首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Heat and drought stresses are often coincident and constitute major factors limiting global crop yields. A better understanding of plant responses to the combination of these stresses under production environments will facilitate efforts to improve yield and water use efficiencies in a climatically changing world. To evaluate photosynthetic performance under dry-hot conditions, four cotton (Gossypium barbadense L.) cultivars, Monseratt Sea Island (MS), Pima 32 (P32), Pima S-6 (S6) and Pima S-7 (S7), were studied under well-watered (WW) and water-limited (WL) conditions at a field site in central Arizona. Differences in canopy temperature and leaf relative water content under WL conditions indicated that, of the four cultivars, MS was the most drought-sensitive and S6 the most drought-tolerant. Net CO2 assimilation rates (A) and stomatal conductances (gs) decreased and leaf temperatures increased in WL compared to WW plants of all cultivars, but MS exhibited the greatest changes. The response of A to the intercellular CO2 concentration (ACi) showed that, along with stomatal closure, non-stomatal factors associated with heat stress also limited A under WL conditions, especially in MS. The activation state of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) decreased in WL compared to WW plants, consistent with thermal inhibition of Rubisco activase activity. The extent of Rubisco deactivation could account for the metabolic limitation to photosynthesis in MS. Taken together, these data reveal the complex relationship between water availability and heat stress for field-grown cotton plants in a semi-arid environment. Both diffusive (drought-stress-induced) and biochemical (heat-stress-induced) limitations contributed to decreased photosynthetic performance under dry-hot conditions.  相似文献   

2.
Picosecond fluorescence kinetics of pea chloroplasts have been investigated at room temperature using a pulse fluorometer with a resolution time of 10?11 s. Fluorescence has been excited by both a ruby and neodymium-glass mode-locked laser and has been recorded within the 650 to 800 nm spectral region.We have found three-component kinetics of fluorescence from pea chloroplasts with lifetimes of 80, 300 and 4500 ps, respectively. The observed time dependency of the fluorescence of different components on the functional state of the photosynthetic mechanism as well as their spectra enabled us to conclude that Photosystem I fluoresces with a lifetime of 80 ps (τI) and Photosystem II fluoresces with a lifetime of 300 ps (τII). Fluorescence with a lifetime of 4500 ps (τIII) may be interpreted as originating from chlorophyll monomeric forms which are not involved in photosynthesis.It was determined that the rise time of Photosystem I and Photosystem II fluorescence after 530 nm photoexcitation is 200 ps, which corresponds to the time of energy migration to them from carotenoids.  相似文献   

3.
Herbivory can trigger physiological processes resulting in leaf and whole plant functional changes. The effects of chronic infestation by an insect on leaf traits related to carbon and nitrogen economy in three Prunus avium cultivars were assessed. Leaves from non-infested trees (control) and damaged leaves from infested trees were selected. The insect larvae produce skeletonization of the leaves leaving relatively intact the vein network of the eaten leaves and the abaxial epidermal tissue. At the leaf level, nitrogen content per mass (Nmass) and per area (Narea), net photosynthesis per mass (Amass) and per area (Aarea), photosynthetic nitrogen-use efficiency (PNUE), leaf mass per area (LMA) and total leaf phenols content were measured in the three cultivars. All cultivars responded to herbivory in a similar fashion. The Nmass, Amass, and PNUE decreased, while LMA and total content of phenols increased in partially damaged leaves. Increases in herbivore pressure resulted in lower leaf size and total leaf area per plant across cultivars. Despite this, stem cumulative growth tended to increase in infected plants suggesting a change in the patterns of biomass allocation and in resources sequestration elicited by herbivory. A larger N investment in defenses instead of photosynthetic structures may explain the lower PNUE and Amass observed in damaged leaves. Some physiological changes due to herbivory partially compensate for the cost of leaf removal buffering the carbon economy at the whole plant level.  相似文献   

4.
J.H. Golbeck  B.R. Velthuys  B. Kok 《BBA》1978,504(1):226-230
Absorption changes accompanying the formation of light-induced P-700+ were investigated in a highly enriched Photosystem I preparation where an intermediate electron acceptor preceding P-430 could be detected. In an enriched Photosystem I particle, light-induced reversible absorption changes observed at 700 nm in the presence of dithionite resembled those previously seen at 703 nm and 820 nm [9], thus indicating the presence of a backreaction between P-700+ and A?2. After this same Photosystem I particle was treated to denature the bound iron-sulfur centers, the photochemical changes that could be attributed to P-700 A2 were completely lost. These results provide evidence that the intermediate electron acceptor, A2, is a bound iron-sulfur protein. Additional studies in the 400–500 nm region with Photosystem I particles prepared by sonication indicate that the spectrum of A2 is different from that of P-430.  相似文献   

5.
The amplitudes ratio of the fast and slow phases (Afast/Aslow) in the kinetics of the dark relaxation of variable chlorophyll fluorescence (FV) was studied after various periods of illumination of dark-adapted primary barley leaves. Simultaneously, photosynthetic activity was monitored using the photoacoustic technique and the photochemical and non-photochemical fluorescence quenching parameters. The ratio Afast/Aslow changed with the preceding illumination time in a two-step manner. During the first stage of photosynthetic induction (0–20 s of illumination), characterized by a drop in O2-dependent photoacoustic signal following an initial spike and by a relatively stable small value of photochemical FV quenching, the ratio Afast/Aslow remained practically unaltered. During the second stage (20–60 s of illumination), when both the rate of O2 evolution and the photochemical FV quenching were found to be sharply developed, a marked increase in the above ratio was also observed. A linear correlation was found between the value of the photochemical quenching and the ratio Afast/Aslow during the second phase of photosynthetic induction. It is concluded that the slow phase appearing in the kinetics of FV dark relaxation is not due to the existence of Photosystem II reaction centres lacking the ability to reduce P700+ with high rates, but is instead related to the limitation of electron release from Photosystem I during the initial stage of the induction period of photosynthesis. This limitation keeps the intersystem electron carriers in the reduced state and thus increases the probability of back electron transfer from QA to the donor side of Photosystem II.Abbreviations Afast/Aslow the ratio of magnitudes between the fast and slow phases of dark relaxation of variable fluorescence - FO initial level of chlorophyll fluorescence - FV variable chlorophyll fluorescence (F-FO) - (FV)S the yield of variable chlorophyll fluorescence under saturating pulse in illuminated leaves - (FV)M the yield of variable chlorophyll fluorescence under saturating pulse in dark-adapted leaves - PA photoacoustic - PSI Photosystem I - PS II Photosystem II - qN non-photochemical quenching - qQ photochemical quenching  相似文献   

6.
The light harvesting and photosynthetic characteristics of a chlorophyll-deficient mutant of cowpea (Vigna unguilata), resulting from a single nuclear gene mutation, are examined. The 40% reduction in total chlorophyll content per leaf area in the mutant is associated with a 55% reduction in pigment-proteins of the light harvesting complex associated with Photosystem II (LHC II), and to a lesser extent (35%) in the light harvesting complex associated with Photosystem I (LHC I). No significant differences were found in the Photosystem I (PS I) and Photosystem II (PS II) contents per leaf area of the mutant compared to the wildtype parent. The decreases in the PS I and PS II antennae sizes in the mutant were not accompanied by any major changes in quantum efficiencies of PS I and PS II in leaves at non-saturating light levels for CO2 assimilation. Although the chlorophyll deficiency resulted in an 11% decrease in light absorption by mutant leaves, their maximum quantum yield and light saturated rate of CO2 assimilation were similar to those of wildtype leaves. Consequently, the large and different decreases in the antennae of PS II and PS I in the mutant are not associated with any loss of light use efficiency in photosynthesis.Abbreviations LHC I, LHC II light harvesting chlorophyll a/b protein complexes associated with PS I and PS II - A820 light-induced absorbance change at 820 nm - øPS I, øPS II relative quantum efficiencies of PS I and PS II photochemistry  相似文献   

7.
The relationship between the thermodynamical and structural properties of photosynthetic reaction centers and kinetics and polarization of electric field-induced luminescence was studied. A general model is presented to describe the influence of an electric field on the individual electron transfer rate constants. Comparison of simulations with this model and experimental curves of Photosystem I electroluminescence showed that (a) at least three electrogenic electron transfer steps occur: P-700 to A0(~30%), A0 to A1 (~50%), and A1 to FA(~20%), (b) the midpoint potential of A1/A-1 is ~ - 0.81 V, and (c) the emission moments of the pigments make on average an angle of 67° with the membrane normal. It is concluded that the analysis of electro-luminescence kinetics may be a powerful technique to obtain information on primary processes using relatively intact systems.  相似文献   

8.
Tropical savanna ecosystems are extremely diverse and important for global carbon storage. In the state of Mato Grosso, tropical savanna (locally known as the Cerrado), turns from well-drained, upland areas into seasonally flooded areas within the Pantanal; however, the Cerrado and the Pantanal share many common tree species, such as Vochysia divergens, a flood-adapted tree native to the Amazon Basin, and Curatella americana, a tree, adapted native to the welldrained the Cerrado. We measured the photosynthetic light response of these species in the the Cerrado and the Pantanal over a 1-year period to determine how these species physiologically adjust to these hydrologically distinct habitats. We hypothesized that neither species would experience a significant decline in maximum, light-saturated photosynthetic rate (P max) in their naturalized habitat. Physiological performance of each species was generally higher in the habitat that they were adapted to; however, our data indicated that both species have broad tolerance for seasonal variations in hydrology, allowing them to tolerate seasonal drought during the dry season in the Cerrado, and seasonal flooding during the wet season in the Pantanal. In V. divergens, flexible water-use efficiency, higher specific leaf area (SLA), and a greater ability to adjust mass-based P max (P max,m) to variations in leaf N and P concentration appeared to be key traits for withstanding prolonged drought in the Cerrado. In C. americana, increases in SLA and higher nutrient-use efficiency appeared to be important in maintaining high rates of P max,m in the seasonally flooded Pantanal. Flexibility in physiology and resource-use efficiency may allow these species to survive and persist in habitats with broadly differing hydrology.  相似文献   

9.
S Acker  A Picaud  J Duranton 《BBA》1976,440(2):269-277
Photosynthetic activity in the absence of the CP1 and CP2 pigmentary complexesVarious photochemical activities were tested on chloroplasts of Zea mays that received 4 s of light every 4 h during the culture period. Photosystem I and Photosystem II were functioning, as well as the photosynthetic electron transport. These chloroplasts exhibited upon sodium dodecyl sulphate gel electrophoresis neither Complex 1 (Mr 70 000) generally associated with Photosystem I nor Complex 2 Mr 25 000) generally associated with Photosystem II. Chlorophyll is indeed attached to polypeptides of molecular weight 21 000 and 29 000.These results lead us to question the functional role of chloroplast protein-pigment complexes observed by sodium dodecyl sulphate gel electrophoresis.  相似文献   

10.
Little is known on the resistance of wheat cultivars to Sitobion avenae (F.) in Brazil. The goal of this work was to assess the behavior and biology of S. avenae on four commercial wheat cultivars to verify the existence of resistance by antibiosis in leaves and ears and non-preference in the ears. The smallest net fecundity rates of S. avenae in wheat leaves have been found in the cultivars Embrapa 22 and BRS264, which did not differ between themselves. The intrinsic rate of increase of S. avenae was smaller in leaves of Embrapa 22 than in cultivars BRS254 and BRS Timbaúva. The smallest net fecundity rates of S. avenae in wheat ears were observed in the cultivars BRS254 and Embrapa 22. The intrinsic rate of increase of the aphid in the ear of cultivar Embrapa 22 was smaller than in BRS Timbaúva and BRS264, but did not differ from BRS254. The organ of the wheat plant in which the aphid was reared influences antibiosis resistance, but the cultivar BRS Timbaúva was considered susceptible and Embrapa 22 resistant to S. avenae in both plant organs tested. Ears of wheat cultivars tested did not show differences in the mechanism of resistance by non-preference to S. avenae.  相似文献   

11.
Anthracnose (ANT) and angular leaf spot (ALS) are devastating diseases of common bean (Phaseolus vulgaris L.). Ouro Negro is a highly productive common bean cultivar, which contains the Co-10 and Phg-ON genes for resistance to ANT and ALS, respectively. In this study, we performed a genetic co-segregation analysis of resistance to ANT and ALS using an F2 population from the Rudá × Ouro Negro cross and the F2:3 families from the AND 277 × Ouro Negro cross. Ouro Negro is resistant to races 7 and 73 of the ANT and race 63-39 of the ALS pathogens. Conversely, cultivars AND 277 and Rudá are susceptible to races 7 and 73 of ANT, respectively. Both cultivars are susceptible to race 63-39 of ALS. Co-segregation analysis revealed that Co-10 and Phg-ON were inherited together, conferring resistance to races 7 and 73 of ANT and race 63-39 of ALS. The Co-10 and Phg-ON genes were co-segregated and were tightly linked at a distance of 0.0 cM on chromosome Pv04. The molecular marker g2303 was linked to Co-10 and Phg-ON at a distance of 0.0 cM. Because of their physical linkage in a cis configuration, the Co-10 and Phg-ON resistance alleles are inherited together and can be monitored with great efficiency using g2303. The close linkage between the Co-10 and Phg-ON genes and prior evidence are consistent with the existence of a resistance gene cluster at one end of chromosome Pv04, which also contains the Co-3 locus and ANT resistance quantitative trait loci. These results will be very useful for breeding programs aimed at developing bean cultivars with ANT and ALS resistance using marker-assisted selection.  相似文献   

12.
Global production of rice (Oryza sativa) grain is limited by water availability and the low ‘leaf-level’ photosynthetic capacity of many cultivars. Oryza sativa is extremely susceptible to water-deficits; therefore, predicted increases in the frequency and duration of drought events, combined with future rises in global temperatures and food demand, necessitate the development of more productive and drought tolerant cultivars. We investigated the underlying physiological, isotopic and morphological responses to water-deficit in seven common varieties of O. sativa, subjected to prolonged drought of varying intensities, for phenotyping purposes in open field conditions. Significant variation was observed in leaf-level photosynthesis rates (A) under both water treatments. Yield and A were influenced by the conductance of the mesophyll layer to CO2 (g m) and not by stomatal conductance (g s). Mesophyll conductance declined during drought to differing extents among the cultivars; those varieties that maintained g m during water-deficit sustained A and yield to a greater extent. However, the variety with the highest g m and yield under well-watered conditions (IR55419-04) was distinct from the most effective cultivar under drought (Vandana). Mesophyll conductance most effectively characterises the photosynthetic capacity and yield of O. sativa cultivars under both well-watered and water-deficit conditions; however, the desired attributes of high g m during optimal growth conditions and the capacity for g m to remain constant during water-deficit may be mutually exclusive. Nonetheless, future genetic and physiological studies aimed at enhancing O. sativa yield and drought stress tolerance should investigate the biochemistry and morphology of the interface between the sub-stomatal pore and mesophyll layer.  相似文献   

13.
《BBA》1986,849(2):203-210
A highly active O2-evolving Photosystem II complex which was greatly depleted of phycobiliproteins was isolated from the cyanobacterium Anacystis nidulans. This complex contained the flavoprotein with l-amino acid oxidase activity which we have previously shown to be present in thylakoid preparations of this cyanobacterium (Pistorius, E.K. and Voss, H. (1982) Eur. J. Biochem. 126, 203–209). One of the most prominent polypeptides in this O2-evolving Photosystem II complex had a molecular weight of 49 kDa. This polypeptide co-chromatographed on SDS-polyacrylamide gels with the purified l-amino acid oxidase which consists of two subunits of 49 kDa. The antagonistic effect of CaCl2 on the two examined reactions could also be demonstrated with this O2-evolving Photosystem II complex: CaCl2 stimulated photosynthetic O2 evolution, but inhibited the l-amino acid oxidase activity. Both reactions were inhibited by o-phenanthroline. These results further support a functional relationship between the flavoprotein with l-amino acid oxidase activity and Photosystem II activities in A. nidulans. However, we only found 1 mol FAD per 350–650 mol chlorophyll, although 1 gatom Mn per 5–10 mol chlorophyll was present. When we assume a photosynthetic unit of about 40 chlorophylls, then in most preparations the FAD values were more than a factor of 10 too low. Results which we obtained with the purified l-amino acid oxidase showed that the FAD values were in most enzyme samples lower than the theoretically expected value of 2 mol FAD per mol enzyme. Moreover, in some cases the absorption spectrum of the enzyme showed substantial deviations from the spectrum of oxidized FAD. These experiments indicated that the flavin in the enzyme could partly exist in a form which was different from ‘authentic oxidized FAD’. We do not yet know the chemical nature of this ‘modified flavin’.  相似文献   

14.
Chlorella was used to study the effects of dehydration on photosynthetic activities. The use of unicellular green algae assured that the extent of dehydration was uniform throughout the whole cell population during the course of desiccation. Changes in the activities of the cells were monitored by measurements of fluorescence induction kinetics. It was found that inhibition of most of the photosynthetic activities started at a similar level of cellular water content. They included CO2 fixation, photochemical activity of Photosystem II and electron transport through Photosystem I. The blockage of electron flow through Photosystem I was complete and the whole transition occurred within a relative short time of dehydration. On the other hand, the suppression of Photosystem II activity was incomplete and the transition took a longer time of dehydration. Upon rehydration, the inhibition of Photosystem II activity was fully reversible when samples were in the middle of the transition, but was not thereafter. The electron transport through Photosystem I was also reversible during the transition, but was only partially afterward.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl urea - Fm maximum fluorescence yield - F0 non-variable fluorescence level emitted when all PS II centers are open - Fv variable part of fluorescence - PS photosystem - QA primary quinone acceptor of Photosystem II  相似文献   

15.
Tobacco rbcL deletion mutant, which lacks the key enzyme Rubisco for photosynthetic carbon assimilation, was characterized with respect to thylakoid functional properties and protein composition. The ΔrbcL plants showed an enhanced capacity for dissipation of light energy by non-photochemical quenching which was accompanied by low photochemical quenching and low overall photosynthetic electron transport rate. Flash-induced fluorescence relaxation and thermoluminescence measurements revealed a slow electron transfer and decreased redox gap between QA and QB, whereas the donor side function of the Photosystem II (PSII) complex was not affected. The 77 K fluorescence emission spectrum of ΔrbcL plant thylakoids implied a presence of free light harvesting complexes. Mutant plants also had a low amount of photooxidisible P700 and an increased ratio of PSII to Photosystem I (PSI). On the other hand, an elevated level of plastid terminal oxidase and the lack of F0 ‘dark rise’ in fluorescence measurements suggest an enhanced plastid terminal oxidase-mediated electron flow to O2 in ΔrbcL thylakoids. Modified electron transfer routes together with flexible dissipation of excitation energy through PSII probably have a crucial role in protection of PSI from irreversible protein damage in the ΔrbcL mutant under growth conditions. This protective capacity was rapidly exceeded in ΔrbcL mutant when the light level was elevated resulting in severe degradation of PSI complexes.  相似文献   

16.
The psaA and psaB genes of the chloroplast genome in oxygenic photosynthetic organisms code for the major peptides of the Photosystem 1 reaction center. A heterodimer of the two polypeptides PsaA and PsaB is thought to bind the reaction center chlorophyll, P700, and the early electron acceptors A0, A1 and Fe-SX. Fe-SX is a 4Fe4S center requiring 4 cysteine residues as ligands from the protein. As PsaA and PsaB have only three and two conserved cysteine residues respectively, it has been proposed by several groups that Fe-SX is an unusual inter-peptide center liganded by two cysteines from each peptide. This hypothesis has been tested by site directed mutagenesis of PsaA residue C575 and the adjacent D576. The C575D mutant does not assemble Photosystem 1. The C575H mutant contains a photoxidisable chlorophyll with EPR properties of P700, but no other Photosystem 1 function has been detected. The D576L mutant assembles a modified Photosystem 1 in which the EPR properties of the Fe-SA/B centers are altered. The results confirm the importance of the conserved cysteine motif region in Photosystem 1 structure.Dedicated to the memory of Daniel I. Arnon.  相似文献   

17.
A field study was conducted on a 5-year-old orchard of ‘Royal Gala’ apple (Malus domestica Borkh.) in Stellenbosch, South Africa, to investigate whether the measures employed to control sunburn in fruit, viz., evaporative cooling, Surround WP and 20% black shade net affect leaf photosynthetic gas exchange attributes in comparison to untreated control during the 2003/2004 season. Shade net significantly reduced midday leaf net photosynthetic rate (A) compared to evaporative cooling. Furthermore, shade net and Surround WP significantly reduced midday leaf stomatal conductance (gs) compared to evaporative cooling and control. Evaporative cooling increased light saturated photosynthetic rate by 27 and 24% compared to shade net and Surround WP, respectively. Light compensation point and dark respiration of shaded leaves were about a third of the other treatments and about 50% less than the control leaves, respectively. Shade net down-regulated photosynthetic capacity of the leaves as evidenced by lower maximum rate of carboxylation and light saturated rate of electron transport compared to control leaves. Sunburn control treatments reduced day respiration by 60–70% compared to the control. Response of A and gs to increasing temperature showed only slight increase in both A and gs with increasing temperature from 20 to 30 °C. A declined at 35 °C in Surround WP and shade net leaves while it declined at 40 °C in evaporatively cooled and control leaves. Evaporative cooling and control had higher gs than shade net and Surround WP at all leaf temperatures. In conclusion, shade net down-regulated photosynthetic reactions and Surround WP and shade net reduced leaf gs and increased the vulnerability of leaf A and gs to high temperature compared to evaporative cooling and control.  相似文献   

18.
In this work, we evaluated changes in the energy dissipation on electron transport chain of photosystems of leaves of four common bean (Phaseolus vulgaris L.) genotypes (cultivars and landraces) in response to root system flooding. Common bean plants (BRS Expedito and Iraí—cultivars; TB 02–24 and TB 03–13—landraces) were grown in soil and commercial substrate (1:1). At the early reproductive stages, the root system was subjected to flooding by adding distilled water up to 2 cm above the substrate surface for 4 days. Control plants were kept under normoxia. Chlorophyll a fluorescence, gas exchange, photorespiration, antioxidative enzymes and reactive oxygen species (ROS) were measured in leaves on the 4th day of flooding. Flooding of the root system reduced gas exchange in all genotypes with strong effects in CO2 assimilation. BRS Expedito genotype had a greater energy dissipation through fluorescence and heat over Iraí, TB 02–24 and TB 03–13, with regard of metabolic regulation through photorespiration to alleviate the excess of ATP/NADPH produced by the electron transport chain (ETC). On the other hand, the genotypes Iraí, TB 02–24 and TB 03–13 induced more efficiently the antioxidative enzyme system to cope with the deleterious effects of ROS in comparison to BRS Expedito. Further, the dynamic energy dissipation of the excess absorbed energy by the photosynthetic ETC was differentially dissipated in all four common bean genotypes.  相似文献   

19.
End product feedback effects on photosynthetic electron transport   总被引:7,自引:0,他引:7  
The inhibition of photosynthetic electron transport when starch and sucrose synthesis limit the overall rate of photosynthesis was studied inPhaseolus vulgaris L. andXanthium strumarium L. The starch and sucrose limitation was established by reducing photorespiration by manipulation of the partial pressure of O2 and CO2. Chlorophylla fluorescence quenching, the redox state of Photosystem I (estimated by the redox status of NADP-dependent malate dehydrogenase), and the intermediates of the xanthophyll cycle were investigated. Non-photochemical fluorescence quenching increased, NADP-dependent malate dehydrogenase remained at 100% activity, and the amount of violaxanthin decreased when starch and sucrose synthesis limited photosynthesis. In addition, O2-induced feedback caused a decrease in photochemical quenching. These results are consistent with a downward regulation of photosynthetic electron transport during end product feedback on photosynthesis. When leaves were held in high CO2 for 4 hours, the efficiency of Photosystem II was reduced when subsequently measured under low light. The results indicate that the quantum efficiency of open Photosystem II centers was reduced by the 4 hour treatment. We interpret the results to indicate that feedback from starch and sucrose synthesis on photosynthetic electron transport stimulates mechanisms for dissipating excess light energy but that these mechanisms do not completely protect leaves from long-term inhibition of photosynthetic electron transport capacity.  相似文献   

20.
Goodenough UW  Armstrong JJ  Levine RP 《Plant physiology》1969,44(7):1001-1003,1005-1012
A pale-green mutant strain of Chlamydomonas reinhardi, ac-31, is characterized by the absence of any stacking of its chloroplast membranes. The capacity for photosynthetic electron transport, phosphorylation, and CO2 fixation in ac-31 is substantial, and it is concluded that these photosynthetic activities occur within the single membrane. The photosynthetic capacities of wild type and ac-31 as a function of increasing light intensity are compared. Saturation is attained at higher light intensities in ac-31, and the kinetics of the 2 sets of curves are distinctly different. The possibility that energy transfer is enhanced by membrane stacking is suggested by these results. The repeatedly-observed correlation between reduced stacking and disfunctional Photosystem II activities is discussed in view of the observation that ac-31 has no stacking but retains a functional Photosystem II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号