共查询到20条相似文献,搜索用时 0 毫秒
1.
An initiation zone of chromosomal DNA replication located upstream of the c-myc gene in proliferating HeLa cells. 总被引:17,自引:12,他引:17
下载免费PDF全文

Studies on origins of DNA replication in mammalian cells have long been hampered by a lack of methods sensitive enough for the localization of such origins in chromosomal DNA. We have employed a new method for mapping origins, based on polymerase chain reaction amplification of nascent strand segments, to examine replication initiated in vivo near the c-myc gene in human cells. Nascent DNA, pulse-labeled in unsynchronized HeLa cells, was size fractionated and purified by immunoprecipitation with anti-bromodeoxyuridine antibodies. Lengths of the nascent strands that allow polymerase chain reaction amplification were determined by hybridization to probes homologous to amplified segments and used to calculate the position of the origin. We found that DNA replication through the c-myc gene initiates in a zone centered approximately 1.5 kilobases upstream of exon I. Replication proceeds bidirectionally from the origin, as indicated by comparison of hybridization patterns for three amplified segments. The initiation zone includes segments of the c-myc locus previously reported to drive autonomous replication of plasmids in human cells. 相似文献
2.
The G1/S phase restriction point is a critical checkpoint that interfaces between the cell cycle regulatory machinery and DNA replicator proteins. Here, we report a novel function for the cyclin-dependent kinase inhibitor p27Kip1 in inhibiting DNA replication through its interaction with MCM7, a DNA replication protein that is essential for initiation of DNA replication and maintenance of genomic integrity. We find that p27Kip1 binds the conserved minichromosome maintenance (MCM) domain of MCM7. The proteins interact endogenously in vivo in a growth factor-dependent manner, such that the carboxyl terminal domain of p27Kip1 inhibits DNA replication independent of its function as a cyclin-dependent kinase inhibitor. This novel function of p27Kip1 may prevent inappropriate initiation of DNA replication prior to S phase. 相似文献
3.
MCM8 is an MCM2-7-related protein that functions as a DNA helicase during replication elongation and not initiation 总被引:12,自引:0,他引:12
MCM2-7 proteins are replication factors required to initiate DNA synthesis and are currently the best candidates for replicative helicases. We show that the MCM2-7-related protein MCM8 is required to efficiently replicate chromosomal DNA in Xenopus egg extracts. MCM8 does not associate with the soluble MCM2-7 complex and binds chromatin upon initiation of DNA synthesis. MCM8 depletion does not affect replication licensing or MCM3 loading but slows down DNA synthesis and reduces chromatin recruitment of RPA34 and DNA polymerase-alpha. Recombinant MCM8 displays both DNA helicase and ATPase activities in vitro. Reconstitution experiments show that ATP binding in MCM8 is required to rescue DNA synthesis in MCM8-depleted extracts. MCM8 colocalizes with replication foci and RPA34 on chromatin. We suggest that MCM8 functions in the elongation step of DNA replication as a helicase that facilitates the recruitment of RPA34 and stimulates the processivity of DNA polymerases at replication foci. 相似文献
4.
Komamura-Kohno Y Karasawa-Shimizu K Saitoh T Sato M Hanaoka F Tanaka S Ishimi Y 《The FEBS journal》2006,273(6):1224-1239
MCM4, a subunit of a putative replicative helicase, is phosphorylated during the cell cycle, at least in part by cyclin-dependent kinases (CDK), which play a central role in the regulation of DNA replication. However, detailed characterization of the phosphorylation of MCM4 remains to be performed. We examined the phosphorylation of human MCM4 at Ser3, Thr7, Thr19, Ser32, Ser54, Ser88 and Thr110 using anti-phosphoMCM4 sera. Western blot analysis of HeLa cells indicated that phosphorylation of MCM4 at these seven sites can be classified into two groups: (a) phosphorylation that is greatly enhanced in the G2 and M phases (Thr7, Thr19, Ser32, Ser54, Ser88 and Thr110), and (b) phosphorylation that is firmly detected during interphase (Ser3). We present data indicating that phosphorylation at Thr7, Thr19, Ser32, Ser88 and Thr110 in the M phase requires CDK1, using a temperature-sensitive mutant of mouse CDK1, and phosphorylation at sites 3 and 32 during interphase requires CDK2, using a dominant-negative mutant of human CDK2. Based on these results and those from in vitro phosphorylation of MCM4 with CDK2/cyclin A, we discuss the kinases responsible for MCM4 phosphorylation. Phosphorylated MCM4 detected using anti-phospho sera exhibited different affinities for chromatin. Studies on the nuclear localization of chromatin-bound MCM4 phosphorylated at sites 3 and 32 suggested that they are not generally colocalized with replicating DNA. Unexpectedly, MCM4 phosphorylated at site 32 was enriched in the nucleolus through the cell cycle. These results suggest that phosphorylation of MCM4 has several distinct and site-specific roles in the function of MCM during the mammalian cell cycle. 相似文献
5.
《Cell cycle (Georgetown, Tex.)》2013,12(3):333-341
The minichromosome maintenance complex (MCM2-7) is the putative DNA helicase in eukaryotes, and essential for DNA replication. By applying serial extractions to mammalian cells synchronized by release from quiescence, we reveal dynamic changes to the sub-nuclear compartmentalization of MCM2 as cells pass through late G1 and early S phase, identifying a brief window when MCM2 becomes transiently attached to the nuclear-matrix. The data distinguish 3 states that correspond to loose association with chromatin prior to DNA replication, transient highly stable binding to the nuclear-matrix coincident with initiation, and a post-initiation phase when MCM2 remains tightly associated with chromatin but not the nuclear-matrix. The data suggests that functional MCM complex loading takes place at the nuclear-matrix. 相似文献
6.
Emma L Hesketh John RP Knight Rosemary HC Wilson James PJ Chong Dawn Coverley 《Cell cycle (Georgetown, Tex.)》2015,14(3):333-341
The minichromosome maintenance complex (MCM2-7) is the putative DNA helicase ineukaryotes, and essential for DNA replication. By applying serial extractions to mammaliancells synchronized by release from quiescence, we reveal dynamic changes to thesub-nuclear compartmentalization of MCM2 as cells pass through late G1 and early S phase,identifying a brief window when MCM2 becomes transiently attached to the nuclear-matrix.The data distinguish 3 states that correspond to loose association with chromatin prior toDNA replication, transient highly stable binding to the nuclear-matrix coincident withinitiation, and a post-initiation phase when MCM2 remains tightly associated withchromatin but not the nuclear-matrix. The data suggests that functional MCM complexloading takes place at the nuclear-matrix. 相似文献
7.
8.
Site-specific initiation of DNA replication within the non-transcribed spacer of Physarum rDNA. 总被引:3,自引:1,他引:3
下载免费PDF全文

Physarum polycephalum rRNA genes are found on extrachromosomal 60 kb linear palindromic DNA molecules. Previous work using electron microscope visualization suggested that these molecules are duplicated from one of four potential replication origins located in the 24 kb central non-transcribed spacer [Vogt and Braun (1977) Eur. J. Biochem., 80, 557-566]. Considering the controversy on the nature of the replication origins in eukaryotic cells, where both site-specific or delocalized initiations have been described, we study here Physarum rDNA replication by two dimensional agarose gel electrophoresis and compare the results to those obtained by electron microscopy. Without the need of cell treatment or enrichment in replication intermediates, we detect hybridization signals corresponding to replicating rDNA fragments throughout the cell cycle, confirming that the synthesis of rDNA molecules is not under the control of S-phase. The patterns of replication intermediates along rDNA minichromosomes are consistent with the existence of four site-specific replication origins, whose localization in the central non-transcribed spacer is in agreement with the electron microscope mapping. It is also shown that, on a few molecules, at least two origins are active simultaneously. 相似文献
9.
10.
Site-specific initiation of DNA replication in Xenopus egg extract requires nuclear structure. 总被引:5,自引:3,他引:5
下载免费PDF全文

Previous studies have shown that Xenopus egg extract can initiate DNA replication in purified DNA molecules once the DNA is organized into a pseudonucleus. DNA replication under these conditions is independent of DNA sequence and begins at many sites distributed randomly throughout the molecules. In contrast, DNA replication in the chromosomes of cultured animal cells initiates at specific, heritable sites. Here we show that Xenopus egg extract can initiate DNA replication at specific sites in mammalian chromosomes, but only when the DNA is presented in the form of an intact nucleus. Initiation of DNA synthesis in nuclei isolated from G1-phase Chinese hamster ovary cells was distinguished from continuation of DNA synthesis at preformed replication forks in S-phase nuclei by a delay that preceded DNA synthesis, a dependence on soluble Xenopus egg factors, sensitivity to a protein kinase inhibitor, and complete labeling of nascent DNA chains. Initiation sites for DNA replication were mapped downstream of the amplified dihydrofolate reductase gene region by hybridizing newly replicated DNA to unique probes and by hybridizing Okazaki fragments to the two individual strands of unique probes. When G1-phase nuclei were prepared by methods that preserved the integrity of the nuclear membrane, Xenopus egg extract initiated replication specifically at or near the origin of bidirectional replication utilized by hamster cells (dihydrofolate reductase ori-beta). However, when nuclei were prepared by methods that altered nuclear morphology and damaged the nuclear membrane, preference for initiation at ori-beta was significantly reduced or eliminated. Furthermore, site-specific initiation was not observed with bare DNA substrates, and Xenopus eggs or egg extracts replicated prokaryotic DNA or hamster DNA that did not contain a replication origin as efficiently as hamster DNA containing ori-beta. We conclude that initiation sites for DNA replication in mammalian cells are established prior to S phase by some component of nuclear structure and that these sites can be activated by soluble factors in Xenopus eggs. 相似文献
11.
Ferrer-Orta C Arias A Agudo R Pérez-Luque R Escarmís C Domingo E Verdaguer N 《The EMBO journal》2006,25(4):880-888
Picornavirus RNA replication is initiated by the covalent attachment of a UMP molecule to the hydroxyl group of a tyrosine in the terminal protein VPg. This reaction is carried out by the viral RNA-dependent RNA polymerase (3D). Here, we report the X-ray structure of two complexes between foot-and-mouth disease virus 3D, VPg1, the substrate UTP and divalent cations, in the absence and in the presence of an oligoadenylate of 10 residues. In both complexes, VPg fits the RNA binding cleft of the polymerase and projects the key residue Tyr3 into the active site of 3D. This is achieved by multiple interactions with residues of motif F and helix alpha8 of the fingers domain and helix alpha13 of the thumb domain of the polymerase. The complex obtained in the presence of the oligoadenylate showed the product of the VPg uridylylation (VPg-UMP). Two metal ions and the catalytic aspartic acids of the polymerase active site, together with the basic residues of motif F, have been identified as participating in the priming reaction. 相似文献
12.
13.
14.
Periodicity of DNA synthetic enzymes during the HeLa cell cycle 总被引:5,自引:0,他引:5
T P Brent 《Cell and tissue kinetics》1971,4(4):297-305
15.
The assembly of the complex that forms over the simian virus 40 origin to initiate DNA replication is not well understood. This complex is composed of the virus-coded T antigen and three cellular proteins, replication protein A (RPA), DNA polymerase α/primase (pol/prim) and topoisomerase I (topo I) in association with the origin. The order in which these various proteins bind to the DNA was investigated by performing binding assays using biotinylated origin DNA. We demonstrate that in the presence of all four proteins, pol/prim was essential to stabilize the initiation complex from the disruptive effects of topo I. At the optimal concentration of pol/prim, topo I and RPA bound efficiently to the complex, although pol/prim itself was not detected in significant amounts. At higher concentrations less topo I was recruited, suggesting that DNA polymerase is an important modulator of the binding of topo I. Topo I, in turn, appeared to be involved in recruiting RPA. RPA, in contrast, seemed to have little or no effect on the recruitment of the other proteins to the origin. These and other data suggested that pol/prim is the first cellular protein to interact with the double-hexameric T antigen bound to the origin. This is likely followed by topo I and then RPA, or perhaps by a complex of topo I and RPA. Stoichiometric analysis of the topo I and T antigen present in the complex suggested that two molecules of topo I are recruited per double hexamer. Finally, we demonstrate that DNA has a role in recruiting topo I to the origin. 相似文献
16.
17.
Abe E Kuwahara K Yoshida M Suzuki M Terasaki H Matsuo Y Takahashi EI Sakaguchi N 《Gene》2000,255(2):219-227
18.
19.
Escherichia coli cells lacking methylation-blocking factor (leucine-responsive regulatory protein) have precise timing of initiation of DNA replication in the cell cycle.
下载免费PDF全文

A protein that is required for specific methylation inhibition of two GATC sites in the papBA pilin promoter region, known as methylation-blocking factor (Mbf) and recently shown to be identical to the leucine-responsive regulatory protein (Lrp), is not responsible for the delayed methylation at oriC implicated in an eclipse period following initiation of DNA replication. Cells containing a transposon mutation within the mbf (lrp) gene initiate DNA replication at the correct time during the cell cycle, whereas cells with increased amounts of the Dam methyltransferase initiate DNA replication randomly throughout the cell cycle. 相似文献
20.
Licensing of DNA replication by a multi-protein complex of MCM/P1 proteins in Xenopus eggs. 总被引:5,自引:0,他引:5
下载免费PDF全文

In eukaryotes, chromosomal DNA is licensed for a single round of replication in each cell cycle. Xenopus MCM3 protein has been implicated in the licensing of replication in egg extract. We have cloned cDNAs encoding five immunologically distinct proteins associated with Xenopus MCM3 as members of the MCM/P1 family. Six Xenopus MCM proteins formed a physical complex in the egg extract, bound to unreplicated chromatin before the formation of nuclei, and apparently displaced from replicated chromatin. The requirement of six XMCM proteins for the replication activity of the egg extract before nuclear formation suggests that their re-association with replicated chromatin at the end of the mitotic cell cycle is a key step for the licensing of replication. 相似文献