首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
丛枝菌根真菌侵染Bt玉米及对其生长的影响   总被引:2,自引:0,他引:2  
以2个不同转化事件的Bt玉米5422Bt1(Bt11)和5422CBCL(Mon810)及其同源常规玉米5422为对象,研究接种摩西球囊霉(Glomus mosseae)对Bt玉米与常规玉米生长的影响.结果表明:3个品系玉米接菌处理的菌根侵染率明显不同,菌根侵染各参数值总体呈现5422Bt1>5422CBCL>5422趋势;接种处理均促进了玉米的生长,其效应随玉米品系和生育期的不同而呈现差异,喇叭口期5422的地上部干重和总干重显著增加,拔节期5422Bt1的叶片数、茎粗以及喇叭口期的叶片数、茎粗、地上部干重、总干重显著高于对照,5422CBCL拔节期的叶片数和喇叭口期地下部干重增加显著;3个玉米品系菌根真菌依赖性与接菌效应为5422Bt1>5422CBCL>5422,2个Bt玉米品系与Glomus mosseae间的兼容性更好,接种处理对Bt玉米的生长促进作用强于常规玉米.  相似文献   

2.
Arbuscular mycorrhizal fungi (AMF) inoculation and biochar amendment has been reported to improve growth of several crop plants however their role in stress amelioration individually as well as in combination has not been worked out. This experiment was conducted to evaluate the application of AMF and biochar on the performance of chickpea under drought stress. The treatments included the individual as well as combined treatment of AMF and biochar to drought stressed and normal chickpea plants. Plants inoculation improved growth in terms of shoot and root length, leaf area and number of branches which was observed to show a steep decline due to drought stress. Drought declined the AMF colonization potential though biochar amendment ameliorated the negative effects of drought significantly by improving the spore population, number of mycelium, vesicle and arbuscules and the percentage of colonization as well. Increased chlorophyll synthesis in biochar and AMF treated plants was obvious, which lead to significant enhancement in the net photosynthetic efficiency. Drought stress also declined the relative water content (RWC) and membrane stability index (MSI), while treatment of biochar and AMF either individually or in combination mitigated the deleterious effects to considerable extent and caused a significant enhancement in RWC and MSI under normal conditions. Amendments with biochar and AMF inoculation increased the nitrogen fixation attributes including the number and weight of nodules, leghemoglobin content and activity of nitrate reductase enzyme leading to greater uptake and assimilation of nitrogen in them when compared to drought stressed plants. Drought stressed chickpea plants exhibited considerable reduction in uptake of nitrogen and phosphorous which was ameliorated by biochar and AMF treatments. It could be suggested that increase in growth and physiological attributes in chickpea due to biochar amendments and AMF inoculation under drought stress were plausibly due to their involvement in nitrogen and phosphorous uptake, chlorophyll synthesis and photosynthesis.  相似文献   

3.
丛枝菌根真菌对植物耐旱性的影响研究进展   总被引:3,自引:0,他引:3  
丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)能与植物根系形成互惠共生体,对植物的生长发育和抗逆性有积极的影响,在改善植物水分代谢和提高植物耐旱性中发挥了重要作用.本文综述了近年来AMF与植物水分代谢关系的研究进展,从植物的光合作用、蒸腾与气孔导度、水分利用效率、水力导度、渗透调节、内源激素和抗氧化系统等方面说明AMF对植物水分代谢的影响.从4个方面介绍了AMF提高植物耐旱性的机理:1)菌丝网络增加植物根系吸收范围;2)增强植物保水能力和抗氧化能力;3)稳定和改善土壤团聚体;4)促进植物养分吸收.并提出今后研究需注意的问题和建议.  相似文献   

4.
1.  Plant association with arbuscular mycorrhizal fungi (AMF) has been considered a factor increasing plant tolerance to herbivory. However, this positive effect could decrease with colonization density if the benefit : cost ratio of the AMF–plant association changes. We measured plant performance and tolerance to defoliation across a gradient of commercial AMF ( Glomus sp.) inoculum concentration.
2.  Six genetic families of Datura stramonium were grown under greenhouse conditions and subjected to five increasing levels of AMF inoculum concentration and to defoliation treatments, i.e. the presence/absence of 50% artificial damage, following a full-factorial design.
3.  AMF colonization increased linearly with inoculum concentration while foliar area, root mass, flowering phenology and seed production expressed nonlinear functions. Plant genetic variation in the benefit function of AMF colonization was also detected. We show a negative interaction between AMF concentration and plant tolerance to defoliation.
4.   Synthesis . The negative correlation between plant tolerance and AMF concentration suggests that defoliation can reduce AMF benefits and that natural variations in AMF can limit the evolution of optimum levels of tolerance. Moreover, genetic variation in the shape of the reaction norms to AMF in the presence/absence of defoliation suggests that plants may evolve in response to variation in densities of AMF and herbivores.  相似文献   

5.
于萌  张永帅  付伟  吴照祥  谢伟  张莘  郝志鹏  陈保冬 《菌物学报》2019,38(11):1976-1991
为探讨保水剂(super absorbent polymers,SAP)和丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)对植物生长和抗旱性的影响,以紫花苜蓿Medicago sativa为供试植物,开展了温室盆栽试验。植物播种时设置土壤添加和不添加聚丙烯酰胺型SAP(BJ2101)处理,以及接种和不接种异形根孢囊霉Rhizophagus irregularis处理,通过称重法维持12%的土壤含水量(正常供水),植物生长30d,各处理一半植物接受干旱胁迫(6%的土壤含水量),另一半仍正常供水,持续30d后收获。结果表明,在干旱胁迫下,接种AMF显著增加了紫花苜蓿的植株干重,促进了植物对矿质元素的吸收,提高了叶片中叶绿素和脯氨酸含量,增强了植物的抗旱性。SAP抑制了R. irregularis对植物根系的侵染;与单接种AMF相比,SAP和AMF的联合施用降低了紫花苜蓿的生物量,影响了植物对矿质元素的吸收。本研究中,SAP和AMF的联合施用并没有表现出协同增效作用,这一方面可能是因为研究设定的土壤水分管理模式,另一方面SAP与AMF共同施用的适宜条件还需进一步探索优化。  相似文献   

6.
干旱胁迫下AMF对云南蓝果树幼苗生长和光合特征的影响   总被引:2,自引:0,他引:2  
张珊珊  康洪梅  杨文忠  向振勇 《生态学报》2016,36(21):6850-6862
采用盆栽试验与称重控水法,将土壤相对含水量分别控制在田间最大持水量的100%、91.68%、82.85%、60.00%、41.86%和21.28%,并在这6个不同的土壤相对含水量条件下,分别设添加苯菌灵(杀真菌剂)(低AMF)和不添加苯菌灵(高AMF)处理,研究干旱胁迫下AMF对极小种群野生植物云南蓝果树幼苗生长和光合特征的影响,揭示云南蓝果树濒危的微生物学机制,为云南蓝果树保护措施的制定与实施奠定基础。结果表明,添加苯菌灵处理显著降低了不同水分条件下的AMF侵染率,说明试验中AMF处理的实生苗在生长和光合特征上的差异是苯菌灵处理下侵染率下降导致的;随着干旱胁迫的加剧,云南蓝果树幼苗的根部AMF侵染率显著降低、叶面积等生长指标和净光合速率(Pn)等光合参数都发生显著变化;高AMF处理可以显著增加水分充足和轻度干旱胁迫条件下云南蓝果树幼苗的大部分生长指标和光合参数,而对重度胁迫下的云南蓝果树幼苗没有显著影响,说明重度干旱胁迫对其影响大于AMF的影响;另外,整合了可塑性指数分析和隶属函数分析两种方法对其抗旱性进行评价,云南蓝果树幼苗基本上无法通过调节形态和光合能力来适应水分环境的变化,但是高AMF处理可使云南蓝果树幼苗具有较强的可塑性和更强的抗旱性。实验结果为云南蓝果树的科学保育及种苗繁育提供了理论依据。  相似文献   

7.
The purpose of this study was to investigate the mechanisms underlying alleviation of salt stress by mycorrhization. Solanum lycopersicum L. cultivars Behta and Piazar with different salinity tolerance were cultivated in soil without salt (EC?=?0.63 dSm?1), with low (EC?=?5 dSm?1), or high (EC?=?10 dSm?1) salinity. Plants inoculated with the arbuscular mycorrhizal fungi Glomus intraradices (+AMF) were compared to non-inoculated plants (?AMF). Under salinity, AMF-mediated growth stimulation was higher in more salt tolerant Piazar than in sensitive Behta. Mycorrhization alleviated salt-induced reduction of P, Ca, and K uptake. Ca/Na and K/Na ratios were also better in +AMF. However, growth improvement by AMF was independent from plant P nutrition under high salinity. Mycorrhization improved the net assimilation rates through both elevating stomatal conductance and protecting photochemical processes of PSII against salinity. Higher activity of ROS scavenging enzymes was concomitant with lowering of H2O2, less lipid peroxidation, and higher proline in +AMF. Cultivar differences in growth responses to salinity and mycorrhization could be well explained by differences in ion balance, photochemistry, and gas exchange of leaves. Function of antioxidant defenses seemed responsible for different AMF-responsiveness of cultivars under salinity. In conclusion, AMF may protect plants against salinity by alleviating the salt-induced oxidative stress.  相似文献   

8.
Actively growing extraradical hyphae extending from mycorrhizal plants are an important source of inoculum in soils which has seldom been considered in vitro to inoculate young plantlets. Seedlings of Medicago truncatula were grown in vitro in the extraradical mycelium network extending from mycorrhizal plants. After 3, 6, 9, 12, and 15 days of contact with the mycelium, half of the seedlings were harvested and analyzed for root colonization. The other half was carefully transplanted in vitro on a suitable growth medium and mycelium growth and spore production were evaluated for 4 weeks. Seedlings were readily colonized after 3 days of contact with the mycelium. Starting from 6 days of contact, the newly colonized seedlings were able to reproduce the fungal life cycle, with the production of thousands of spores within 4 weeks. The fast mycorrhization process developed here opens the door to a broad range of in vitro studies for which either homogenous highly colonized seedlings or mass-produced in vitro inoculum is necessary. Liesbeth Voets and Ivan Enrique de la Providencia contributed equally to this work. MUCL is part of the Belgian Coordinated Collections of Micro-organisms (BCCM).  相似文献   

9.
丛枝菌根观察与侵染率测定方法的比较   总被引:5,自引:0,他引:5  
盛萍萍  刘润进  李敏 《菌物学报》2011,30(4):519-525
菌根生长状况观察与侵染率测定是菌根学研究中一项重要的基础性工作。综述了丛枝菌根(AM)染色观察与侵染率测定方法研究概况,并对其进行比较和评价。认为采用醋酸墨水染色观察AM生长状况与采用根段侵染率加权法和放大交叉法测定AM真菌侵染率是目前较为科学、准确、易行的方法。根据不同需要也可选择其他适宜的方法,如要了解丛枝发育状况,可采用放大交叉法;如要了解泡囊和侵入点数量,可采用直接计数法,从而使其研究结果具有可比性。有必要建立基于分子生物学技术和脂肪酸定量分析技术测定一种或数种AM真菌侵染状况,这将有力推动AM真菌生理、生态功能研究的发展。  相似文献   

10.
接种菌根真菌对青冈栎幼苗耐旱性的影响   总被引:3,自引:0,他引:3  
利用丛枝菌根真菌摩西球囊霉(Glomus mosseae)、根内球囊霉(Glomus intraradices)和外生菌根真菌彩色豆马勃(Pisolithus tinctorius)对石漠化地区造林树种青冈栎(Cyclobalanopsis glauca)幼苗进行接种试验。在大棚盆栽条件下模拟土壤干旱胁迫,研究菌根真菌对青冈栎生长和耐旱性的影响。结果表明:在土壤干旱条件下,接种菌根处理植株生物量显著高于未接种处理(P0.05),菌根依赖性随土壤水分含量降低而升高;未接种处理植株叶绿素含量在土壤干旱条件下显著降低(P0.05),除接种Pisolithus tinctorius处理外,其它接种处理叶绿素含量无显著变化。土壤干旱使植株体内脯氨酸和可溶性糖含量上升,在中度干旱条件下,接种处理可溶性糖含量均显著高于对照处理,接种Glomus intraradices、Pisolithus tinctorius处理脯氨酸含量显著低于对照(P0.05);在重度干旱条件下,接种Glomus mosseae和Glomus intraradices处理可溶性糖含量显著高于对照处理(P0.05),而相应的脯氨酸含量显著低于对照处理。当土壤水分含量在田间持水量55%—65%时,接种处理植株SOD、POD和CAT酶活性显著高于未接种处理(P0.05),在土壤水分含量降至35%—45%时,Glomus mosseae和Glomus intraradices处理SOD酶活性显著高于对照,并且所有接种处理POD酶活性均显著高于对照。此外,在水分干旱条件下,植株全磷和全钾含量也显著高于未接种处理(P0.05)。研究表明,丛枝菌根真菌和外生菌根真菌均能够侵染青冈栎幼苗根系;在干旱胁迫条件下,接种菌根真菌能够提高青冈栎植株生物量、抗氧化酶活性、增加植株可溶性糖含量和促进植株养分吸收,提高植株耐旱性,从而使青冈栎幼苗在岩溶干旱环境下更容易存活。  相似文献   

11.
12.
Seedlings ofAcacia auriculiformis A. Cunn. ex. Benth.,Albizia lebbeck (L.) Benth.,Gliricidia sepium (Jac.) Walp andLeucaena leucocephala (Lam.) de Wit. were inoculated with an ectomycorrhizal (Boletus suillus (l. ex. Fr.) or indigenous vesicular-arbuscular mycorrhizal (VAM) fungi in a low P soil. The plants were subjected to unstressed (well-watered) and drought-stressed (water-stressed) conditions. InGliricidia andLeucaena, both mycorrhizal inoculations stimulated greater plant growth, P and N uptake compared to their non-mycorrhizal (NM) plants under both watering regimes. However, inAcacia andAlbizia, these parameters were only stimulated by either ectomycorrhiza (Acacia) or VA mycorrhiza (Albizia). Growth reduction occurred as a result of inoculation with the other type of mycorrhiza. This was attributed to competition for carbon betweenAcacia and VA mycorrhizas and parasitic association betweenAlbizia and ectomycorrhiza. Drought-stressed mycorrhizal and NMLeucaena, and drought-stressed mycorrhizalAcacia tolerated lower xylem pressure potentials and larger water losses than the drought-stressed mycorrhizal and NMAlbizia andGliricidia. These latter plants avoided drought by maintaining higher xylem pressure potentials and leaf relative water content (RWC). All the four leguminous plants were mycorrhizal dependent. The higher the mycorrhizal dependency (MD), the lower the drought tolerance expressed in terms of drought response index (DRI). The DRI may be a useful determinant of MD, as they are inversely related.  相似文献   

13.
14.
Field response of wheat to arbuscular mycorrhizal fungi and drought stress   总被引:3,自引:0,他引:3  
Al-Karaki G  McMichael B  Zak J 《Mycorrhiza》2004,14(4):263-269
Mycorrhizal plants often have greater tolerance to drought than nonmycorrhizal plants. This study was conducted to determine the effects of arbuscular mycorrhizal (AM) fungi inoculation on growth, grain yield and mineral acquisition of two winter wheat (Triticum aestivum L.) cultivars grown in the field under well-watered and water-stressed conditions. Wheat seeds were planted in furrows after treatment with or without the AM fungi Glomus mosseae or G. etunicatum. Roots were sampled at four growth stages (leaf, tillering, heading and grain-filling) to quantify AM fungi. There was negligible AM fungi colonization during winter months following seeding (leaf sampling in February), when soil temperature was low. During the spring, AM fungi colonization increased gradually. Mycorrhizal colonization was higher in well-watered plants colonized with AM fungi isolates than water-stressed plants. Plants inoculated with G. etunicatum generally had higher colonization than plants colonized with G. mosseae under both soil moisture conditions. Biomass and grain yields were higher in mycorrhizal than nonmycorrhizal plots irrespective of soil moisture, and G. etunicatum inoculated plants generally had higher biomass and grain yields than those colonized by G. mosseae under either soil moisture condition. The mycorrhizal plants had higher shoot P and Fe concentrations than nonmycorrhizal plants at all samplings regardless of soil moisture conditions. The improved growth, yield and nutrient uptake in wheat plants reported here demonstrate the potential of mycorrhizal inoculation to reduce the effects of drought stress on wheat grown under field conditions in semiarid areas of the world.  相似文献   

15.
The response of rice plants to inoculation with an arbuscular mycorrhizal (AM) fungus, Azospirillum brasilense, or combination of both microorganisms, was assayed under well-watered or drought stress conditions. Water deficit treatment was imposed by reducing the amount of water added, but AM plants, with a significantly higher biomass, received the same amount of water as non-AM plants, with a poor biomass. Thus, the water stress treatment was more severe for AM plants than for non-AM plants. The results showed that AM colonization significantly enhanced rice growth under both water conditions, although the greatest rice development was reached in plants dually inoculated under well-watered conditions. Water level did not affect the efficiency of photosystem II, but both AM and A. brasilense inoculations increased this value. AM colonization increased stomatal conductance, particularly when associated with A. brasilense, which enhanced this parameter by 80% under drought conditions and by 35% under well-watered conditions as compared to single AM plants. Exposure of AM rice to drought stress decreased the high levels of glutathione that AM plants exhibited under well-watered conditions, while drought had no effect on the ascorbate content. The decrease of glutathione content in AM plants under drought stress conditions led to enhance lipid peroxidation. On the other hand, inoculation with the AM fungus itself increased ascorbate and proline as protective compounds to cope with the harmful effects of water limitation. Inoculation with A. brasilense also enhanced ascorbate accumulation, reaching a similar level as in AM plants. These results showed that, in spite of the fact that drought stress imposed by AM treatments was considerably more severe than non-AM treatments, rice plants benefited not only from the AM symbiosis but also from A. brasilense root colonization, regardless of the watering level. However, the beneficial effects of A. brasilense on most of the physiological and biochemical traits of rice plants were only clearly visible when the plants were mycorrhized. This microbial consortium was effective for rice plants as an acceptable and ecofriendly technology to improve plant performance and development.  相似文献   

16.
Seedlings of Cleopatra mandarin (Citrus reshni Hort. ex Tan.) and Alemow (Citrus macrophylla Wester) were inoculated with a mixture of AM fungi (Rhizophagus irregularis and Funneliformis mosseae) (+AM), or left non-inoculated (−AM). From forty-five days after fungal inoculation onwards, half of +AM or −AM plants were irrigated with nutrient solution containing 50 mM NaCl. Three months later, AM significantly increased plant growth in both Cleopatra mandarin and Alemow rootstocks. Plant growth was higher in salinized +AM plants than in non-salinized −AM plants, demonstrating that AM compensates the growth limitations imposed by salinity. Whereas AM-inoculated Cleopatra mandarin seedlings had a very good response under saline treatment, inoculation in Alemow did not alleviate the negative effect of salinity. The beneficial effect of mycorrhization is unrelated with protection against the uptake of Na or Cl and the effect of AM on these ions did not explain the different response of rootstocks. This response was related with the nutritional status since our findings confirm that AM fungi can alter host responses to salinity stress, improving more the P, K, Fe and Cu plant nutrition in Cleopatra mandarin than in Alemow plants. AM inoculation under saline treatments also increased root Mg concentration but it was higher in Cleopatra mandarin than in Alemow. This could explain why AM fungus did not completely recovered chlorophyll concentrations in Alemow and consequently it had lower photosynthesis rate than control plants. AM fungi play an essential role in citrus rootstock growth and biomass production although the intensity of this response depends on the rootstock salinity tolerance.  相似文献   

17.
Cano C  Bago A 《Mycologia》2005,97(6):1201-1214
Intra- and extraradical colonization competition and hyphal interactions among arbuscular mycorrhizal fungi (AMF) Glomus intraradices, Glomus proliferum and Gigaspora margarita were investigated in two in vitro experimental systems. AMF were polyxenically cultured with a Ri T-DNA transformed carrot root organ culture (ROC) in either big Petri plates containing three culture compartments and a common hyphal compartment (i.e. an independent host root for each AMF) or two by two in the culture compartment of regular bicompartmented Petri dishes (i.e. a common host root and a common hyphal compartment). Maps of the extraradical mycelial development of the three AMF were obtained. Two distinct substrate colonization strategies (Glomus-type and Gigaspora-type) were identified, reflecting intrinsic differences among AMF genera/families. Our data reveal a general lack of antagonism between the isolates when extraradical hyphae explore and exploit the substrate outside the root influence zone; however certain growth restrictions were imposed by Gi. margarita extraradical mycelium when developing near the host root and by G. proliferum intraradical hyphae. This work highlights once more the appropriateness of AM in vitro culture systems to perform in vivo studies on the biology of this symbiosis and opens new avenues to the formulation of in vitro AMF inoculants.  相似文献   

18.
Arbuscular mycorrhiza (AM) is established by the entry of AM fungi into the host plant roots and the formation of symbiotic structures called arbuscules. The host plant supplies photosynthetic products to the AM fungi, which in return provide phosphate and other minerals to the host through the arbuscules. Both partners gain great advantages from this symbiotic interaction, and both regulate AM development. Our recent work revealed that gibberellic acids (GAs) are required for AM development in the legume Lotus japonicus. GA signaling interact with symbiosis signaling pathways, directing AM fungal colonization in host roots. Expression analysis showed that genes for GA biosynthesis and metabolism were induced in host roots around AM fungal hyphae, suggesting that the GA signaling changes with both location and time during AM development. The fluctuating GA concentrations sometimes positively and sometimes negatively affect the expression of AM-induced genes that regulate AM fungal infection and colonization.  相似文献   

19.
丛枝菌根真菌侵染势与接种势之间的关系   总被引:2,自引:0,他引:2  
丛枝菌根(AM)真菌的侵染势(Colonizationpotential,CP)和接种势(inoculumpotential,IP)是菌根学领域非常重要的两个概念。IP已定义为接种物中有活力的真菌繁殖体及结构的数量(Liu&Luo,1994)。而CP的定量描述和测定方法尚未建立。本文将CP定义为单位数量接种物在侵染初期侵染植物根系的能力,其定量测定公式为:CP=N×L/IP×T,其中N为单位根长侵入点数+根内和根外菌丝数+含有丛枝的细胞数+泡囊数;L为每株寄主植物根系总长度;IP为接种物的接种势单位数;T为接种后的天数。用棉花(Gossypiumhirsutum)、大豆(Glycinemax)、红三叶(Trifoliumpratense)和玉米(Zeamays)和3种AM真菌Gigasporamargarita(Gim),Glomusintraradices(Gi),andGlomusversiforme(Gv)不同剂量(100,300,900,2700and8100接种势单位)的接种物进行试验,以定量测定CP、以及CP和IP之间的关系。结果表明,在相同数量的IP条件下,不同AM真菌具有不同的CP,应用该研究…  相似文献   

20.
Pot experiment was conducted to explore whether nursery inoculation of cucumber with Glomus etunicatum could alleviate fusarium wilt caused by Fusarium oxysporum f. sp. cucumerinum. Four-week-old seedlings inoculated with Glomus etunicatum were infected with F. oxysporum f. sp. cucumerinum by pouring conidial suspension. Biomass, contents of malonaldehyde (MDA), soluble sugar and free proline in roots, as well as the quantity of bacteria and fungi in rhizosphere were determined. The results indicated that the root dry weight of seedlings preinoculated with Glomus etunicatum increased by 9.3%; contents of soluble sugar and free proline in roots increased, and the quantity of fungi in rhizosphere decreased significantly. The disease incidence and disease index of Fusarium wilt were reduced. On the contrary, root dry weight of seedlings without inoculation with Glomus etunicatum was reduced by 28.0%. It is concluded that Glomus etunicatum is beneficial to biocontrol of Fusarium wilt of cucumber seedlings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号