首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The murine IL-3-dependent myeloid cell line 32D undergoes a rapid death when deprived of interleukin-3 (IL-3), a process that is suppressed or delayed by the constitutive expression of Bcl-2 or the Bcl-2-related Bcl-xL survival protein. The adenovirus type 5 E1B region encodes an E1B 55K protein, that has been reported to bind and inactivate the p53 protein that plays an important role in the induction of apoptosis. In order to explore the potential effect of the E1B 55K protein on IL-3 deprival-induced cell death, we have established 32D cell lines overexpressing the adenovirus E1B 55K protein and compared its ability to modulate the cell death with that of the human Bcl-2 protein. We observed that E1B 55K, as Bcl-2, delays the cell death caused by either IL-3-deprivation or DNA damage induced by gamma-irradiation. Cell-cycle analysis after IL-3 deprivation indicated that surviving Bcl-2 transfectants accumulate predominantly in the G0/G1 phase of the cell cycle, while E1B 55K transfectants survive in both G0/G1 and the S and G2/M phases of the cell cycle. zVAD-fmk, a broad caspase inhibitor, prevented chromatin condensation and fragmentation, but not cell death, suggesting that IL-3 deprivation induces a cell death program in which the caspases are dispensable. In contrast, both E1B 55K and Bcl-2 allowed cell survival and prevented the typical features of programmed cell death, such as phosphatidyl-serine exposure, loss of mitochondrial membrane potential, and chromatin condensation and fragmentation. Our findings indicate that the adenovirus 5 E1B 55K protein has the capability to act as a survival factor, and suggest that E1B 55K exerts its effect upstream of the activation of effector caspases, by preventing the loss of mitochondrial membrane potential induced by IL-3 deprivation.  相似文献   

3.
B-cell hybridomas are widely used to produce monoclonal antibodies via large-scale cell culture. Unfortunately, these cells are highly sensitive to apoptotic death under conditions of nutrient deprivation observed at the plateau phase of batch cultures. Previous work has indicated that constitutive high-level expression of antiapoptotic genes in hybridoma cells could delay apoptosis, resulting in higher cell densities and prolonged viability. However, the constitutive high-level expression of antiapoptotic genes has been shown to have detrimental effects on genomic stability of other types of cultured cells. Inducible gene expression may be used to avoid this problem. In the present study, we first constructed an expression vector in which the promoter of a mammalian metallothionein (MT) gene drives the expression of bcl-XL in response to metal exposure. The vector was then used to exogenously control the expression of bcl-XL in D5 hybridoma cells. Our data show that stably transfected D5 cells (4G1.D9) expressed high levels of Bcl-X(L) following overnight exposure to ZnSO(4) concentrations (50 to 100 microM) that did not affect control cells. The level of Bcl-X(L) expressed after ZnSO(4) induction was sufficient to prevent apoptosis experimentally induced by cycloheximide and allowed 4G1.D9 cells to grow at higher densities and remain viable for prolonged periods in suboptimal culture conditions. The use of inducible bcl-XL expression permits extension of the viability of cultured B-cell hybridomas during the antibody secretion phase without the adverse genetic effects associated with constitutive long-term bcl-XL expression.  相似文献   

4.
5.
The classical type of programmed cell death is characterized by its dependence on de novo RNA and protein synthesis and morphological features of apoptosis. We confirmed that stimulated 2B4.11 (a murine T-cell hybridoma) and interleukin-3 (IL-3)-deprived LyD9 (a murine haematopoietic progenitor cell line) died by the classical type of programmed cell death. Assuming that common biochemical pathways might be involved in the deaths of 2B4.11 and LyD9, we isolated the PD-1 gene, a novel member of the immunoglobulin gene superfamily, by using subtractive hybridization technique. The predicted PD-1 protein has a variant form of the consensus sequence found in cytoplasmic tails of signal transducing polypeptides associated with immune recognition receptors. The PD-1 gene was activated in both stimulated 2B4.11 and IL-3-deprived LyD9 cells, but not in other death-induced cell lines that did not show the characteristic features of the classical programmed cell death. Expression of the PD-1 mRNA in mouse was restricted to the thymus and increased when thymocyte death was augmented by in vivo injection of anti-CD3 antibody. These results suggest that activation of the PD-1 gene may be involved in the classical type of programmed cell death.  相似文献   

6.
Sp2/0 hybridoma cells die principally by apoptosis in batch culture. We have found that cultures of the Sp2/0 hybridoma exhibit increased viability in response to interleukin 6 (IL-6) supplementation relative to control cultures during serum shiftdown experiments. When shifted from a medium containing 10% fetal bovine serum (FBS) to a medium with 1% FBS, IL-6 supplemented cultures displayed viabilities and viable cell densities similar to control cultures containing 10% FBS. The degree of the survival response induced varied in accordance with the severity of the shiftdown, as cells resuspended in a high serum medium showed little observable enhancement in viability. The extension in culture viability was not accompanied by an observable decrease in growth relative to control cultures, indicating that the effect was not a consequence of growth inhibition. These results suggest the existence of serum components with behavior functionally similar to IL-6, with respect to enhancing cell survival, and that under certain experimental conditions IL-6 serves as a survival factor. In contrast to the extended viability displayed by cultures supplemented with IL-6, Sp2/0 cultures transfected with IL-6 cDNA expression vectors displayed a growth inhibitory response relative to control cultures. This inhibitory response was characterized by an extended lag phase following inoculation, and a decrease in batch culture cell yield. The depression in cell yield varied with serum concentration, with the largest depression occurring at high serum concentrations. We conclude that interactions between components in serum, presumably growth factors, and cytokines play an important role in altering the behavior of industrially relevant cell lines in culture. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 439-446, 1997.  相似文献   

7.
IL-4 enhances programmed cell death (apoptosis) in stimulated human monocytes.   总被引:14,自引:0,他引:14  
Because IL-4 down-regulates several proinflammatory functions associated with human monocytes/macrophages, we explored the possibility that IL-4 also decreases monocyte survival. IL-4 caused a concentration-dependent decrease in viability of IL-1 or LPS stimulated, but not unstimulated, monocytes. Nonviable cells demonstrated classic features of programmed cell death or apoptosis, in that they were condensed and contained oligonucleosome-sized (200 bp) DNA fragments. When compared with several other cytokines commonly associated with inflammatory lesions, IL-4 was uniquely effective in enhancing cell death. We found that IL-4 enhanced death more quickly in IL-1-stimulated cells than in LPS-stimulated cells, that stimulated monocytes did not become resistant to the effects of IL-4 during culture, and that the effects of IL-4 on viability were antagonized by IFN-gamma. Enhanced cell death was stimulus-specific in that monocyte viability maintained by certain activating agents, such as Con A or CSF, was unaffected by IL-4. These findings represent the first evidence of cytokine-enhanced programmed cell death in monocytes and suggest that the antiinflammatory effects of IL-4 are mediated in part by reducing survival of stimulated monocytes in chronic lesions.  相似文献   

8.
An immortalized interleukin-3 (IL-3)-dependent progenitor cell line, BAF-3, undergoes programmed cell death (apoptosis) when deprived of IL-3. This program is characterized by an early degradation of DNA into oligonucleosome-length fragments that precedes by several hours the loss of cell viability. In the absence of IL-3, DNA fragmentation and cell death can be prevented by the calcium ionophores A23187 (1 microM) and ionomycin (0.5 microM). This addition of calcium ionophore maintains cell viability while reversibly arresting the cell cycle. Apoptosis by growth factor deprivation is also a mechanism of cell elimination in bone marrow cells removed from the stromal micro-environment, as DNA fragmentation and cell death was shown to take place in primary cultures of IL-3-responsive bone marrow cells after IL-3 removal.  相似文献   

9.
The human immunodeficiency virus type 1 (HIV-1) Tat protein has been reported to transactivate several cellular genes, including the potent chemotactic factor interleukin-8 (IL-8). Consistent with these in vitro assays, elevated levels of IL-8 protein are found in the serum of HIV-infected individuals. We now extend these observations by demonstrating that Tat induction of IL-8 is linked to the cell cycle. Cells that constitutively express the Tat(1-86) protein (eTat) and control cells (pCEP) were reversibly blocked at the G(1)/S border with hydroxyurea or thymidine. The cells were subsequently released, and IL-8 expression was monitored by RNase protection assays and enzyme-linked immunosorbent assay (ELISA). RNase protection assays demonstrated that IL-8 mRNA expression is transiently induced, approximately fourfold, as the Tat-expressing cells enter S phase. Consistent with the RNase protection assay, an increase in IL-8 protein was observed in the cell supernatant using an IL-8 ELISA. Similar experiments were performed following a reversible block at the G(2)/M border with nocodazole and release into G(1). Using the RNase protection assay and ELISA, little or no increase in IL-8 expression was observed during G(1). Using gel shift as well as an immobilized DNA binding assay, we demonstrate that the increase in IL-8 gene expression correlates with a specific increase in p65 NF-kappa B binding activity only in the nucleus of the Tat-expressing cells. Moreover, the CREB-binding protein coactivator is present in the complex in the Tat cell line. Finally, we demonstrate that the presence of the proteasome inhibitor MG-132 inhibits the induction of NF-kappa B binding, as well as IL-8 expression, supporting the role of NF-kappa B.  相似文献   

10.
Th physically interact with B cells and produce lymphokines that influence B cell growth and differentiation. The respective contribution of cell contact and lymphokines to induction of B cell growth and differentiation was addressed using purified plasma membranes (PM) from resting Th (PMrest) and anti-CD3-activated Th (PMCD3) together with lymphokines. Results show that PMCD3, but not PMrest, induce 10% of resting B cells to enter the G1 phase of the cell cycle, with few B cells entering G1b and S/G2. The inclusion of IL-4, but not IL-2, IL-5, or IFN-gamma, amplifies the B cell response to PMCD3 by increasing the total percentage of activatable B cells to greater than 40% and inducing B cell progression into G1b, S, and G2. Direct comparison between PMrest and PMCD3 purified from Th1 and Th2 indicate that both Th1 and Th2 induce similar levels of B cell proliferation in the presence of IL-4. Further, the lymphokine requirements for B cell proliferation induced by PMCD3 from Th1 and Th2 is indistinguishable. B cell differentiation to IgM, IgG1, and IgG2a synthesis by PMCD3 required IL-4 and IL-5. Using lymphokine conditions that supported B cell differentiation, PMCD3 purified from Th1 and Th2 induced similar levels of IgM, and IgG1. Given the functional data on PMCD3 from Th1 and Th2, the data indicate that there are no substantive differences between Th1- and Th2-derived PMCD3, and that the major differences in the ability of viable Th1 and Th2 to activate B cells is the lymphokines produced by the cells.  相似文献   

11.
As a result of recent advances in flow cytometry, renewed interest is shown in modeling the kinetic behavior of cells in culture on the basis of cell cycle parameters. An important but often overlooked kinetic variable in hybridoma cultures is the cell death rate. Not only the overall cell growth but also the kinetics of nutrient metabolism and monoclonal antibody production have been shown to depend on the cell death rate in continuous suspension hybridoma cultures. The present study shows that the death rate in hybridoma cultures is proportional to the fraction of cells arrested in the G(1) phase of the cell cycle. The steady-state cell age distributions in the various phases of the division cycle have been calculated analytically. A simple mathematical model has been used to produce the profiles of the cycling and arrested cell fractions with respect to the dilution rate. The calculated steady-state growth rate, death rate, and viability profiles are shown to be in agreement with recently published experimental data from continuous suspension hybridoma cultures. (c) 1992 John Wiley & Sons, Inc.  相似文献   

12.
13.
14.
The molecular links between cell cycle control and the regulation of programmed cell death are largely unknown in plants. Here we studied the relationship between the cell cycle and elicitor-induced cell death using synchronized tobacco BY-2 cells. Flow cytometry and fluorescence microscopy of nuclear DNA, and RNA gel-blot analyses of cell cycle-related genes revealed that the proteinaceous elicitor cryptogein induced cell cycle arrest at the G1 or G2 phase before the induction of cell death. Furthermore, the patterns of cell death induction and defence-related genes were different in different phases of the cell cycle. Constitutive treatment with cryptogein induced cell cycle arrest and cell death at the G1 or G2 phase. With transient treatment for 2 h, cell cycle arrest and cell death were only induced by treatment with the elicitor during the S or G1 phase. By contrast, the elicitor-induced production of reactive oxygen species was observed during all phases of the cell cycle. These results indicate that although recognition of the elicitor signal is cell cycle-independent, the induction of cell cycle arrest and cell death depends on the phase of the cell cycle.  相似文献   

15.
The DNA synthetic S phase of the unperturbed cell cycle is a closed system, as compared to regulation of G1 by external growth factors. The E2F family provides internal control in S phase by transcribing genes required for deoxynucleotide triphosphate (dNTP) and DNA synthesis. Furthermore, over expression of E2F-1 activates programmed cell death (apoptosis), a safeguarding signal of aberrant growth of cells that have become carcinogenic. Mechanisms for control of E2F-1 are thus essential. The hypothesis is proposed that deoxythymidine triphosphate (dTTP) allosterically feedback controls E2F-1 to regulate both DNA synthesis and apoptosis. This may act either upon production of E2F-1 or its degradation.  相似文献   

16.
17.
IL-6, which is also known as IFN-beta 2, hybridoma growth factor, hepatocyte-stimulating factor, and B cell differentiation factor, mediates acute phase responses including fever, has lymphocyte-stimulating capacities, and antiviral activity. IL-6 is produced by monocytes, fibroblasts, certain lymphocytes, and various tumor cells. The present study demonstrates that this multifunctional cytokine is released also by normal human epidermal cells (EC) and human epidermoid carcinoma cell lines (A431, KB). Accordingly, supernatants derived from freshly isolated EC, long term keratinocyte cultures, A431, or KB cells stimulated the proliferation of a hybridoma growth factor/IL-6-dependent plasmacytoma cell line (B9). IL-6 constitutively was produced in the presence of serum proteins. The addition of IL-1 alpha, IL-1 beta, or the tumor promoter PMA significantly enhanced the synthesis and release of EC-derived IL-6 (EC-IL 6). Like monocyte or fibroblast-derived IL-6, EC-IL-6 exhibited Mr microheterogeneity within 21 and 28 kDa. Similarly in Western blotting experiments an antiserum directed against human rIFN-beta 2/IL-6 detected the different Mr forms of EC-IL-6. Moreover, this antiserum was able to block the B9 cell growth-promoting capacity of EC-IL-6 strongly suggesting that this EC-derived mediator is closely related, if not identical with IL-6. This was further confirmed by Northern blot analysis detecting IL-6 specific mRNA both in long term cultured keratinocytes and A431 cells by hybridization with a cDNA fragment encoding for B cell differentiating factor 2/IL-6. Therefore, in addition to the production of other cytokines as previously reported, EC and in particular keratinocytes also synthesize and release IL-6. This further supports the important regulatory role of the epidermis during the pathogenesis of inflammatory, autoimmune, and neoplastic diseases.  相似文献   

18.
Previous studies have demonstrated that murine thymocytes proliferate in the presence of submitogenic concentrations of phytohemagglutinin-P (PHA-P) and various cytokines such as interleukin-1 (IL-1), interleukin-4 (IL-4), tumor necrosis factor-alpha (TNF-alpha), and interleukin-6 (IL-6). We report that C3H/HeJ thymocytes stimulated with PHA-P and IL-1, IL-4, or TNF-alpha secrete significant levels of IL-6 as determined on B9 hybridoma cells. The possibility that thymocyte proliferation induced by these cytokines was mediated through IL-6 was investigated utilizing a neutralizing monoclonal antibody against murine IL-6, MP5 20F3.1. The results demonstrate that MP5 20F3.1 inhibited the proliferative response of thymocytes and B9 hybridoma cells to recombinant MuIL-6 (but not HuIL-6) and neutralized the endogenous IL-6 produced in the thymocyte cultures, but did not have any measurable effects on the proliferative responses induced by IL-1, IL-4, or TNF-alpha. Although the level of endogeneously produced IL-6 did not play a measurable role in the proliferative response induced by TNF-alpha, the addition of higher concentrations of IL-6 augmented the proliferation of murine thymocytes induced by rMu TNF-alpha. In addition, recombinant human transforming growth factor-beta 1 (rHu TGF-beta 1) significantly inhibited thymocyte proliferation induced by HuIL-1, rMuIL-4, rMuIL-6, and rMuTNF-alpha. The studies suggest that IL-1, IL-4, or TNF-alpha mediate a proliferative signal on murine thymocytes independent of IL-6 and that the proliferative signals provided by these cytokines as well as IL-6 are inhibitable by rHu TGF-beta 1.  相似文献   

19.
In this study, overexpression of GADD45a induced by furazolidone in HepG2 cells could arouse S‐phase cell cycle arrest, suppress cell proliferation, and increase the activities of cyclin D1, cyclin D3, and cyclin‐dependent kinase 6 (CDK6). To the opposite, GADD45a knockdown cells by RNAi could reduce furazolidone‐induced S‐phase cell cycle arrest, increase the cell viability, decrease the activities of cyclin D1, cyclin D3, and CDK6; however, cyclin‐dependent kinase 4 (CDK4) showed no change. Moreover, data from our current studies show that cyclin D1, cyclin D3, and CDK6 are target genes functioning at the downstream of the GADD45a pathway induced by furazolidone. These results demonstrate that the GADD45a pathway is partially responsible for the furazolidone‐induced S‐phase cell cycle arrest. GADD45a influences furazolidone‐induced S‐phase cell cycle arrest in human hepatoma G2 cells via cyclin D1, cyclin D3, and CDK6, but not CDK4.  相似文献   

20.
An EBNA- human B lymphoma cell line, B104, was established. B104 cells express IgD as well as IgM on their surface, which is thought to be a basic characteristic of mature B cells. The growth of B104 cells was inhibited by treatment with a panel of anti-IgM antibodies. Cell cycle analyses revealed that the transition of B104 cells from the G2/M to the G0/G1 phase of the cell cycle was markedly inhibited by treatment with anti-IgM antibodies. Progression of B104 cells to the M phase of the cell cycle was found to be suppressed in the presence of anti-IgM antibodies. In contrast, both the entrance of G0/G1 phase cells into the S phase and the progression of S phase cells to the G2/M phase of the cell cycle did not seem to be inhibited significantly by treatment with anti-IgM antibodies. These results indicate that the mechanism of the inhibition of growth of B104 cells by anti-IgM antibodies is blockage of the transition from the G2 to the M phase of the cell cycle. In contrast to anti-IgM antibodies, anti-IgD antibodies could not cause growth inhibition of B104 cells at all. B cell growth factors such as IL-4 and IL-6 had no effect on the inhibition of growth of B104 cells by anti-IgM antibody. IFN-alpha and -beta, which have no B cell growth factor activity, did increase the number of cells that survived the treatment with anti-IgM antibodies. B104 is an excellent experimental model for the study of the mechanism of signal transduction through sIg as well as the functional difference between sIgM and sIgD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号