首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With the transition from terrestrial to aquatic habitats, cetacean forelimbs have undergone significant modifications in bone morphology and soft tissue distribution. Some, but not all, of these modifications are also demonstrated in other lineages of extant and extinct secondarily aquatic tetrapods. This study examines the ontogenetic pattern of ossification of the manus of the harbor porpoise (Phocoena phocoena), using plain film radiography. Two modifications examined are hyperphalangy (number of phalanges per digit increased beyond the typical mammalian number) and the morphology of delta-shaped bones. Hyperphalangy in Phocoena phocoena is apparent in digits 2 and 3. Phalangeal counts in all digits are variable (sometimes between the right and left flippers of the same individual) and are not necessarily correlated with age. Phalangeal ossification and epiphyseal fusion proceeds along the proximo-distal axis within each digit. In addition, digits 2 and 3 are at a more advanced stage of ossification than more abaxial digits. Delta-shaped bones appear to be a normal stage in the ossification of phalanges in all digits except the third, and may persist in the adult in certain digits. In humans, this morphology is a developmental anomaly usually associated with other malformations, such as polydactyly or syndactyly. Delta-shaped bones in the cetacean manus display a consistent orientation and the process by which they are formed may be similar to that in extinct marine reptiles.  相似文献   

2.
The basal anomodont Suminia getmanovi Ivakhnenko, 1994 from the late Palaeozoic of Russia is highly specialized in its masticatory apparatus, and has been suggested to represent the earliest arboreal tetrapod in the fossil record. Its postcranial anatomy is described in detail for the first time, revealing a large number of autapomorphies for this small herbivore. These include a reduced number of presacral and therein dorsal vertebrae, an elongate neck, a long and possibly prehensile tail, a procoracoid with a notch at its ventromedial margin rather than a foramen, an iliac blade with a robust ridge at its anteromedial edge, a pubis with a puboischiadic fenestra and separate pubic foramen, and elongate limbs. Additional autapomorphic characters are displayed in the autopodium, which comprises about 40% of the entire limb length. These features include an enlarged, phalangiform distal carpal 1 and tarsal 1, a short and robust first metacarpal, a crescent‐shaped distal tarsal 4, and elongate penultimate phalangeal elements. The phylogenetic relationships of basal anomodonts are revisited using an expanded data set, with the addition of key taxa and several postcranial characters. Unlike dicynodonts, Suminia retained the plesiomorphic phalangeal formula for amniotes of 2‐3‐4‐5‐3 (manus) and 2‐3‐4‐5‐4 (pes). This pattern is achieved by the retention of disc‐like phalangeal elements between the proximal and penultimate phalanges in digits III, IV (manus and pes), and V (pes only). In light of the new material, Suminia can be recognized as the most complete basal anomodont, offering new insights into the early evolution of the group. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 162 , 661–698.  相似文献   

3.
Kevin Padian 《Ichnos》2013,20(2-4):115-126
The tracks ascribed to pterosaurs from the Late Jurassic limestones at Crayssac, France, must be pterosaurian because the manus prints are so far outside those of the pes, the pes print is four times longer than wide, and the manus prints appear to preserve distinct traces of a posteromedially directed wing-finger. These tracks are different in important ways from previously described Pteraichnus trackways, which have been variably considered pterosaurian, crocodilian, or indeterminate. No Pteraichnus (sensu stricto: those not from Crayssac) tracks have diagnostic features of pterosaurs and in none can a complete phalangeal or digital formula be reconstructed; however, all published Pteraichnidae tracks fulfill the criteria of poor preservation, and some have some diagnostic features of crocodile tracks. Reconstructions of pterosaurs walking in pteraichnid tracks do not fit those tracks well, but crocodiles do. In contrast, the Crayssac tracks demonstrate the erect stance and parasagittal gait previously reconstructed for pterosaurs. They also demonstrate that the footfall pattern was not as in typical reptiles (LH-RF-RH-LF), but that the manus must have been raised before the next forward step of the ipselateral foot (LH-LF-RH-RF), suggesting that the quadrupedal pattern was secondary. The metatarsus in pterosaurs was set low at the beginning of a stride, as it is in crocodilians and basal dinosaurs. The diagnosis of the Ichnofamily Pteraichnidae comprises features of possible crocodilian trackmakers, but not of possible pterosaurian trackmakers. Trackways considered for attribution to pterosaurs should show (1) manus prints up to three interpedal widths from midline of body, and always lateral to pes prints, (2) pes prints four times longer than wide at the metatarso-phalangeal joint, and (3) penultimate phalanges longest among those of the pes.  相似文献   

4.
We documented trackways of free-living Crocodylus acutus on beaches at the mouths of Tamarindo and Ventanas estuaries, Costa Rica. Our crocodiles had estimated total lengths of 1–3 meters or more. Manus prints have five digits, with digits I–III bearing claw marks. Pes prints have four digits, with claw marks on digits I–III. The pes is plantigrade. Claws generally dig into the substrate. Apart from claw marks, digit I and the heel of the pes are usually the most deeply impressed parts of footprints. Trackways are wide-gauge. Pes prints are usually positioned just behind ipsilateral manus prints of the same set and may overlap them. Manus and pes prints angle slightly outward with respect to the crocodile's direction of movement. Claw-bearing digits of both the manus and pes may create curved, concave-toward-the-midline drag marks as the autopodium is protracted. The tail mark varies in depth and clarity, and in shape from nearly linear to markedly sinuous. Sometimes the tail mark hugs the trackway midline, but sometimes it is closer to, or even cuts across, prints of one side. American crocodile footprints and trackways are similar to those observed in other extant crocodylian species, indicating substantial trackway conservatism across the group.  相似文献   

5.
Most titanosaur dinosaurs are represented by incomplete skeletal elements lacking articulated pes. An exceptionally preserved specimen from the Late Campanian–Early Maastrichtian strata of Patagonia (Argentina) provides new data on pedal morphology and the evolutionary trends of these huge dinosaurs. This finding is one of the few articulated titanosaur pes known in the world, and shows a phalangeal formula of 2-2-2-2-0. The first three digits possess sickle-shaped claws and the articular facets of ungual phalanges, suggesting mobility in horizontal and vertical planes. A comparative analysis of available record suggests that titanosaurs had a progressive reduction of size and number of pedal phalanges in digits III and IV during the Late Cretaceous.  相似文献   

6.
Documentation of variation in phalangeal formulae in land tortoises combined with ontogenetic information from turtles in general were used, in a phylogenetic context, to infer the potential effect of size and developmental constraints upon patterns of morphological variation. A sample of 201 specimens and published illustrations of 37 tortoise species were examined, representing all but one living genera and most species of the Testudinidae. Specimens were either articulated dry skeletons or preserved animals that were x-rayed. The patterns of digital and phalangeal loss in tortoises were predicted from developmental studies of the manus and pes in other turtles. If a digit is lost, it is the first digit, which is the last one to develop. If a digit has a single phalanx, it is usually the fifth digit. The primitive phalangeal formula for land tortoises is probably 2-2-2-2-1, the most common pattern found in living testudinid species. The presence of a second phalanx in the fifth digit evolved independently many times and usually in large tortoises. Such additions were interpreted as instances of peramorphosis. Many small tortoises have a full complement of digits (five) and phalanges (two in each digit); nevertheless, phalangeal and digital loss is associated with small size. Small and medium size tortoises exhibit greater variation in phalangeal number than do large tortoises. We hypothesize that epigenetic processes, and not simply adaptation, played a major role in the evolution of the variation in phalangeal formulae in tortoises.  相似文献   

7.
The role of allometry in producing the variation in autopodial morphology observed among the lizards is not well understood. Allometry of metapodial and digit lengths in the manus and pes of the primitively padless gekkotan (Eublepharis macularius) is explored using maximum‐likelihood repeated‐measures ANCOVAs with body length as the covariate. Estimated variance–covariance matrices differed significantly within and between autopodia, and integration was stronger among the metapodials than the digits. The first metapodial and the first digit of each autopodium exhibit the strongest covariances with each of the remaining components in each variance–covariance matrix, suggesting that the lengths of the first rays are important for allometric integration of both manus and pes. Metapodials scale isometrically and digits negatively allometrically; both display allometric heterogeneity among themselves in both autopodia. Both autopodia exhibit changes in proportion over the ontogenetic size range, attributable to variation in scaling among the components of the rays. Allometric coefficients do not vary among pedal digits, despite differences in phalanx number, although phalanx number is associated with differences in slope in the manual digits. This is suggestive of heterogeneity in allometry among the manual phalanges, which thus may be associated with variation in phalanx length within gekkotan digits.  相似文献   

8.
Palaeosauropus primaevus is a tetrapod footprint ichnotaxon first described from the Upper Mississippian (Visean) Mauch Chunk Formation near Pottsville, Pennsylvania, United States. Our relocation of the type locality and stratigraphic horizon of P. primaevus, a long-available but unstudied collection of tetrapod footprints from these strata, and our new collections allow a much fuller characterization of this ichnotaxon and the range of extramorphological variation encompassed by it. P. primaevus is characterized as the footprints of a quadruped with a pentadactyl pes and a tetradactyl manus, in which the pes frequently oversteps the manus and with which tail drags are common. In the manus, all digits are relatively broad and have rounded tips, digit III is longest, and digit IV is more widely separated from digit III than the other digits are from each other. The pes has five digits that are also wide and blunt-tipped, digit IV is longest, and digit V projects nearly laterally. P. primaevus is the track of a relatively large temnospondyl (~400 mm gleno-acetabular length) and documents the Mississippian presence of such large amphibians long before their body fossil record. Palaeosauropus also occurs in Mississippian strata in Indiana and is distinguished from the geologically younger but similar temnospondyl footprint ichnogenus Limnopus by its relatively narrower manus and pes that lack broad and rounded sole impressions.  相似文献   

9.
Virtually parallel lines can be drawn through the interphalangeal joints and across the ungual tips of every tetrapod manus or pes, including wings and flippers. Their presence indicates that phalanges operate in sets sharing common hinges, whether for walking (extension) or climbing (flexion). A recent paper has attempted to dismantle both the observation and utility of parallel interphalangeal lines. Here, I rebut those spurious arguments and report additional evidence.  相似文献   

10.
A comparative study of the appendicular skeletal morphology, with a particular emphasis on the autopodial elements (manus and pes), of the extinct caviine rodent Microcavia criolloensis (Late Pleistocene, Uruguay), together with that of living species of Microcavia and some allied caviines is performed. Burrow‐digging and above‐ground behaviour by M. criolloensis could have evolved in the Late Pleistocene, as with its relative M. australis in the Recent. This is suggested based on the morphology of preserved articulated skeletons along with fossil burrow‐like structures. The most remarkable features are: in its forelimb, where the humerus has a structure that would have allowed it to perform similar activities to M. australis, based on humeral width across the epicondiles relative to total humerus length index and a good resistance as indicated by high values relating the diameter of the diaphysis to its total length. Qualitative comparison shows that M. criolloensis had a stout, wide manus with relatively short digits including short, wide phalanges, despite its large size. In its hind limb there is a stout hind‐foot with relatively short and wide metatarsals and phalanges, as compared with those of the recent species, that could arguably be considered a useful tool for shovelling out displaced soil. The generalized morphology suggests above‐ground behaviour together with digging ability. The environmental adaptations of M. criolloensis are also briefly discussed, which seem to differ from those of its extant relatives. © 2008 The Linnean Society of London, Zoological Journal of the Linnean Society, 2008, 154 , 795–806.  相似文献   

11.
Unusual tracks of a quadrupedal animal with a three-digit (occasionally four-digit) manus print and four-digit pes print were first interpreted as those of pterosaurs in the 1950s. In the 1980s these tracks were reinterpreted as crocodilian, but new material shows that the original identification was correct. Two features: evidence for elongate penultimate phalanges in digits two to four of the pes, and manus trackways up to three times the width of pes trackways, can only be attributed to pterosaurs. Recent improvements in understanding of pterosaur anatomy and functional morphology explain remaining difficulties regarding the interpretation of ich-nites such as the orientation of the manus digits and the absence of some expected ichnological features. Pteraichnus and Pteraichnus-like tracks show that, when grounded, some, perhaps all, pterosaurs were plantigrade, quadrupedal, and had a semi-erect stance and gait. This is consistent with some functional interpretations of pterosaur anatomy and resolves a long-running debate regarding the terrestrial ability of this group.  相似文献   

12.
All carnivorans retract and protract their claws. In felids and some viverrids the claws of digits II through V of both the manus and pes have a larger arc of rotation than those of other carnivorans; the claws retract to the lateral side of the middle phalanx rather than onto its dorsal surface as in most other carnivorans. This condition should be termed hyper-retraction. Morphological features of the middle and distal (ungual) phalanges that have been purported to be necessary for hyper-retraction in felids vary considerably among digits within the manus and pes. These features include the lateral projection of the distal head and the asymmetry of the shaft of the middle phalanx, and the oblique orientation of the articular surface on the distal phalanx. None of these features is necessary in every instance for hyperretraction, and some of the variation in these features is associated instead with protraction. Differences among digits in the orientation of the articular surface on the distal phalanx are associated with differences in the degree to which the claws must move laterally to rotate from the protracted to the retracted position. Differences in the orientation of the distal head on the middle phalanx are associated with the spreading of the claws during protraction. The manual claws are hook-shaped, whereas the pedal claws are more blade-like; this morphological difference is associated with differences in function between the manus and pes. In the manus the medial claws have a larger radius of curvature and a smaller angle of arc as compared to the more lateral claws; in the pes, the claws on digits III and IV have larger radii of curvature and smaller angles of arc. Digit I of the manus lacks the hyper-retraction mechanism; nonetheless, this digit shares many of the attributes that are associated with this mechanism. © 1996 Wiley-Liss, Inc.  相似文献   

13.
14.

Background  

Kangaroos and wallabies have specialised limbs that allow for their hopping mode of locomotion. The hindlimbs differentiate much later in development but become much larger than the forelimbs. The hindlimb autopod has only four digits, the fourth of which is greatly elongated, while digits two and three are syndactylous. We investigated the expression of two genes, HOXA13 and HOXD13, that are crucial for digit patterning in mice during formation of the limbs of the tammar wallaby.  相似文献   

15.
Considerable attention has been devoted to understanding phalangeal curvature in primates, particularly with regard to locomotion. Previous work has found that increased phalangeal curvature may be indicative of increased grasping during suspensory and climbing behaviors, but the details of this relationship, particularly as regards feet, is still unclear. Using behavioral studies to predict an interspecific gradient of variation in pedal phalangeal curvature, I collected digital data from the third and fifth digit proximal pedal phalanges in adult Gorilla gorilla, Pan troglodytes, and Pongo pygmaeus and calculated included angles of phalangeal curvature to assess the appropriateness of pooling digits within taxa and evaluate the association between variation in pedal phalangeal curvature and frequency of climbing behavior. I also used an ontogenetic sample of Pan troglodytes to evaluate the postnatal relationship between variation in phalangeal curvature and grasping behaviors. I found intraspecific variation in phalangeal curvature suggesting among-digit variation in grasping behaviors. Curvature of Pongo was significantly greater than of both Pan and Gorilla. In contrast, Pan was significantly more curved than Gorilla only in comparison of third digits. Ontogenetic decreases in pedal phalangeal curvature among Pan troglodytes accorded well with postnatal decreases in documented climbing frequency. These findings largely support earlier work regarding the association between arboreal grasping and phalangeal curvature, and provide a unique intraspecific analysis that illuminates a number of areas where our knowledge of the behavioral and biomechanical determinants of phalangeal curvature should be explored further, particularly with respect to the role of among-digit variation in phalangeal curvature.  相似文献   

16.
The softshell turtles (Trionychidae) are one of the most widely distributed reptile groups in the world, and fossils have been found on all continents except Antarctica. The phylogenetic relationships among members of this group have been previously studied; however, disagreements regarding its taxonomy, its phylogeography and divergence times are still poorly understood as well. Here, we present a comprehensive mitogenomic study of softshell turtles. We sequenced the complete mitochondrial genomes of 10 softshell turtles, in addition to the GenBank sequence of Dogania subplana, Lissemys punctata, Trionyx triunguis, which cover all extant genera within Trionychidae except for Cyclanorbis and Cycloderma. These data were combined with other mitogenomes of turtles for phylogenetic analyses. Divergence time calibration and ancestral reconstruction were calculated using BEAST and RASP software, respectively. Our phylogenetic analyses indicate that Trionychidae is the sister taxon of Carettochelyidae, and support the monophyly of Trionychinae and Cyclanorbinae, which is consistent with morphological data and molecular analysis. Our phylogenetic analyses have established a sister taxon relationship between the Asian Rafetus and the Asian Palea + Pelodiscus + Dogania + Nilssonia + Amyda, whereas a previous study grouped the Asian Rafetus with the American Apalone. The results of divergence time estimates and area ancestral reconstruction show that extant Trionychidae originated in Asia at around 108 million years ago (MA), and radiations mainly occurred during two warm periods, namely Late Cretaceous–Early Eocene and Oligocene. By combining the estimated divergence time and the reconstructed ancestral area of softshell turtles, we determined that the dispersal of softshell turtles out of Asia may have taken three routes. Furthermore, the times of dispersal seem to be in agreement with the time of the India–Asia collision and opening of the Bering Strait, which provide evidence for the accuracy of our estimation of divergence time. Overall, the mitogenomes of this group were used to explore the origin and dispersal route of Trionychidae and have provided new insights on the evolution of this group.  相似文献   

17.
The forelimb of whales and dolphins is a flipper that shows hyperphalangy (numerous finger bones). Hyperphalangy is also present in marine reptiles, including ichthyosaurs and plesiosaurs. The developmental basis of hyper-phalangy is unclear. Kükenthal suggested that phalanx anlagen split into three pieces during cetacean development, thereby multiplying the ancestral number. Alternatively, Holder suggested that apical ectodermal ridge (AER)-directed limb outgrowth might be prolonged by a timing shift (heterochrony), leading to terminal addition of extra phalanges. We prepared a series of whole mounted and serially sectioned embryonic flipper buds of the spotted dolphin Stenella attenuata. This cetacean shows marked hyperphalangy on digits II and III. We confirm previous reports that the proximodistal laying down of phalanges is prolonged in digits II and III. Histology showed that the apical ectoderm was thickened into a cap. There was a weak ridge-like structure in some embryos. The cap or ridge formed part of a bud-like mass that persisted on digits II and III at stages when it had disappeared from other digits. Thus the dolphin differs from other mammals in showing a second period of limb outgrowth during which localized hyperphalangy develops. New phalanges only formed at the tip of the digits. These findings are consistent with a model in which heterochrony leads to the terminal addition of new phalanges. Our results are more easily reconciled with the progress zone model than one in which the AER is involved in the expansion of a prepattern. We suggest that patterning mechanisms with a temporal component (i.e., the "progress zone" mechanism) are potential targets for heterochrony during limb evolution.  相似文献   

18.
A comparative morphometric analysis of isolated proximal and intermediate phalanges attributed to the paromomyids Ignacius graybullianus and Phenacolemur simonsi was undertaken to test the hypothesis that these fossil phalanges exhibit evidence of a dermopteran-like interdigital patagium. Linear dimensions were collected for the fossil phalanges and a comparative sample of associated proximal and intermediate phalanges representing extant tree squirrels, tree shrews, dermopterans (colugos), gliding rodents and marsupials, and prosimian primates. Quantitative data indicate that the proximal and intermediate phalanges of paromomyids are most similar in their overall shape to those of the dermopteran Cynocephalus. The proximal phalanges of paromomyids and colugos possess well-developed flexor sheath ridges and broad, high shafts, whereas the intermediate phalanges of these taxa are most similar to one another in their trochlear morphology. Discriminant analysis indicates that all of the paromomyid intermediate phalanges resemble those from colugo toes more so than those from colugo fingers. Moreover, the relative length and midshaft proportions of both the proximal and intermediate phalanges of paromomyids closely resemble those of several squirrels that lack an interdigital patagium. The following conclusions are drawn from this study: 1) paromomyids share a number of derived phalangeal features with modern dermopterans that may be indicative of a phylogenetic relationship between them, 2) existing intermediate phalanges of paromomyids are inconsistent with the “mitten gliding” hypothesis because they do not possess the distinctive length and midshaft proportions characteristic of colugo manual intermediate phalanges, and 3) paromomyids share with colugos and the scaly-tailed squirrel Anomalurus several aspects of phalangeal morphology functionally related to frequent vertical clinging and climbing on large-diameter arboreal supports. Am J Phys Anthropol 109:397–413, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

19.
In this note we reassess the position of putative pedal phalanges of some South American noasaurid theropods (Abelisauroidea). Noasaurids were considered as to be distinctive abelisauroids with a peculiar “sickle claw” on the second toe of the foot, convergently developed with that of deinonychosaurians. Among noasaurids, the Argentinean species Noasaurus leali (latest Cretaceous) and Ligabueino andesi (Early Cretaceous) are known from incomplete specimens, including dissarticulated non-ungueal phalanges, and, in N. leali, a claw. A detailed overview of these elements indicates that the supposed raptorial claw of the second pedal digit of N. leali actually belongs to the first or second finger of the manus, and the putative pedal non-ungual phalanges of both genera also pertain to the manus. Thus, the new interpretations of noasaurid pedal morphology blur the distinctions between Noasauridae and Velocisauridae proposed by previous authors. Finally, we suggest, on the basis of phalangeal and metacarpal morphology, that abelisaurids probably lost their manual claws by means of the loss of function of the HOXA11 and HOXD11 genes. Thus Noasauridae differs from Abelisauridae in retaining plesiomorphic long forelimbs with well developed claws, as occurs plesiomorphically in most basal theropods (e.g., Coelophysis).  相似文献   

20.
Metapodials and phalanges of the second to fourth digital ray were measured for the hands and feet of 214 specimens belonging to 45 extant species of hystricognath rodents, encompassing members of all major clades of the radiation. Principal components analysis (PCA), the phalangeal index of the third digital ray in the hands and feet, and the relationship between second and fourth digital ray were used to investigate intrinsic autopodial proportions as well as to provide a base for comparisons between hands and feet. PCA separated cursorial Hystricognathi from arboreal ones, but lead to little distinction in other locomotory modes. Cursors have longer metapodials and shorter phalanges, particularly in their hind limb, while arboreal species have relatively longer manual and pedal phalanges. Terrestrial, scansorial, fossorial, and semi-aquatic species were not clearly distinguished, but there is a tendency towards elongated manual digits and relatively short feet in most fossorial species. Closely related species with similar locomotory habits tend to group together in PCA morphospace, and also have similar phalangeal indices. The results are in agreement with current hypotheses on locomotory adaptations of the hand and foot, and concur with many previous findings on autopodial proportions in arboreal, cursorial, and fossorial species. They also highlight the limited use of autopodial proportions for inferring systematic affinities. The lack of distinction in the majority of species is likely related to the lack of highly specialized locomotory types in Hystricognathi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号