首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Before initiation of DNA replication, origin recognition complex (ORC) proteins, cdc6, and minichromosome maintenance (MCM) proteins bind to chromatin sequentially and form preinitiation complexes. Using Xenopus laevis egg extracts, we find that after the formation of these complexes and before initiation of DNA replication, cdc6 is rapidly removed from chromatin, possibly degraded by a cdk2-activated, ubiquitin-dependent proteolytic pathway. If this displacement is inhibited, DNA replication fails to initiate. We also find that after assembly of MCM proteins into preinitiation complexes, removal of the ORC from DNA does not block the subsequent initiation of replication. Importantly, under conditions in which both ORC and cdc6 protein are absent from preinitiation complexes, DNA replication is still dependent on cdk2 activity. Therefore, the final steps in the process leading to initiation of DNA replication during S phase of the cell cycle are independent of ORC and cdc6 proteins, but dependent on cdk2 activity.  相似文献   

2.
Passage through mitosis resets cells for a new round of chromosomal DNA replication [1]. In late mitosis, the pre-replication complex - which includes the origin recognition complex (ORC), Cdc6 and the minichromosome maintenance (MCM) proteins - binds chromatin as a pre-requisite for DNA replication. S-phase-promoting cyclin-dependent kinases (Cdks) and the kinase Dbf4-Cdc7 then act to initiate replication. Before the onset of replication Cdc6 dissociates from chromatin. S-phase and M-phase Cdks block the formation of a new pre-replication complex, preventing DNA over-replication during the S, G2 and M phases of the cell cycle [1]. The nuclear membrane also contributes to limit genome replication to once per cell cycle [2]. Thus, at the end of M phase, nuclear membrane breakdown and the collapse of Cdk activity reset cells for a new round of chromosomal replication. We showed previously that protein kinase A (PKA) activity oscillates during the cell cycle in Xenopus egg extracts, peaking in late mitosis. The oscillations are induced by the M-phase-promoting Cdk [3] [4]. Here, we found that PKA oscillation was required for the following phase of DNA replication. PKA activity was needed from mitosis exit to the formation of the nuclear envelope. PKA was not required for the assembly of ORC2, Cdc6 and MCM3 onto chromatin. Inhibition of PKA activity, however, blocked the release of Cdc6 from chromatin and subsequent DNA replication. These data suggest that PKA activation in late M phase is required for the following S phase.  相似文献   

3.
4.
The origin recognition complex (ORC) plays a central role in regulating the initiation of DNA replication in eukaryotes. The level of the ORC1 subunit oscillates throughout the cell cycle, defining an ORC1 cycle. ORC1 accumulates in G1 and is degraded in S phase, although other ORC subunits (ORCs 2-5) remain at almost constant levels. The behavior of ORC components in human cell nuclei with respect to the ORC1 cycle demonstrates that ORCs 2-5 form a complex that is present throughout the cell cycle and that associates with ORC1 when it accumulates in G1 nuclei. ORCs 2-5 are found in both nuclease-insoluble and -soluble fractions. The appearance of nuclease-insoluble ORCs 2-5 parallels the increase in the level of ORC1 associating with nuclease-insoluble, non-chromatin nuclear structures. Thus, ORCs 2-5 are temporally recruited to nuclease-insoluble structures by formation of the ORC1-5 complex. An artificial reduction in the level of ORC1 in human cells by RNA interference results in a shift of ORC2 to the nuclease-soluble fraction, and the association of MCM proteins with chromatin fractions is also blocked by this treatment. These results indicate that ORC1 regulates the status of the ORC complex in human nuclei by tethering ORCs 2-5 to nuclear structures. This dynamic shift is further required for the loading of MCM proteins onto chromatin. Thus, the pre-replication complex in human cells may be regulated by the temporal accumulation of ORC1 in G1 nuclei.  相似文献   

5.
From late mitosis to the G(1) phase of the cell cycle, ORC, CDC6, and Cdt1 form the machinery necessary to load MCM2-7 complexes onto DNA. Here, we show that SNF2H, a member of the ATP-dependent chromatin-remodeling complex, is recruited onto DNA replication origins in human cells in a Cdt1-dependent manner and positively regulates MCM loading. SNF2H physically interacted with Cdt1. ChIP assays indicated that SNF2H associates with replication origins specifically during the G(1) phase. Binding of SNF2H at origins was decreased by Cdt1 silencing and, conversely, enhanced by Cdt1 overexpression. Furthermore, SNF2H silencing prevented MCM loading at origins and moderately inhibited S phase progression. Although neither SNF2H overexpression nor SNF2H silencing appeared to impact rereplication induced by Cdt1 overexpression, Cdt1-induced checkpoint activation was inhibited by SNF2H silencing. Collectively, these data suggest that SNF2H may promote MCM loading at DNA replication origins via interaction with Cdt1 in human cells. Because efficient loading of excess MCM complexes is thought to be required for cells to tolerate replication stress, Cdt1- and SNF2H-mediated promotion of MCM loading may be biologically relevant for the regulation of DNA replication.  相似文献   

6.
The initiation of DNA replication in eukaryotes requires the loading of the origin recognition complex (ORC), Cdc6, and minichromosome maintenance (MCM) proteins onto chromatin to form the preinitiation complex. In Xenopus egg extract, the proteins Orc1, Orc2, Cdc6, and Mcm4 are underphosphorylated in interphase and hyperphosphorylated in metaphase extract. We find that chromatin binding of ORC, Cdc6, and MCM proteins does not require cyclin-dependent kinase activities. High cyclin A-dependent kinase activity inhibits the binding and promotes the release of Xenopus ORC, Cdc6, and MCM from sperm chromatin, but has no effect on chromatin binding of control proteins. Cyclin A together with ORC, Cdc6 and MCM proteins is bound to sperm chromatin in DNA replicating pseudonuclei. In contrast, high cyclin E/cdk2 was not detected on chromatin, but was found soluble in the nucleoplasm. High cyclin E kinase activity allows the binding of Xenopus ORC and Cdc6, but not MCM, to sperm chromatin, even though the kinase does not phosphorylate MCM directly. We conclude that chromatin-bound cyclin A kinase controls DNA replication by protein phosphorylation and chromatin release of Cdc6 and MCM, whereas soluble cyclin E kinase prevents rereplication during the cell cycle by the inhibition of premature MCM chromatin association.  相似文献   

7.
In eukaryotes, DNA synthesis is preceded by licensing of replication origins. We examined the subcellular localization of two licensing proteins, ORC2 and MCM7, in the mouse zygotes and two-cell embryos. In somatic cells ORC2 remains bound to DNA replication origins throughout the cell cycle, while MCM7 is one of the last proteins to bind to the licensing complex. We found that MCM7 but not ORC2 was bound to DNA in metaphase II oocytes and remained associated with the DNA until S-phase. Shortly after fertilization, ORC2 was detectable at the metaphase II spindle poles and then between the separating chromosomes. Neither protein was present in the sperm cell at fertilization. As the sperm head decondensed, MCM7 was bound to DNA, but no ORC2 was seen. By 4 h after fertilization, both pronuclei contained DNA bound ORC2 and MCM7. As expected, during S-phase of the first zygotic cell cycle, MCM7 was released from the DNA, but ORC2 remained bound. During zygotic mitosis, ORC2 again localized first to the spindle poles, then to the area between the separating chromosomes. ORC2 then formed a ring around the developing two-cell nuclei before entering the nucleus. Only soluble MCM7 was present in the G2 pronuclei, but by zygotic metaphase it was bound to DNA, again apparently before ORC2. In G1 of the two-cell stage, both nuclei had salt-resistant ORC2 and MCM7. These data suggest that licensing follows a unique pattern in the early zygote that differs from what has been described for other mammalian cells that have been studied.  相似文献   

8.
The initiation of DNA replication in eukaryotes is regulated in a minimum of at least two ways. First, several proteins, including origin recognition complex (ORC), Cdc6 protein, and the minichromosome maintenance (MCM) protein complex, need to be assembled on chromatin before initiation. Second, cyclin-dependent kinases regulate DNA replication in both a positive and a negative way by inducing the initiation of DNA replication at G(1)/S transition and preventing further rounds of origin firing within the same cell cycle. Here we characterize a link between the two levels. Immunoprecipitation of Xenopus origin recognition complex with anti-XOrc1 or anti-XOrc2 antibodies specifically co-immunoprecipitates a histone H1 kinase activity. The kinase activity is sensitive to several inhibitors of cyclin-dependent kinases including 6-dimethylaminopurine (6-DMAP), olomoucine, and p21(Cip1). This kinase activity also copurifies with ORC over several fractionation steps and was identified as a complex of the Cdc2 catalytic subunit and cyclin A1. Neither Cdk2 nor cyclin E could be detected in ORC immunoprecipitations. Reciprocal immunoprecipitations with anti-Xenopus Cdc2 or anti-Xenopus cyclin A1 antibodies specifically co-precipitate XOrc1 and XOrc2. Our results indicate that Xenopus ORC and Cdc2 x cyclin A1 physically interact and demonstrate a physical link between an active cyclin-dependent kinase and proteins involved in the initiation of DNA replication.  相似文献   

9.
Evidence obtained from studies with yeast and Xenopus indicate that the initiation of DNA replication is a multistep process. The origin recognition complex (ORC), Cdc6p, and minichromosome maintenance (MCM) proteins are required for establishing prereplication complexes, upon which initiation is triggered by the activation of cyclin-dependent kinases and the Dbf4p-dependent kinase Cdc7p. The identification of human homologues of these replication proteins allows investigation of S-phase regulation in mammalian cells. Using centrifugal elutriation of several human cell lines, we demonstrate that whereas human Orc2 (hOrc2p) and hMcm proteins are present throughout the cell cycle, hCdc6p levels vary, being very low in early G(1) and accumulating until cells enter mitosis. hCdc6p can be polyubiquitinated in vivo, and it is stabilized by proteasome inhibitors. Similar to the case for hOrc2p, a significant fraction of hCdc6p is present on chromatin throughout the cell cycle, whereas hMcm proteins alternate between soluble and chromatin-bound forms. Loading of hMcm proteins onto chromatin occurs in late mitosis concomitant with the destruction of cyclin B, indicating that the mitotic kinase activity inhibits prereplication complex formation in human cells.  相似文献   

10.
The initiation of DNA replication in S phase requires the prior assembly of an origin recognition complex (ORC)-dependent pre-replicative complex on chromatin during G1 phase of the cell division cycle. In human cells, the Orc2 subunit localized to the nucleus as expected, but it also localized to centrosomes throughout the entire cell cycle. Furthermore, Orc2 was tightly bound to heterochromatin and heterochromatin protein 1alpha (HP1alpha) and HP1beta in G1 and early S phase, but during late S, G2 and M phases tight chromatin association was restricted to centromeres. Depletion of Orc2 by siRNA caused multiple phenotypes. A population of cells showed an S-phase defect with little proliferating cell nuclear antigen (PCNA) on chromatin, although MCM proteins remained. Orc2 depletion also disrupted HP1 localization, but not histone-H3-lysine-9 methylation at prominent heterochromatic foci. Another subset of Orc2-depleted cells containing replicated DNA arrested with abnormally condensed chromosomes, failed chromosome congression and multiple centrosomes. These results implicate Orc2 protein in chromosome duplication, chromosome structure and centrosome copy number control, suggesting that it coordinates all stages of the chromosome inheritance cycle.  相似文献   

11.
Zhang Y  Yu Z  Fu X  Liang C 《Cell》2002,109(7):849-860
Initiation of eukaryotic DNA replication requires many proteins that interact with one another and with replicators. Using a yeast genetic screen, we have identified Noc3p (nucleolar complex-associated protein) as a novel replication-initiation protein. Noc3p interacts with MCM proteins and ORC and binds to chromatin and replicators throughout the cell cycle. It functions as a critical link between ORC and other initiation proteins to effect chromatin association of Cdc6p and MCM proteins for the establishment and maintenance of prereplication complexes. Noc3p is highly conserved in eukaryotes and is the first identified bHLH (basic helix-loop-helix) protein required for replication initiation. As Noc3p is also required for pre-rRNA processing, Noc3p is a multifunctional protein that plays essential roles in two vital cellular processes.  相似文献   

12.
During the late M to the G(1) phase of the cell cycle, the origin recognition complex (ORC) binds to the replication origin, leading to the assembly of the prereplicative complex for subsequent initiation of eukaryotic chromosome replication. We found that the cell cycle-dependent phosphorylation of human ORC2, one of the six subunits of ORC, dissociates ORC2, -3, -4, and -5 (ORC2-5) subunits from chromatin and replication origins. Phosphorylation at Thr-116 and Thr-226 of ORC2 occurs by cyclin-dependent kinase during the S phase and is maintained until the M phase. Phosphorylation of ORC2 at Thr-116 and Thr-226 dissociated the ORC2-5 from chromatin. Consistent with this, the phosphomimetic ORC2 protein exhibited defective binding to replication origins as well as to chromatin, whereas the phosphodefective protein persisted in binding throughout the cell cycle. These results suggest that the phosphorylation of ORC2 dissociates ORC from chromatin and replication origins and inhibits binding of ORC to newly replicated DNA.  相似文献   

13.
The initiation of eukaryotic DNA replication involves origin recruitment and activation of the MCM2-7 complex, the putative replicative helicase. Mini-chromosome maintenance (MCM)2-7 recruitment to origins in G1 requires origin recognition complex (ORC), Cdt1, and Cdc6, and activation at G1/S requires MCM10 and the protein kinases Cdc7 and S-Cdk, which together recruit Cdc45, a putative MCM2-7 cofactor required for origin unwinding. Here, we show that the Xenopus BRCA1 COOH terminus repeat-containing Xmus101 protein is required for loading of Cdc45 onto the origin. Xmus101 chromatin association is dependent on ORC, and independent of S-Cdk and MCM2-7. These results define a new factor that is required for Cdc45 loading. Additionally, these findings indicate that the initiation complex assembly pathway bifurcates early, after ORC association with the origin, and that two parallel pathways, one controlled by MCM2-7, and the other by Xmus101, cooperate to load Cdc45 onto the origin.  相似文献   

14.
The MCM2-7 complex is believed to function as the eukaryotic replicative DNA helicase. It is recruited to chromatin by the origin recognition complex (ORC), Cdc6, and Cdt1, and it is activated at the G(1)/S transition by Cdc45 and the protein kinases Cdc7 and Cdk2. Paradoxically, the number of chromatin-bound MCM complexes greatly exceeds the number of bound ORC complexes. To understand how the high MCM2-7:ORC ratio comes about, we examined the binding of these proteins to immobilized linear DNA fragments in Xenopus egg extracts. The minimum length of DNA required to recruit ORC and MCM2-7 was approximately 80 bp, and the MCM2-7:ORC ratio on this fragment was approximately 1:1. With longer DNA fragments, the MCM2-7:ORC ratio increased dramatically, indicating that MCM complexes normally become distributed over a large region of DNA surrounding ORC. Only a small subset of the chromatin-bound MCM2-7 complexes recruited Cdc45 at the onset of DNA replication, and unlike Cdc45, MCM2-7 was not limiting for DNA replication. However, all the chromatin-bound MCM complexes may be functional, because they were phosphorylated in a Cdc7-dependent fashion, and because they could be induced to support Cdk2-dependent Cdc45 loading. The data suggest that in Xenopus egg extracts, origins of replication contain multiple, distributed, initiation-competent MCM2-7 complexes.  相似文献   

15.
The origin recognition complex (ORC), composed of six subunits, ORC1–6, binds to origins of replication as a ring-shaped heterohexameric ATPase that is believed to be essential to recruit and load MCM2–7, the minichromosome maintenance protein complex, around DNA and initiate DNA replication. We previously reported the creation of viable cancer cell lines that lacked detectable ORC1 or ORC2 protein without a reduction in the number of origins firing. Here, using CRISPR-Cas9–mediated mutations, we report that human HCT116 colon cancer cells also survive when ORC5 protein expression is abolished via a mutation in the initiator ATG of the ORC5 gene. Even if an internal methionine is used to produce an undetectable, N terminally deleted ORC5, the protein would lack 80% of the AAA+ ATPase domain, including the Walker A motif. The ORC5-depleted cells show normal chromatin binding of MCM2–7 and initiate replication from a similar number of origins as WT cells. In addition, we introduced a second mutation in ORC2 in the ORC5 mutant cells, rendering both ORC5 and ORC2 proteins undetectable in the same cells and destabilizing the ORC1, ORC3, and ORC4 proteins. Yet the double mutant cells grow, recruit MCM2–7 normally to chromatin, and initiate DNA replication with normal number of origins. Thus, in these selected cancer cells, either a crippled ORC lacking ORC2 and ORC5 and present at minimal levels on the chromatin can recruit and load enough MCM2–7 to initiate DNA replication, or human cell lines can sometimes recruit MCM2–7 to origins independent of ORC.  相似文献   

16.
Eukaryotic DNA replication starts with the assembly of a pre-replication complex (pre-RC) at replication origins. We have previously demonstrated that Metaphase Chromosome Protein 1 (MCP1) is involved in the early events of DNA replication. Here we show that MCP1 associates with proteins that are required for the establishment of the pre-replication complex. Reciprocal immunoprecipitation analysis showed that MCP1 interacted with Cdc6, ORC2, ORC4, MCM2, MCM3 and MCM7, with Cdc45 and PCNA. Immunofluorescence studies demonstrated the co-localization of MCP1 with some of those proteins. Moreover, biochemical studies utilizing chromatin-immunoprecipitation (ChIP) revealed that MCP1 preferentially binds replication initiation sites in human cells. Interestingly, although members of the pre-RC are known to interact with some hallmarks of heterochromatin, our co-immunoprecipitation and immunofluorescence analyses showed that MCP1 did not interact and did not co-localize with heterochromatic proteins including HP1β and MetH3K9. These observations suggest that MCP1 is associated with replication factors required for the initiation of DNA replication and binds to the initiation sites in loci that replicate early in S-phase. In addition, immunological assays revealed the association of MCP1 forms with histone H1 variants and mass spectrometry analysis confirmed that MCP1 peptides share common sequences with H1.2 and H1.5 subtypes.  相似文献   

17.
18.
Stedman W  Deng Z  Lu F  Lieberman PM 《Journal of virology》2004,78(22):12566-12575
The viral genome of Kaposi's sarcoma-associated herpesvirus (KSHV) persists as an extrachromosomal plasmid in latently infected cells. The KSHV latency-associated nuclear antigen (LANA) stimulates plasmid maintenance and DNA replication by binding to an approximately 150-bp region within the viral terminal repeats (TR). We have used chromatin immunoprecipitation assays to demonstrate that LANA binds specifically to the replication origin sequence within the KSHV TR in latently infected cells. The latent replication origin within the TR was also bound by LANA-associated proteins CBP, double-bromodomain-containing protein 2 (BRD2), and the origin recognition complex 2 protein (ORC2) and was enriched in hyperacetylated histones H3 and H4 relative to other regions of the latent genome. Cell cycle analysis indicated that the minichromosome maintenance complex protein, MCM3, bound TR in late-G(1)/S-arrested cells, which coincided with the loss of histone H3 K4 methylation. Micrococcal nuclease studies revealed that TRs are embedded in a highly ordered nucleosome array that becomes disorganized in late G(1)/S phase. ORC binding to TR was LANA dependent when reconstituted in transfected plasmids. DNA affinity purification confirmed that LANA, CBP, BRD2, and ORC2 bound TR specifically and identified the histone acetyltransferase HBO1 (histone acetyltransferase binding to ORC1) as a potential TR binding protein. Disruption of ORC2, MCM5, and HBO1 expression by small interfering RNA reduced LANA-dependent DNA replication of TR-containing plasmids. These findings are the first demonstration that cellular replication and origin licensing factors are required for KSHV latent cycle replication. These results also suggest that the KSHV latent origin of replication is a unique chromatin environment containing histone H3 hyperacetylation within heterochromatic tandem repeats.  相似文献   

19.
In eukaryotic cells, an ordered sequence of events leads to the initiation of DNA replication. During the G(1) phase of the cell cycle, a prereplication complex (pre-RC) consisting of ORC, Cdc6, Cdt1, and MCM2-7 is established at replication origins on the chromatin. At the G(1)/S transition, MCM10 and the protein kinases Cdc7-Dbf4 and Cdk2-cyclin E cooperate to recruit Cdc45 to the pre-RC, followed by origin unwinding, RPA binding, and recruitment of DNA polymerases. Using the soluble DNA replication system derived from Xenopus eggs, we demonstrate that immunodepletion of protein phosphatase 2A (PP2A) from egg extracts and inhibition of PP2A activity by okadaic acid abolish loading of Cdc45 to the pre-RC. Consistent with a defect in Cdc45 loading, origin unwinding and the loading of RPA and DNA polymerase alpha are also inhibited. Inhibition of PP2A has no effect on MCM10 loading and on Cdc7-Dbf4 or Cdk2 activity. The substrate of PP2A is neither a component of the pre-RC nor Cdc45. Instead, our data suggest that PP2A functions by dephosphorylating and activating a soluble factor that is required to recruit Cdc45 to the pre-RC. Furthermore, PP2A appears to counteract an unknown inhibitory kinase that phosphorylates and inactivates the same factor. Thus, the initiation of eukaryotic DNA replication is regulated at the level of Cdc45 loading by a combination of stimulatory and inhibitory phosphorylation events.  相似文献   

20.
Genome-scale mapping of pre-replication complex proteins has not been reported in mammalian cells. Poor enrichment of these proteins at specific sites may be due to dispersed binding, poor epitope availability or cell cycle stage-specific binding. Here, we have mapped sites of biotin-tagged ORC and MCM protein binding in G1-synchronized populations of Chinese hamster cells harboring amplified copies of the dihydrofolate reductase (DHFR) locus, using avidin-affinity purification of biotinylated chromatin followed by high-density microarray analysis across the DHFR locus. We have identified several sites of significant enrichment for both complexes distributed throughout the previously identified initiation zone. Analysis of the frequency of initiations across stretched DNA fibers from the DHFR locus confirmed a broad zone of de-localized initiation activity surrounding the sites of ORC and MCM enrichment. Mapping positions of mononucleosomal DNA empirically and computing nucleosome-positioning information in silico revealed that ORC and MCM map to regions of low measured and predicted nucleosome occupancy. Our results demonstrate that specific sites of ORC and MCM enrichment can be detected within a mammalian initiation zone, and suggest that initiation zones may be regions of generally low nucleosome occupancy where flexible nucleosome positioning permits flexible pre-RC assembly sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号