首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bolan  N. S.  Adriano  D. C.  Duraisamy  P.  Mani  A.  Arulmozhiselvan  K. 《Plant and Soil》2003,250(1):83-94
The effect of phosphate on the surface charge and cadmium (Cd) adsorption was examined in seven soils that varied in their variable-charge components. The effect of phosphate on immobilization and phytoavailability of Cd from one of the soils, treated with various levels of Cd (0–10 mg Cd kg–1 soil), was further evaluated using mustard (Brassica juncea L.) plants. Cadmium immobilization in soil was evaluated by a chemical fractionation scheme. Addition of phosphate, as KH2PO4, increased the pH, negative charge and Cd adsorption by the soils. Of the seven soils examined, the three allophanic soils (i.e., Egmont, Patua and Ramiha) exhibited greater increases in phosphate-induced pH, negative charge and Cd2+ adsorption over the other four non-allophanic soils (i.e., Ballantrae, Foxton, Manawatu ad Tokomaru). Increasing addition of Cd enhanced Cd concentration in plants, resulting in decreased plant growth (i.e., phytotoxicity). Addition of phosphate effectively reduced the phytotoxicity of Cd. There was a significant inverse relationship between dry matter yield and Cd concentration in soil solution. Addition of phosphate decreased the concentration of the soluble + exchangeable Cd fraction but increased the concentration of inorganic-bound Cd fraction in soil. The phosphate-induced alleviation of Cd phytotoxicity can be attributed primarily to Cd immobilization due to increases in pH and surface charge.  相似文献   

2.
Bolan  N.S.  Adriano  D.C.  Duraisamy  P.  Mani  A. 《Plant and Soil》2003,256(1):231-241
We examined the effect of biosolid compost on the adsorption and complexation of cadmium (Cd) in two soils (Egmont and Manawatu) which varied in their organic matter content. The effect of biosolid compost on the uptake of Cd from the Manawatu soil, treated with various levels of Cd (0–10 mg Cd kg–1 soil), was also examined using mustard (Brassica juncea L.) plants. The transformation of Cd in soil was evaluated by a chemical fractionation scheme. Addition of biosolid compost increased negative charge in soil. The effect of biosolid compost on Cd adsorption varied between the soils, with a large portion of the sorbed Cd remaining in solution as an organic complex. Increasing addition of Cd increased Cd concentration in plants, resulting in decreased plant growth at high levels of Cd (i.e., phytotoxicity). Addition of biosolid compost was effective in reducing the phytotoxicity of Cd as indicated by the decrease in the concentration of NH4OAc extractable-Cd and soil solution-Cd. The solid-phase fractionation study indicated that the addition of biosolid compost decreased the concentration of the soluble and exchangeable Cd fraction but increased the concentration of organic-bound Cd fraction in soil. Alleviation of Cd phytotoxicity by biosolid compost can be attributed primarily to complexation of Cd by the organic matter in the biosolid compost.  相似文献   

3.
The aim of this study was to assess how the solubility and the speciation of Cd in soil solution were affected over time by the soil temperature for three metal-contaminated soils. The changes of solution Cd concentration (either total or free ionic) and other physico-chemical parameters (e.g. pH, ionic strength, the concentrations of ${\text{NO}}_3^ - $ , ${\text{SO}}_4^{2 - } $ , Ca, Mg and dissolved organic carbon) were monitored over a 28-day culture of lettuce (Lactuca sativa L.) in soils incubated at 10°C, 20°C or 30°C. The major result of this study was that Cd2+ concentration greatly varied over time in soil solution. The Cd2+ concentration declined over time in soil solution as did the concentration of cations that may compete for adsorption (Ca2+, Mg2+). The rise in soil temperature primarily impacted on the concentration of Cd2+ via promoting the microbial C-degradation and, thus, the complexation of Cd in soil solution. The integration of the temporal variations in Cd2+ concentration through the calculation of the root exposure to solution Cd (E Cd) provided a fairly close and robust prediction of Cd concentration in lettuce roots. The present work thus provided new insights on the fate of Cd in contaminated soils that may be relevant for predicting the root uptake of Cd.  相似文献   

4.
[目的] 探究镉吸附细菌是否能够高效固定土壤有效镉(Cd),为土壤有效Cd的微生物固定提供理论依据。[方法] 利用含Cd2+牛肉膏蛋白胨液体培养基对细菌进行Cd的耐受性测试筛选出镉抗性强的菌株;通过16S rRNA基因相似性及系统进化分析鉴定耐镉细菌,将菌细胞加入含CdCl2溶液中进行Cd2+吸附效率测定;通过土培模拟实验,测定土壤pH、碱解氮、有效磷、速效钾、有机质、CEC、有效Cd及微生物数量来分析镉吸附细菌对镉污染土壤的影响。[结果] 从德阳鱼腥草根际土壤中分离获得的57株细菌对Cd2+表现出不同程度的抗性,并从中筛选出3株耐Cd优势细菌普罗威登斯菌属(Providencia)DY8、芽孢杆菌属(Bacillus)DY3和芽孢杆菌属(Bacillus)DY1-4。其对溶液中的Cd2+表现出较好的吸附作用,吸附效率随着Cd2+浓度升高而降低。DY8、DY3、DY1-4能使镉污染土壤中有效Cd含量分别降低72.11%、68.55%、62.32%,同时显著提高镉污染土壤中碱解氮、有效磷的含量。[结论] Cd污染农田土壤中含有丰富的耐Cd微生物资源,Cd吸附细菌能降低土壤中有效Cd的含量,且能有效改善土壤养分条件。  相似文献   

5.
In this study, the adsorption behavior of Cd ions by rhizosphere soil (RS) and non-rhizosphere soil (NS) originated from mulberry field was investigated. The Langmuir, Freundlich and the Dubinin–Radushkevich (D-R) equations were used to evaluate the type and efficiency of Cd adsorption. The RS was characterized by lower pH but the higher content of soil organic matter and cation exchange capacity (CEC) as compared to NS. Also, the maximum adsorption of Cd2+ for RS (5.87 mg/g) was slightly bigger than that for NS (5.36 mg/g). In Freundlich isotherm, the Kf of the adsorption of Cd2+ to surface of the RS components was higher than that of the NS, indicating stronger attraction between Cd2+ and components of the RS. According to the D-R model, the adsorption of Cd2+ by both soils was dominated by ion exchange phenomena. These results indicated that mulberry roots modified physical and chemical properties of the RS under field conditions, which also affected the Cd sorption efficiency by soil components during laboratory experiments. Current knowledge of the Cd2+ sorption processes in the rhizosphere of mulberry may be important if these trees are planted for use in phytoremediation of Cd contaminated soils.  相似文献   

6.
Batch experiments were conducted to investigate the adsorption behavior of Tween 80 in the systems composed of Tween 80, CdCl2, and/or DDT. The results show that Cd2+ from CdCl2 is the functional fraction influencing the adsorption of Tween 80 to soil, rather than Cl?. Moreover, DDT can induce the increase of the critical micelle concentration (CMC) of Tween 80, which further impacts the Tween 80 adsorption behavior. The Tween 80 adsorption to soil in the Cd2+-DDT coexisted system follows the Langmuir isotherm, as in the Tween 80-Cd2+ or -DDT systems. Cd2+ and/or DDT decrease(s) the adsorption capacity of Tween 80 to soil, and the magnitude of decrease is dependent on the concentration of coexisting pollutants. Although DDT has a stronger inhibitory effect on Tween 80 adsorption than Cd2+ under the same DDT/Cd2+ concentrations, the coexistence of Cd2+ and DDT has an antagonistic effect on the adsorption of Tween 80. This effect is impacted by the concentrations of the coexisting pollutants, and is a result of the complex interaction among the three pollutants.  相似文献   

7.
The influence of adsorption on cadmium toxicity to soil microorganisms in soils was quantified as a function of solution and sorbent characteristics. The influence of adsorption on cadmium toxicity to soil microorganisms was assessed indirectly through the relative change in microbial hydrolysis of fluorescein diacetate (FDA) as a function of total Cd concentration and sorbent characteristics. The sequence of relative percentage of FDA hydrolysis was reference smectite (RS) > untreated Vertisol (UV) > dithionate-citrate-bicarbonate (DCB)-treated Vertisol (DV) > H2O2-treated Vertisol (HV) in suspensions containing the same total Cd concentrations. The correlation between the percentage of FDA hydrolysis and activity of Cd2+ (aq) illustrates that RS has a higher capacity of Cd adsorption. The microbial activity of RS was higher and the toxicity was lower than that of other soil samples. The HV had lower capacity of Cd adsorption so that its FDA hydrolysis was low and the Cd toxicity was high.  相似文献   

8.
Ghorbanli  M.  Kaveh  S. Hadad  Sepehr  M. Farzami 《Photosynthetica》2000,37(4):627-631
The effects of 0, 2.5, 5.0, and 10.0 mg(Cd2+) m-3 [Cd(NO3)2×4 H2O] and 0 and 10.0 mg m-3 gibberellin on certain parameters of photosynthesis and growth in soybean (Glycine max L. cv. Pershing) plants were studied. With increasing Cd2+ concentration in the Hoagland nutrient solution, the contents of chlorophyll and CO2 compensation concentration decreased. The addition of 10 mg m-3 gibberellin reduced the negative effects of Cd2+ in shoot and root growth. With increasing of Cd2+ concentration in the culture medium, the dry matter production in both the roots and shoots decreased as shown by the decline in growth rate (PGR), net assimilation rate (NAR), and leaf area ratio. The addition of gibberellin caused a partial elimination of the Cd effects on the roots and shoots and the PGR and NAR and it increased leaf area and length of stem.  相似文献   

9.
Cadmium accumulation, the relative content of different chemical forms of Cd, as well as the toxic effect of Cd on nutrient element uptake, physiological parameters, and ultrastructure of Sagittaria sagittifolia L. seedlings were determined after the seedlings were exposed to different Cd concentrations for 4 days. The results showed that S. sagittifolia had the ability to accumulate large amounts of Cd. In the root, stem, and bulb, the predominant chemical Cd forms were NaCl extractable. With an increase in the Cd2+ concentration, the chlorophyll content, the relative membrane penetrability (RMP) of root cells, peroxidase (POD) activity, superoxide dismutase (SOD) activity in leaves, malondiadehyde (MDA) content and the superoxide anion (O2) generation rate in roots all decreased following an initial increase. On the other hand, catalase (CAT) activity, SOD activity in roots, MDA content, and the generation rate of O2 in leaves all increased gradually. The toxic effect of Cd2+ was more severe on roots than on leaves at the same concentration. Cadmium affected the mineral nutrition balance; mainly, it promoted the uptake of Ca, Cu, Mn, and Fe, while inhibited Mg, Na, and K uptake. The physiological toxic effect of Cd2+ was close to the ultrastructural damage induced by Cd contamination. A significant correspondence was observed between the Cd dose and its toxic effect. Cadmium could destroy the normal ultrastructure, disturb the ion balance, and interfere with cell metabolism.  相似文献   

10.
Solubility of metal in contaminated soils is a key factor which controls the phytoavailability and toxic effects of metals on soil environment. The chemical equilibria of metal ions between soil solution and solid phases govern the solubility of metals in soil. Hence, an attempt was made to identify the probable solid phases (minerals), which govern the solubility of Zn2+ and Cd2+ in zinc smelter effluent-irrigated soils. Estimation of free ion activities of Zn2+ (pZn2+) and Cd2+ (pCd2+) by Baker soil test indicated that metal ion activities were higher in smelter effluent-irrigated soils as compared to that in tubewell water-irrigated soils. Identification of solid phases further reveals that free ion activity of Zn2+ and Cd2+ in soil highly contaminated with Zn and Cd due to long-term irrigation with zinc smelter effluent is limited by the solubility of willemite (Zn2SiO4) in equilibrium with quartz and octavite (CdCO3), respectively. However, in case of tubewell water-irrigated soil, franklinite (ZnFe2O4) in equilibrium with soil-Fe and exchangeable Cd are likely to govern the activity of Zn2+ and Cd2+ in soil solution, respectively. Formation of highly soluble minerals namely, willemite and octavite indicates the potential ecological risk of Zn and Cd, respectively in smelter effluent irrigated soil.  相似文献   

11.
On soils differing in total Cd concentration, organic matter content and pH, but with the same compost treatment, a significant linear relation was found between the calculated Cd2+ concentration of the soil solution and the Cd concentration of lettuce grown under field conditions. The Cd2+ concentration was calculated with the equation for the exchange reaction between Cd2+ and Ca2+.  相似文献   

12.
Two soils, contaminated by sludge application or by smelter activities, have been amended with : lime (CaO), lime + Al-pillared smectites (CaO + Sm), phosphate basic slags (SCO), manganese oxide (HMO), iron oxide (HFO) and steel shot (GA). Four single soil extractions (water, 0.1 M Ca(NO3)2 0.05 M ED TA-NH4 and acetic acid (0.43 M HAc)) and the two plant cultures (tobacco and ryegrass) were used to evaluate the effect of these inorganic additives on the mobility and plant-availability of cadmium in the soils. The Cd extracted by the different solutions was compared to the concentration of Cd in the shoots of ryegrass and tobacco. The effect of treatments on Cd mobility in soil was easily discriminated by the use of either water or Ca(NO3)2. The addition of HMO and GA reduced both the mobility and the phyto-availability of Cd in the two soils. Conversely, the alkaline additives and HFO decreased the Cd mobility, but not the Cd plant availability. Single soil extractions using either water or Ca(NO3)2 are a useful tool for estimating Cd immobilization, but not sufficient for assessing Cd plant availability ; a validation by plant tests must be conducted.  相似文献   

13.
Cadmium uptake kinetics in intact soybean plants   总被引:33,自引:3,他引:30       下载免费PDF全文
The absorption characteristics of Cd2+ by 10- to 12-day-old soybean plants (Glycine max cv Williams) were investigated with respect to influence of Cd concentration on adsorption to root surfaces, root absorption, transport kinetics and interaction with the nutrient cations Cu2+, Fe2+, Mn2+, and Zn2+. The fraction of nonexchangeable Cd bound to roots remained relatively constant at 20 to 25% of the absorbed fraction at solution concentration of 0.0025 to 0.5 micromolar, and increased to 45% at solution concentration in excess of 0.5 micromolar. The exchangeable fraction represented 1.4 to 32% of the absorbed fraction, and was concentration dependent. Using dinitrophenol as a metabolic inhibitor, the `metabolically absorbed' fraction was shown to represent 75 to 80% of the absorbed fraction at concentration less than 0.5 micromolar, and decreased to 55% at 5 micromolar. At comparatively low Cd concentrations, 0.0025 to micromolar 0.3, root absorption exhibited two isotherms with K2 values of 0.08 and 1.2 micromolar. Root absorption and transfer from root to shoot of Cd2+ was inhibited by Cu2+, Fe2+, Mn2+, and Zn2+. Analyses of kinetic interaction of these nutrient cations with Cd2+ indicated that Cu2+, Fe2+, Zn2+, and possibly Mn2+ inhibited Cd absorption competitively suggesting an involvement of a common transport site or process.  相似文献   

14.
Alleviation of cadmium toxicity on maize seedlings by calcium   总被引:2,自引:0,他引:2  
The rate of germination, radicle and plumule length, fresh and dry mass of maize seedlings were increased as Ca2+ was added to the nutrient solution, which contained different levels of Cd2+, especially at low concentration of Ca2+ (5 mM) and high concentrations of Cd2+ (1.4 and 1.8 mM). The biosynthesis of pigments, respiration rate and content of soluble saccharides in endosperm were reduced sharply as the concentration of Cd2+ in the medium increased. This effects was alleviated by Ca2+ addition. Cd2+ content in seedlings was increased as the Cd2+ concentration in medium was increased and decreased sharply as Ca2+ was present in the culture medium. The study suggests liming of soil with CaCO3 to improve the yield of many crops.  相似文献   

15.

Aims

There is a need to predict trace metal concentration in plant organs at given development stages. The aim of this work was to describe the Cd hyperaccumulation kinetics in the different plant organs, throughout the complete cultivation cycle, independently of a possible soil effect.

Methods

Plants of Noccaea caerulescens were exposed in aeroponics to three constantly low Cd concentrations and harvested at 6 to 11 dates, until siliquae formation.

Results

Dry matter allocation between roots and shoots was constant over time and exposure concentrations, as well as Cd allocation. However 86 % of the Cd taken up was allocated to the shoots. Senescent rosette leaves showed similar Cd concentrations to the living ones, suggesting no redistribution from old to young organs. The Cd root influx was proportional to the exposure concentration and constant over time, indicating that plant development had no effect on this. The bio-concentration factor (BCF), i.e. [Cd]plant/[Cd2+]solution for the whole plant, roots or shoots was independent of the exposure concentration and of the plant stage.

Conclusions

Cadmium uptake in a given plant part could therefore be predicted at any plant stage by multiplying the plant part dry matter by the corresponding BCF and the Cd2+ concentration in the exposure solution.  相似文献   

16.
  • Calcium (Ca) signalling has an essential role in regulating plant responses to various abiotic stresses.
  • This study applied Ca in various forms (Ca acetate and CaCl2) and concentrations to reduce cadmium (Cd) concentration in rice and propose a possible mechanism through which Ca acts to control the Cd concentration in rice.
  • The results showed that supplementation of Cd‐contaminated soil with Ca acetate reduced the Cd concentration in rice after exposure for 7 days in both hydroponic and soil conditions. The possible involvement of the auto‐inhibited Ca2+‐ATPase gene (ACA) might act to control the primary signal of the Cd stress response. The messages from ACA3 and ACA13 tended to up‐regulate the low‐affinity cation transporter (OsLCT1) and down‐regulate Cd uptake and the Cd translocation transporter, including the genes, natural resistance‐associated macrophage protein 5 (Nramp5) and Zn/Cd‐transporting ATPase 2 (HMA2), which resulted in a reduction in the Cd concentration in rice. After cultivation for 120 days, the application of Ca acetate into Cd‐contaminated soil inhibited Cd uptake of rice.
  • Increasing the Ca acetate concentration in the soil lowered the Cd concentration in rice shoots and grains. Moreover, Ca acetate maintained rice productivity and quality whereas both aspects decreased under Cd stress.
  相似文献   

17.
Effect of Cl on Cd uptake by Swiss chard in nutrient solutions   总被引:6,自引:1,他引:5  
Swiss chard (Beta vulgaris L., cv. Fordhook Giant) was grown in nutrient solution with Cl concentrations varying between 0.01 mM and 120 mM. Solution Na concentration and ionic strength were maintained in all treatments by compensating with NaNO3. All solutions contained Cd (50 nM, spiked with 109Cd). Three different Cd2+ buffering systems were used. In one experiment, Cd2+ activity was unbuffered; its activity decreased with increased Cl concentration as a result of the formation of CdCln 2–n species. In the other experiments, Cd2+ activity was buffered by the chelator nitrilotriacetate (NTA, 50 M) and ethylene-bis-(oxyethylenenitrilo)-tetraacetate (EGTA, 50 M) at about 10–9 M and 10–11 M, respectively. Plant growth was generally unaffected by increasing Cl concentrations in the three experiments. In unbuffered solutions, Cd concentrations in plant tissue decreased significantly (p<0.01) (approximately 2.4-fold) as solution Cl concentration increased from 0.01 mM to 120 mM. However, this decrease was smaller in magnitude than the 4.7-fold decrease in Cd2+ activity as calculated by the GEOCHEM-PC program for the same range of Cl concentrations. In solutions where Cd2+ activity was buffered by NTA, Cd concentrations in plant tissue increased approximately 1.4-fold with increasing Cl concentration in solution, while the Cd2+ activity was calculated to decrease 1.3-fold. In solutions where Cd2+ activity was buffered by EGTA, Cd concentrations in the roots increased 1.3-fold with increasing Cl concentration in solution but there was no effect of Cl on shoot Cd concentrations. The data suggest that either CdCln 2–nspecies can be taken up by plant roots or that Cl enhances uptake of Cd2+ through enhanced diffusion of the uncomplexed metal to uptake sites.Abbreviations DAS days after sowing - EGTA ethylene-bis-(oxyethylenenitrilo)-tetraacetate - HBED N,N-bis(2-hydroxybenzyl)-ethylenediamine-N,N-diacetate - NTA nitrilotriacetate  相似文献   

18.
A pot-culture experiment was carried out to investigate the effect of arbuscular mycorrhizal (AM) fungus (Glomus macrocarpum Tul. and Tul.) on plant growth and Cd2+uptake by Apium graveolens L. in soil with different levels of Cd2+. Mycorrhizal (M) and non-mycorrhizal (NM) plants were grown in soil with 0, 5, 10, 40 and 80 Cd2+ mg kg−1soil. The infectivity of the fungus was not affected by the presence of Cd2+ in the soil. M plants showed better growth and less Cd2+ toxicity symptoms. Cd2+ root : shoot ratio was higher in M plants than in NM plants. These differences were more evident at highest Cd2+ level (80 mg kg−1 soil). Chlorophyll a and chlorophyll b concentrations were significantly higher in AM-inoculated celery leaves. The dilution effect due to increased biomass, immobilization of Cd2+ in root and enhanced P-uptake in M plants may be related to attenuation of Cd2+toxicity in celery.  相似文献   

19.
In the present study a polystyrene microtiter plate was tested as a support material for synaptic plasma membrane (SPM) immobilization by adsorption. The adsorption was carried out by an 18-h incubation at +4°C of SPM with a polystyrene matrix, at pH 7.4. Evaluation of the efficiency of the applied immobilization method revealed that 10% protein fraction of initially applied SPM was bound to the support and that two SPM enzymes, Na+/K+-ATPase and Mg2+-ATPase, retained 70–80% activity after the adsorption. In addition, adsorption stabilizes Na+/K+-ATPase and Mg2+-ATPase, since the activities are substantial 3 weeks after the adsorption. Parallel kinetic analysis showed that adsorption does not alter significantly the kinetic properties of Na+/K+-ATPase and Mg2+-ATPase and their sensitivity to and mechanism of Cd2+- or Hg2+-induced inhibition. The only exception is the “high affinity” Mg2+-ATPase moiety, whose affinity for ATP and sensitivity toward Cd2+ were increased by the adsorption. The results show that such system may be used as a practical and comfortable model for the in vitro toxicological investigations.  相似文献   

20.
In the present study Prosopis juliflora plants grown in hydroponics solution were exposed to 50,100 and 1000 μM CdCl2. The cadmium uptake, transport and toxicity on the photosynthetic activities in the plants were measured at 48 h after starting cadmium treatments. The results showed that the concentration of Cd2+ in P. juliflora tended to increase with addition of Cd2+ to hydroponics solution. However, the increase of Cd2+ in roots and leaves varied largely. In this sense, the accumulation of Cd2+ in P. juliflora roots increased significantly in proportion with the addition of this metal. In contrast a relatively low level of Cd2+ transportation index, and bioaccumulation factor were found in P. juliflora at 48 h after of treatments. On the other hand the maximum photochemical efficiency of photosystem II (Fv/Fm) and the activity of photosystem II (Fv/Fo) ratios in P. juliflora leaf treated with Cd2+ not showed significantly changes during the experiment. These results suggested that the photosynthetic apparatus of P. juliflora was not the primary target of the Cd2+ action. Further studies will be focused in understanding the participation of the root system in Prosopis plants with the rhizosphere activation and root adsorption to soil Cd2+ under natural conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号