首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Independency of Choline Transport and Acetylcholine Synthesis   总被引:3,自引:2,他引:1  
The coupling of choline transport to acetylcholine synthesis has been investigated by measurement of the isotopic dilution of a pulse of [3H]choline during its incorporation into the recently synthesised acetylcholine of cerebral cortex synaptosomes. Recently synthesised acetylcholine was identified as that containing 14C-labelled precursors introduced by a preincubation before the pulse. When [14C]glucose was used to label acetyl-CoA coupling ratios (calculated as the inverse of the dilution of extracellular [3H]choline during its incorporation into [3H]acetylcholine) of about 0.05-0.2 were found at a choline concentration of 1 microM, rising to 0.5 at choline concentrations of 10-50 microM. Experiments using [14C]choline as a precursor gave similar results, and it was shown that the isotopic dilution did not occur extrasynaptosomally and was not affected by low glucose concentrations. Coupling ratios were always less than unity and rose as the choline concentration increased. It is concluded that choline transported into the nerve terminal has no privileged access to choline acetyltransferase. The results can be explained by a rate-controlling transport of choline into the terminal followed by its rapid acetylation rather than any linkage or coupling of the two processes.  相似文献   

2.
Ox liver mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase (EC 4.1.3.5) reacts with acetyl-CoA to form a complex in which the acetyl group is covalently bound to the enzyme. This acetyl group can be removed by addition of acetoacetyl-CoA or CoA. The extent of acetylation and release of CoA were found to be highly temperature-dependent. At temperatures above 20 degrees C, a maximum value of 0.85 mol of acetyl group bound/mol of enzyme dimer was observed. Below this temperature the extent of rapid acetylation was significantly lowered. Binding stoichiometries close to 1 mol/mol of enzyme dimer were also observed when the 3-hydroxy-3-methylglutaryl-CoA synthase activity was titrated with methyl methanethiosulphonate or bromoacetyl-CoA. This is taken as evidence for a 'half-of-the-sites' reaction mechanism for the formation of 3-hydroxy-3-methylglutaryl-CoA by 3-hydroxy-3-methylglutaryl-CoA synthase. The Keq. for the acetylation was about 10. Isolated acetyl-enzyme is stable for many hours at 0 degrees C and pH 7, but is hydrolysed at 30 degrees C with a half-life of 7 min. This hydrolysis is stimulated by acetyl-CoA and slightly by succinyl-CoA, but not by desulpho-CoA. The site of acetylation has been identified as the thiol group of a reactive cysteine residue by affinity-labelling with the substrate analogue bromo[1-14C]acetyl-CoA.  相似文献   

3.
1-Bromo-2-[14C]pinacolone, (CH3)3C14COCH2Br [( 14C]BrPin), was prepared from [1-14C]acetyl chloride and tert-butylmagnesium chloride with cuprous chloride catalyst, followed by bromination. It was examined as an active-site directed label for acetylcholinesterase (acetylcholine acetylhydrolase, EC 3.1.1.7) (AcChE). AcChE, isolated from Torpedo nobiliana, has k(cat) = (4.00 +/- 0.04).10(3) s-1, Km = 0.055 +/- 0.008 mM in hydrolysis of acetylthiocholine, and k(cat) = (5.6 +/- 0.2).10(3) s-1, Km = 0.051 +/- 0.003 mM in hydrolysis of acetylcholine. BrPin, binding in the trimethyl cavity, acts initially as a reversible competitive inhibitor, Ki = 0.20 +/- 0.09 mM, and, with time, as an irreversible covalently bound inactivator. Introduction of 14C from [14C]BrPin into Torpedo AcChE at pH 7.0 was followed by SDS-PAGE, autoradiography and scintillation counting, in the absence and presence of 5-trimethylammonio-2-pentanone (TAP), a competitive inhibitor (Ki = 0.075 +/- 0.001 mM) isosteric with acetylcholine; 1.8-1.9 14C was incorporated per inactivated enzyme unit at 50% inactivation. TAP retarded inactivation by [14C]BrPin, and prevented introduction of 0.9-1.1 14C per unit of enzyme protected. Prior inactivation of AcChE by BrPin prevents reaction with [3H]diisopropyl fluorophosphate [( 3H]DFP). Prior inactivation by DFP or [3H]DFP does not prevent reaction with [14C]BrPin, and this subsequent reaction with BrPin does not displace the [3H] moiety. [14C]BrPin alkylates a nucleophile in the active site, and this reaction does not alkylate or utilize the serine-hydroxyl.  相似文献   

4.
The inhibitory effects of 7-[N-(3-aminopropyl)amino]heptan-2-one (APAH) on N8-acetylspermidine deacetylation were studied. In in vitro studies, APAH produced inhibition (apparent Ki of 0.18 microM) of N8-acetylspermidine deacetylation by the 100,000g supernatant fraction of rat liver. This apparent Ki was 60-fold less than the apparent Km (11 microM) for deacetylation of the substrate, N8-acetylspermidine, suggesting that APAH could be a potent, effective inhibitor in vivo. APAH was administered to mice by intraperitoneal injection at a dose of 200 mg/kg, and polyamine and acetylpolyamine levels in liver and spleen were measured. In tissues of control mice, N8-acetylspermidine was not detectable but increased to detectable levels 30-360 min after APAH treatment. These data are consistent with inhibition of the deacetylase by APAH. Increases in putrescine and N1-acetylspermidine levels occurred in liver after APAH treatment with increases in N1-acetylspermidine levels observed in spleen. In HeLa cells, a significant increase in N8-acetylspermidine was observed following 24 h exposure to 10 microM APAH while no change occurred in the acetylation level of HeLa cell histones. In contrast, 24 h exposure to 10 mM sodium butyrate produced no change in N8-acetylspermidine levels and an increase in the acetylation level of histones H4 and H2B. These results suggest that APAH has a relatively selective inhibitory effect on N8-acetylspermidine but not histone deacetylation. This is the first report of significant levels of N8-acetylspermidine in animal tissues and of the effects of in vivo inhibition of N8-acetylspermidine deacetylase.  相似文献   

5.
Homogeneous liver 3-hydroxy-3-methylglutaryl coenzyme A synthase, which catalyzes the condensation of acetyl-CoA with acetoacetyl-CoA to form 3-hydroxy-3-methylglutaryl-CoA, also carries out: (a) a rapid transacetylation from acetyl-CoA to 31-dephospho-CoA and (b) a slow hydrolysis of acetyl-CoA to acetate and CoA. Transacetylation and hydrolysis occur at 50 and 1 percent, respectively, the rate of the synthasecatalyzed condensation reaction. It appears that an acetyl-enzyme intermediate is involved in the transacetylase and hydrolase reactions of 3-hydroxy-3-methylglutaryl-CoA synthase, as well as in the over-all condensation process. Covalent binding to the enzyme of a [14C]acetyl group contributed by [1(-14)C]acetyl-CoA is indicated by migration of the [14C]acetyl group with the dissociated synthase upon electrophoresis in dodecyl sulfate-urea and by precipitation of [14C]acetyl-enzyme with trichloroacetic acid. At 0 degrees and a saturating level of acetyl-CoA, the synthase is rapidly (less than 20 s) acetylated yielding 0.6 acetyl group/enzyme dimer. Performic acid oxidation completely deacetylates the enzyme, suggesting the site of acetylation to be a cysteinyl sulfhydryl group. Proteolytic digestion of [14C]acetyl-S-enzyme under conditions favorable for intramolecular S to N acetyl group transfer quantitatively liberates a labeled derivative with a [14C]acetyl group stable to performic acid oxidation. The labeled oxidation product is identified as N-[14C]acetylcysteic acid, thus demonstrating a cysteinyl sulfhydryl group as the original site of acetylation. The ability of the acetylated enzyme, upon addition of acetoacetyl-CoA, to form 3-hydroxy-3-methylglutaryl-CoA indicates that the acetylated cysteine residue is at the catalytic site.  相似文献   

6.
1. Purified 3-hydroxy-3-methylglutaryl-CoA synthase from baker's yeast (free from acetoacetyl-CoA thiolase activity) catalysed an exchange of acetyl moiety between 3'-dephospho-CoA and CoA. The exchange rate was comparable with the overall velocity of synthesis of 3-hydroxy-3-methylglutaryl-CoA. 2. Acetyl-CoA reacted with the synthase, giving a rapid ;burst' release of CoA proportional in amount to the quantity of enzyme present. The ;burst' of CoA was released from acetyl-CoA, propionyl-CoA and succinyl-CoA (3-carboxypropionyl-CoA) but not from acetoacetyl-CoA, hexanoyl-CoA, dl-3-hydroxy-3-methylglutaryl-CoA, or other derivatives of glutaryl-CoA. 3. Incubation of 3-hydroxy-3-methylglutaryl-CoA synthase with [1-(14)C]acetyl-CoA yielded protein-bound acetyl groups. The K(eq.) for the acetylation was 1.2 at pH7.0 and 4 degrees C. Acetyl-labelled synthase was isolated free from [1-(14)C]acetyl-CoA by rapid gel filtration at pH6.1. The [1-(14)C]acetyl group was removed from the protein by treatment with hydroxylamine, CoA or acetoacetyl-CoA but not by acid. When CoA or acetoacetyl-CoA was present the radioactive product was [1-(14)C]acetyl-CoA or 3-hydroxy-3-methyl-[(14)C]glutaryl-CoA respectively. 4. The isolated [1-(14)C]acetyl-enzyme was slowly hydrolysed at pH6.1 and 4 degrees C with a first-order rate constant of 0.005min(-1). This rate could be stimulated either by raising the pH to 7.0 or by the addition of desulpho-CoA. 5. These properties are interpreted in terms of a mechanism in which 3-hydroxy-3-methyl-glutaryl-CoA synthase is acetylated by acetyl-CoA to give a stable acetyl-enzyme, which then condenses with acetoacetyl-CoA yielding a covalent derivative between 3-hydroxy-3-methylglutaryl-CoA and the enzyme which is then rapidly hydrolysed to free enzyme and product.  相似文献   

7.
A detailed examination of the mechanism of the hydrolysis of phenyl acetates by alpha-chymotrypsin [EC 3.4.21.1] was carried out. The effective deacylation rate constants of some phenyl acetates obtained by titration of the acetyl-enzyme decreased at low substrate concentrations and showed anomalous pH dependences and solvent isotope effects. The transient kinetics of deacylation of the acetyl-enzyme were biphasic. A spectrum and a breakdown rate similar to those of acetylimidazole were observed when the acetyl-enzyme was denaturated with sodium dodecyl sulfate. These results indicate the participation of histidine-acylated enzyme, which woud account for the anomalous phenomena previously found in this system, including a large value of Hammett's rho. The relation between the substrate activation and the two intermediates is discussed.  相似文献   

8.
We analysed the rates of histone deacetylation in chicken mature and immature red blood cells. A multiplicity of deacetylation rates was observed for the histones and these rates may be subdivided into two major categories based on the extent of histone acetylation. In one set of experiments, cells were labelled with [3H]acetate in the presence of the deacetylase inhibitor n-butyrate, thereby accumulating radiolabel in the hyperacetylated forms of the histone. These hyperacetylated forms are deacetylated rapidly. [3H]Acetate-labelled tetra-acetylated H4 (H4Ac4) in mature cells was deacetylated with an initial half-life (t1/2) of approximately 5 min (time required for the removal of one-half of the labelled acetyl groups). In immature cells, all [3H]acetate-labelled H4Ac4 was deacetylated with a t1/2 of approximately 5 min. Erythrocytes were also labelled with [3H]acetate for extended periods in the absence of the deacetylase inhibitor. During this period, radiolabel accumulated predominantly in the mono- and di-acetylated forms of the histone. Using this protocol, the rate of deacetylation of H4Ac1 was observed to be approximately 145 min for mature cells, and approximately 90 min for immature cells, demonstrating that the less extensively acetylated histone is deacetylated slowly. These results are discussed in the context of the rates of histone acetylation in chicken red blood cells described in the companion paper [Zhang & Nelson (1988) Biochem. J. 250, 233-240].  相似文献   

9.
Incubation of purified prostaglandin endoperoxide synthetase from sheep vesicular glands with aspirin results in a covalent binding of the acetyl group of acetylsalicylic acid to the protein. During this acetylation, the cyclooxygenase activity is lost, but not the peroxidase activity. The reaction is completed when almost one acetyl group is bound per polypeptide chain (Mr = 68 000). After proteolysis of [3H]acetyl-protein with pronase, radioactive N-acetylserine was obtained. Originally, however, the hydroxyl group of an internal serine residue in the chain is acetylated. The formation of N-acetylserine can be explained by a rapid O leads to N acetyl shift as soon as the NH2 group of serine is liberated. A radioactive dipeptide was isolated from a thermolysin digest of the [3H]acetyl-enzyme containing phenylalanine and serine, phenylalanine being its N-terminal amino acid. Automatic Edman degradation of native and acetylated enzyme showed that only one polypeptide sequence was present: Ala-Asp-Pro-Gly-Ala-Pro-Ala-Pro-Val-Asn-Pro-X-X-Tyr-. The N-terminal sequence has an apolar character.  相似文献   

10.
11.
Phosphatidylinositol phosphodiesterase (PL-C) appears to be a key element in the adrenergic regulation of pineal cyclic AMP levels. In the present study, the rat pineal enzyme was characterized using exogenous [3H]phosphatidylinositol (0.5 mM) as substrate. Half the enzyme activity was found in the cytosolic fraction, but the highest specific concentration was associated with the membrane fraction. Two pH optima (5.5 and 7.5) of enzyme activity were observed for the membrane fraction but only one in the cytosol fraction (pH 5.5). Enzyme activity in both fractions was Ca2+ dependent. In the case of the membrane protein in pH 7.5, the enzyme activity was sensitive to changes in Ca2+ in the 10-100 nM range. Addition of an equimolar concentration of phosphatidylinositol 4-phosphate nearly completely inhibited the hydrolysis of [3H]phosphatidylinositol; other phospholipids (1.0 mM) were less potent. This may reflect our present finding that [3H]phosphatidylinositol 4-phosphate is a better substrate than [3H]phosphatidylinositol for the enzyme. Stimulus deprivation (2 weeks of constant light or superior cervical ganglionectomy) reduced the cytosolic activity by 30% and had no effect on the membrane-associated enzyme.  相似文献   

12.
1. The turnover of synaptosomal (vesicular-cytoplasmic) and stable-bound (vesicular) acetylcholine isolated from cortical tissue was investigated after the administration, under local anaesthesia, of [N-Me-(3)H]choline into the lateral ventricles of guinea pigs. 2. Radioactive acetylcholine and choline present in acid extracts of subcellular fractions were separated by a combination of liquid and column ion-exchange and thin-layer chromatography. 3. The specific radioactivity and pattern of labelling of acetylcholine present in a fraction of monodisperse synaptic vesicles was found to be essentially the same as that of synaptosomal acetylcholine. 4. The specific radioactivity of stable-bound acetylcholine present in partially disrupted synaptosomes (fraction H) at short times (10-20min) after the injection of [N-Me-(3)H]choline was very variable and inversely related to the yield of acetylcholine in that fraction. 5. Evidence was found for the existence of two small, but highly labelled pools of acetylcholine, one which could be isolated in fraction H and the other which was lost when synaptosomes, after isolation by gradient centrifugation, were left at 0 degrees C or pelleted. 6. It is concluded that the results are best explained by metabolic differences among the nerve-ending compartments (thought to be vesicles) which contain stable-bound acetylcholine. Computer simulation of our experiments supports this possibility and suggests that the highly labelled pool in fraction H is present in vesicles close to the external membrane.  相似文献   

13.
[3H]Choline, injected directly into the major axon of the identified cholinergic neuron R2, was readily incorporated into [3H]acetylcholine. Its metabolic fate was similar to that of [3H]choline injected into the cell body of R2. Over the range injected, we found that the amounts of acetylcholine formed were proportional to the amounts injected; the synthetic capability was not exceeded even when 88 pmol of [3H]choline were injected into the axon. Newly synthesized acetylcholine moved within the axon with the kinetics expected of diffusion. We could not detect any selective orthograde or retrograde transport from the site of the injection. In contrast, as indicated by experiments with colchicine, 30% of the [3H]acetylcholine formed after intrasomatic injection was selectively exported from the cell body and transported along the axon. Most of the [3H]acetylcholine was recovered in the soluble fraction after both intra-axonal and intrasomatic injection of [3H]choline; only a small fraction was particulate. The significance of large amounts of soluble acetylcholine in R2 is uncertain, and some may occur physiologically. The concentrations of choline introduced by intraneuronal injection into both cell body and axon were, however, greater than those normally available to choline acetyltransferase in the cholinergic neuron; nevertheless, these large concentrations were efficiently converted into the transmitter. The synthetic capacity of the neuron supplied with injected choline may exceed the capacity of storage vesicles and of the axonal transport process.  相似文献   

14.
We have characterized a histone deacetylase activity associated with yeast nuclei. An unusual feature of the deacetylase is that it is not inhibited by the short-chain fatty acids n-butyrate and propionate. These short-chain fatty acids are typically potent inhibitors of histone deacetylases in eukaryotic systems. The deacetylase(s) were detected by monitoring the levels of acetylation of yeast histones during incubation of isolated yeast nuclei. The activity was optimal at 37 degrees C and at 0.1 M NaCl. The enzyme did not require divalent cations and was inhibited by Zn2+ and Cu2+. A simple activity assay was developed using as substrate, [3H]acetate-labeled histone in chicken erythrocyte nuclei. This assay was used to demonstrate that the deacetylase(s) can be extracted from yeast nuclei with 0.5 M NaCl. A gel electrophoretic analysis of the deacetylated chicken histones verified that the solubilization of incorporated radiolabel was a result of histone deacetylation, not an artifact of histone degradation by yeast proteinases.  相似文献   

15.
Dynamics of histone acetylation in Saccharomyces cerevisiae   总被引:3,自引:0,他引:3  
Waterborg JH 《Biochemistry》2001,40(8):2599-2605
Rates of turnover for the posttranslational acetylation of core histones were measured in logarithmically growing yeast cells by radioactive acetate labeling to near steady-state conditions. On average, acetylation half-lives were approximately 15 min for histone H4, 10 min for histone H3, 4 min for histone H2B, and 5 min for histone H2A. These rates were much faster than the several hours that have previously been reported for the rate of general histone acetylation and deacetylation in yeast. The current estimates are in line with changes in histone acetylation detected directly at specific chromatin locations and the speed of changes in gene expression that can be observed. These results emphasize that histone acetylation within chromatin is subject to constant flux. Detailed analysis revealed that the turnover rates for acetylation of histone H3 are the same from mono- through penta-acetylated forms. A large fraction of acetylated histone H3, including possibly all tetra- and penta-acetylated forms, appears subject to acetylation turnover. In contrast, the rate of acetylation turnover for mono- and di-acetylated forms of histones H4 and H2B, and the fraction subject to acetylation turnover, was lower than for multi-acetylated forms of these histones. This difference may reflect the difference in location of these histones within the nucleosome, a difference in the spectrum of histone-specific acetylating and deacetylating enzymes, and a difference in the role of acetylation in different histones.  相似文献   

16.
1. Suspensions of avian erythroid nuclei, of high purity, were prepared. Acetylation of histones was observed when nuclei were incubated in the presence of [1-14C]acetyl CoA, but not in the presence of sodium [3H]acetate. 2.The acetylation reaction was very heat labile and reproduced the in vivo reaction with high fidelity. The reaction was strongly inhibited by divalent cations and cysteine. 3. Studies, in which intact cells were pre-incubated with cycloheximide prior to the isolation of nuclei, suggested that histone acetylation in isolated erythroid nuclei was largely independent of histone synthesis. 4. The pH profile suggested the presence of at least two histone acetyltransferases, with pH optima at 8.0 and 8.6. Acetylation of histone H4 appeared to be favoured at pH 8.0. 5. Studies on histone acetylation in isolated nuclei should be very useful in correlating observations on histone acetylation in vivo, with experiments using purified histone acetyltransferases.  相似文献   

17.
The effects of neurotransmitters and peptides on phosphoinositide hydrolysis were studied by measuring [3H]inositol monophosphate ([3H]IP) and protein kinase C (PKC) activity in the sympathetic and sensory neuronal cultures of the chick embryo. [3H]IP was increased in sympathetic neurons by acetylcholine (ACh), muscarine, serotonin (5-HT), and vasoactive intestinal polypeptide. ACh, muscarine, 5-HT, and bradykinin increased [3H]IP in sensory neuronal cultures. Dopamine, norepinephrine, histamine, and nerve growth factor did not stimulate [3H]IP formation in both cultures. ACh and phorbol 12,13-dibutyrate (PDB) increased the PKC activity by two- to sevenfold in the particulate fraction of both cultures. In sympathetic neurons, PKC activity was increased in the particulate fraction; activity in the cytosolic fraction was not affected. There was a 50% decline in the protein kinase C activity of the cytosolic fraction after PDB and ACh treatment of sensory cultures. The decline in PKC activity in the cytosolic fraction was attributed to the presence of nonneuronal cells in sensory cultures. To confirm this, the enzyme activity was determined in tissues that contain a heterogeneous population of cells. PDB activated PKC in the adrenal medulla and the brain of the rat. In both tissues there was a 65% decline in the PKC activity of the cytosolic fraction and about a 75% increase in the particulate fraction. We conclude that the mechanism of activation of protein kinase C in pure cultures of sympathetic neurons is different than in tissues containing a mixed population of neurons and nonneuronal cells.  相似文献   

18.
We have investigated effects of pH on the catalytic and allosteric properties of the cGMP-stimulated cyclic nucleotide phosphodiesterase purified from calf liver. In the "activated" state, i.e., with 0.5 microM [3H]cAMP plus 1 microM cGMP or at saturating substrate concentrations (250 microM [3H]cAMP or [3H]cGMP), hydrolysis was maximal at pH 7.5-8.0 in assays of different pH. Hydrolysis of concentrations of substrate not sufficient to saturate regulatory sites and below the apparent Michaelis constant (Kmapp), i.e., 0.5 microM [3H]cAMP or 0.01 microM [3H]cGMP, was maximal at pH 9.5. Although hydrolysis of 0.5 microM [3H]cAMP increased with pH from 7.5 to 9.5, cGMP stimulation of cAMP hydrolysis decreased. As pH increased or decreased from 7.5, Hill coefficients (napp) and Vmax for cAMP decreased. Thus, assay pH affects both catalytic (Vmax) and allosteric (napp) properties. Enzyme was therefore incubated for 5 min at 30 degrees C in the presence of MgCl2 at various pHs before assay at pH 7.5. Prior exposure to different pHs from pH 6.5 to 10.0 did not alter the Vmax or cGMP-stimulated activity (assayed at pH 7.5). Incubation at high (9.0-10.0) pH did, in assays at pH 7.5, markedly increase hydrolysis of 0.5 microM [3H]cAMP and reduce Kmapp and napp. After incubation at pH 10, hydrolysis of 0.5 microM [3H]cAMP was maximally increased and was similar in the presence or absence of cGMP. Thus, after incubation at high pH, the phosphodiesterase acquires characteristics of the cGMP-stimulated form. Activation at high pH occurs at 30 degrees C but not 5 degrees C, requires MgCl2, and is prevented but not reversed by ethylenediaminetetraacetic acid.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
G Ramponi  G Manao  G Camici 《Biochemistry》1975,14(12):2681-2685
Nonenzymatic acetylation of calf-thymus lysine- and arginine-rich histones was demonstrated to occur when these proteins were incubated with [14C]acetyl phosphate and [14C]acetyl adenylate. The levels of acetylation depend on both pH and on reagent concentration. When acetyl [33P]phosphate and acetyl [3H]adenylate were used as reagents, we found neither histone phosphorylation nor adenylylation. Most of the radioactivity of 14C-labeled acetylated histones was recovered as Ne-acetyllysine. Furthermore, only a small amount of O-bound radioactivity was released by the 14C-labeled acetylated arginine-rich histone during treatment with hydroxylamine. Experiments on the acetylation of histones, in the presence of increasing salt concentration, gave different results for the two acetylating agents.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号