that the Stoke's radius of the proteoliposomes formed is smaller than that of the lipid vesicles formed in the absence of any protein. The latter conclusion is supported by sedimentation velocity measurements and by an electron microscopic examination of negatively stained preparations. The electron microscopic studies demonstrate that sealed vesicles are formed only at low protein-to-lipid ratios. These observations indicate that the Acholeplasma laidlawii B (Na+ + Mg2+)-ATPase has been structurally and functionally reconstituted into lipid vesicles and that the proteoliposomes formed are amenable to studies aimed at the clarification of its proposed role as a sodium ion pump.  相似文献   

17.
The interaction of Mg2+ with native F0F1 ATPase was studied. The hydrolytic activity of F0F1 ATPase could be competitively activated by Mg2+, but the preincubation of F0F1 ATPase with cholate eliminated the Mg2+ effect. The result from the comparison of the effect of Mg2+ on F0F1 ATPase with that on soluble F1 ATPase, and the fact that the activation of Mg2+ on cholate-treated F0F1 ATPase could be reconstituted only by divalent acidic phospholipid cardiolipin, indicate that there exists a specificity between the acidic phospholipids of the mitochondrial inner membrane and Mg2+ enhancement of ATP-hydrolyzing activity of F0F1 ATPase.  相似文献   

18.
Sarcoplasmic reticulum Ca-transporting ATPase (EC 3.6.1.38) was isolated from rabbit white muscle, purified and reconstituted into vesicles of synthetic diacylphosphatidylcholines with monounsaturated acyl chains using the cholate dilution method. In fluid bilayers at 37 degrees C, the specific activity of ATPase displays a maximum (31.5+/-0.8 IU/mg) for dioleoylphosphatidylcholine (diC18:1PC) and decreases progressively for both shorter and longer acyl chain lengths. Besides the hydrophobic mismatch between protein and lipid bilayer, changes in the bilayer hydration and lateral interactions detected by small angle neutron scattering (SANS) can contribute to this acyl chain length dependence. When reconstituted into dierucoylphosphatidylcholine (diC22:1PC), the zwitterionic surfactant N-dodecyl-N,N-dimethylamine N-oxide (C12NO) stimulates the ATPase activity from 14.2+/-0.6 to 32.5+/-0.8 IU/mg in the range of molar ratios C12NO:diC22:1PC=0/1.2. In dilauroylphosphatidylcholines (diC12:0PC) and diC18:1PC, the effect of C12NO is twofold-the ATPase activity is stimulated at low and inhibited at high C12NO concentrations. In diC18:1PC, it is observed an increase of activity induced by C12NO in the range of molar ratios C12NO:diC18:1PC< or =1.3 in bilayers, where the bilayer thickness estimated by SANS decreases by 0.4+/-0.1 nm. In this range, the 31P-NMR chemical shift anisotropy increases indicating an effect of C12NO on the orientation of the phosphatidylcholine dipole N(+)-P- accompanied by a variation of the local membrane dipole potential. A decrease of the ATPase activity is observed in the range of molar ratios C12NO:diC18:1PC=1.3/2.5, where mixed tubular micelles are detected by SANS in C12NO+diC18:1PC mixtures. It is concluded that besides hydrophobic thickness changes, the changes in dipole potential and curvature frustration of the bilayer could contribute as well to C12NO effects on Ca(2+)-ATPase activity.  相似文献   

19.
During reconstitution of pig heart mitochondrial H+-ATPase in soybean phospholipid liposomes by the cholate dialysis method, Mg2+ greatly enhances 32Pi-ATP exchange activity, ATPase activity and the sensitivity to oligomycin of the reconstituted enzyme complex. The effect of Mg2+ on the fluidity of the reconstituted proteoliposomes was measured by means of a fluoursecent probe. 1-anilinonaphthalene ?e-8-sulfonate, and spin-label probes, 5-nitroxide stearate, 12-nitroxide stearate and 16-nitroxide stearate. A difference in fluidity seems to be localized near the polar faces of the lipid bilayers of the reconstituted proteolipsomes. Fluidity was less in the presence of Mg2+ than it is absence. The conformations of the Mg2+-containing proteoliposomes was higher. We postulate that Mg2+ may play a role in altering the fluidity of the proteoliposomes, which would favor the formation of a conformation of the reconstituted H+-ATPase with higher activity.  相似文献   

20.
The purified calmodulin dependent (Ca2+ + Mg2+)-ATPase (CaMg ATPase) from porcine antral smooth muscle transports Ca2+ after reconstitution in lipid vesicles indicating that this enzyme is indeed a Ca2+-transport ATPase. For CaMg ATPase reconstituted in asolectin vesicles a good correlation was found between the time course of Ca2+ accumulation and the corresponding changes in CaMg ATPase activity. The ATPase activity was stimulated 8-fold by A23187, which further indicates a tight coupling between ATP hydrolysis and Ca2+ transport. Asolectin vesicles with incorporated enzyme accumulated Ca2+ with a ratio approaching one Ca2+ ion transported for each ATP hydrolyzed. For CaMg ATPase reconstituted in phosphatidylcholine vesicles on the other hand, Ca2+ transport and CaMg ATPase were poorly coupled as is shown by the approximately 3.5 fold stimulation by A23187. The activity of the CaMg ATPase when reconstituted in asolectin vesicles was stimulated 1.25 fold by calmodulin while in phosphatidylcholine a value of 4.25 was obtained. The CaMg ATPase activity of the enzyme reconstituted either in asolectin or phosphatidylcholine was, after its stimulation by A23187, still further stimulated by detergent by a factor of 5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号