首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The response to drought stress on germination was investigated on three hybrids of ornamental sunflower, ‘Hadar’, ‘Pazit’, and ‘Zohar’. Different levels of water potential [Ψ: 0.0 (control), ?0.15, ?0.30, ?0.45, ?0.60, ?0.75, and ?0.90 MPa] were adopted using polyethylene glycol-6000 (PEG6000) at four germination temperatures (15, 20, 25, and 30 °C). Final germination percentage, mean germination time, germination index, germination rate index, and germination stress tolerance index were used to evaluate the genotype response to PEG-induced water stress. Shoot and root length and fresh and dry weight were measured on seeds germinated at 20 °C under the different levels of water potentials. During germination, the three ornamental sunflowers showed to be more sensitive to suboptimal temperature than to supraoptimal. Decreasing water potential of imbibition solution progressively inhibited and delayed seed germination. Among cultivars, ‘Hadar’ and ‘Pazit’ performed better at temperature lower than 30 °C. ‘Zohar’ showed a lower sensitivity to PEG-induced water stress at all temperature conditions. Water stress during seed germination depressed the following seedling growth under favourable conditions. As a result, shoot and root length and fresh and dry weight was significantly lower in seedlings from seed germinated at ψ ≤ 0.45 MPa.  相似文献   

2.
The effects of reduced water potential (ψ) on seed germination at 25 and 15 °C in unprimed (UP) and primed (P) seeds of two cultivars of sweet sorghum (cv. Keller and cv. Makueni local), were analyzed through the hydrotime model. Six ψ (from 0 to ?1.0 MPa) in polyethylene glycol 6000 (PEG) solutions were used for the tests. Seeds were primed in 250 g/L PEG solution at 15 °C for 48 h. Decreasing ψ of imbibition solution reduced and delayed germination. At 15 °C seeds germinated less and slower than at 25 °C at any ψ. Seeds of cv. Makueni local exhibited a greater sensitivity to water stress in terms of germination percentage, than seeds of cv. Keller, but they were faster in germination. Osmopriming was beneficial for seed germination, both in terms of final percentage and rate, at any temperature and ψ. The hydrotime analysis revealed that predicted θ H constant was increased when temperature was reduced to 15 °C and at this temperature median base water potential [ψ b(50)] for germination was higher (less negative) than at 25 °C. Seed priming shifted ψ b(50) towards more negative values and reduced θ H requirements for germination. At 25 °C the two cultivars behaved similarly while at 15 °C cv. Keller exhibited a ψ b more negative but required a greater θ H to germinate, indicating a greater water-stress tolerance but a slower germination, than cv. Makueni local. The application of the model allows to identify water stress tolerant cultivars during germination, to include into breeding programs for the selection of well-performing cultivars under stress conditions.  相似文献   

3.
Effects of various chemical and physical factors on the germination of several seed lots of reed canary-grass (Phalaris arundinacea L.) have been studied. Germination at the optimum constant temperatures of 24 to 27°C was significantly stimulated by the following treatments: moist chilling in light, red light given during the first 3 days of imbibition, three 2-h periods at 12°C given during the second day of imbibition, ethylene, increased oxygen tension and soaking in aerated water for 4 days. Dry storage at 20–30°C had no effect on the germination ability of the seeds. No significant quantities of germination inhibitors were found either in water or methanol extracts of seed dispersal units. By comparing three cultivars with various degrees of seed dormancy, respiration measurements showed that there was a significant positive correlation between oxygen uptake prior to visible germination and germination capacity. Similarly, germination-stimulating treatment significantly enhanced oxygen uptake prior to visible germination.  相似文献   

4.
Fluctuating temperature plays a critical role in determining the timing of seed germination in many plant species. However, the physiological and biochemical mechanisms underlying such a response have been paid little attention. The present study investigated the effect of plant growth regulators and cold stratification in regulating Leymus chinensis seed germination and dormancy response to temperature. Results showed that seed germination was less than 2 % at all constant temperatures while fluctuating temperature significantly increased germination percentage. The highest germination was 71 % at 20/30 °C. Removal of the embryo enclosing material of L. chinensis seed germinated to 74 %, and replaced the requirement for fluctuating temperature to germinate, by increasing embryo growth potential. Applications of GA4+7 significantly increased seed germination at constant temperature. Also, inhibition of GA biosynthesis significantly decreased seed germination at fluctuating temperatures depending upon paclobutrazol concentration. This implied GA was necessary for non-dormant seed germination and played an important role in regulating seed germination response to temperature. Inhibition of ABA biosynthesis during imbibition completely released seed dormancy at 20/30 °C, but showed no effect on seed germination at constant temperature, suggesting ABA biosynthesis was important for seed dormancy maintenance but may not involve in seed germination response to temperature. Cold stratification with water or GA3 induced seed into secondary dormancy, but this effect was reversed by exogenous FL, suggesting ABA biosynthesis during cold stratification was involved in secondary dormancy. Also, cold stratification with FL entirely replaced the requirement of fluctuating temperature for germination with seeds having 73 % germination at constant temperature. This appears to be attributed to inhibition of ABA biosynthesis and an increase of GA biosynthesis during cold stratification, leading to an increased embryo growth potential. We suggest that fluctuating temperature promotes seed germination by increasing embryo growth potential, mainly attributed to GA biosynthesis during imbibitions. ABA is important for seed dormancy maintenance and induction but showed less effect on non-dormant seed germination response to temperature.  相似文献   

5.
Tomato pollen germination, pollen tube growth and respiratory activity were recorded during incubation in a liquid medium for 7 h over a temperature range of 15–35°C. Although the initial rate of respiration was highest at 30°C, both at 30°C and 35°C respiration decreased after the first hour of incubation due to high temperature impairment of germination and pollen tube growth. The total per cent germination of pollen over the 7-h period was maximal at 15°C whereas pollen tube length was maximal at 25°C. Although the production of CO2 measured at hourly intervals throughout the incubation period did not correlate to a statistically significant level with either the per cent pollen germination or the length of the pollen tubes alone, nevertheless from 2 h after the start of incubation, it closely correlated with the values for germination × pollen tube length, indicating that the respiratory activity of tomato pollen at a given time is a function of both the per cent germination and the pollen tube growth. We suggest therefore that the rate of respiration might be preferable to a simple germination test for the assessment of pollen germination ability since it expresses not only the pollen germination potential but also the growth vigour of the pollen tubes. In addition, where in vitro tests are designed to assess pollen germination–temperature interactions, they should employ a long incubation period (e.g. 7 h) to permit differences in sensitivity to temperature to be observed.  相似文献   

6.
Helianthus annuus is an invasive alien species naturalised in the central region of Argentina where it shares an extended area with the sunflower crop. As this species has also invaded several other sunflower crop growing areas in the world, it severely restricts the use of new technologies, for example herbicide tolerance by genetic modification. The natural seed dormancy of the wild Helianthus strains from the centre of origin in North America is well known, but the seed dormancy of the invasive biotypes is still unknown. Dormancy is a fitness trait related to the establishment, dispersion and persistence of invasive weeds. Four experiments were designed to investigate the effect of the pericarp, light, temperature, the after‐ripening period and hybridization with the DK3880CL sunflower crop (F1) on the seed dormancy of five invasive H. annuus biotypes. The results showed that pericarp scarification increased imbibition of the whole achene by 19%. Light stimulation only increased germination in the wild biotype without any effect on the domesticated sunflower. A period of 12 months after‐ripening at 5°C reduced seed dormancy in the wild biotype and its progeny; the optimal temperature for seed germination at this period was found to be 15°C. Mechanical scarification was the best treatment for overcoming seed dormancy with a differential germination, in the biotypes with the highest response, superior to 63%. Hybridization with domesticated sunflower had a minimal or no effect on seed dormancy but the germination rate was improved in three F1 crosses. Wild biotype dormancy appears to be governed by the maternal pericarp and intrinsic hormone regulation. An increased germination rate of some progenies could constitute an advantage during seedling establishment but only in winters without any frost.  相似文献   

7.
Allium stracheyi Baker (Alliaceae, 2600–3000 m asl), an endangered species of Central Himalaya, India, has low seed germination in its natural habitat. This study is an attempt to improve seed germination by determining the seed viability with a low mean germination time (MGT) and germination index (GI) under optimum temperature, light, and pre-soaking treatments. The seeds were pre-soaked in hot water (80°C), cold water (10°C), and gibberellic acid (GA3 at 50 and 100 mg/l) for 24 h and subjected to light (12 h light and 12 h dark) and continuous dark (24 h) conditions with different temperature regimes (10, 15, 20, 25, and 30°C). The viability varied between 66.0% and 69.67% and declined rapidly after 12 months of storage. Our studies suggest that the 100 mg/l GA3 treatment was beneficial for seed germination and seedling growth. Pre-soaking in a 100 mg/l GA3 solution and incubation at 20°C under light conditions enhanced the germination significantly (p < 0.05) and resulted in the highest (97.3%) germination with the lowest MGT = 5.7 days, with GI = 8.11. The recommendations of this study support the conservation of alpine A. stracheyi via simple and cost-effective techniques for optimal seed germination.  相似文献   

8.
Seeds of sorghum (Sorghum vulgare Pers.) dried in a forced-air dryer from an initial moisture content of 12 percent to either 10 percent or 7 percent exhibited physiological dormancy. Dormancy was more marked in seeds dried to 7 percent than to 10 percent moisture, and was more pronounced in germination at 15° or 20° than at 25°C. Expression of dormancy at the lower temperatures was influenced decidedly by the four germination media (paper towels, blotters, sand, and soil). Percent dormancy was lowest in towels and highest in soil. Osmotic tension is suggested to be a factor influencing dormancy in these media. Dormancy was relieved by cutting the integumentary membrane or by rehydration of dried seeds. Respiration rates were lower and respiratory quotients higher in dormant seeds than in the controls. Differences in respiration rates were detected within 2 hours after the start of imbibition. Dormancy and differences in respiration rates appear to be associated with changes induced in the seeds by drying.  相似文献   

9.
The aim of this study was to develop the method for increasing resistance of sunflower seedlings ‘Wielkopolski’ to chilling. Seeds were conditioned at 25 °C for 2 days in water to 15, 20 and 25 % moisture content or in salicylic or jasmonic acid in concentration of 10?2; 10?3 and 10?4 M or brassinolide in concentration of 10?6; 10?8 and 10?10–15 % moisture content. After 2 days of incubation the conditioned seeds were heat shocked at 45 °C for 0, 30, 60, 120 and 240 min and 5 mm seedlings were exposed to chilling at 0 °C for 21 days. The effectiveness of the methods was assessed by evaluation of roots growth in Phytotoxkit Microbiotest, changes in the activity of dehydrogenases, the integrity of the cytoplasmic membrane and formation of polysomes after seedling were returned to 25 °C for 72 h. Seeds were conditioned at 25 °C for 2 days in water to 15 % moisture content and then heat shocked at 45 °C for 2 h decreased chilling injury of seedlings expressed by subsequent growth of the roots, electrolyte leakage, dehydrogenases activity and polysomes formation. Application of heat shock of 45 °C for 2 h during seed conditioning additionally provided seedling protection against subsequent chilling conditions. Brasinolide, salicylic acid or jasmonic acid applied during seeds conditioning exhibited further beneficial effect on seedling resistance to chilling. The most pronounced effect was obtained due to seed conditioning to 15 % moisture content in solutions of brassinolide in concentration of 10?8 M. After 2 days of imbibition treated in this way seeds were exposed to heat shock at 45 °C for 2 h. The role of physiological events in improvement of sunflower chilling tolerance are discussed.  相似文献   

10.
Responses of seed germination to air temperature, water potential, light, and smoke were studied in the laboratory for seeds of the invasive bunch grass Pennisetum ciliare (L.) Link (syn. Cenchrus ciliare L.; buffel grass). First introduced to North America during the mid-twentieth Century for establishing pastures, this African bunch grass has become an invasive species of concern. Across all the experiments conducted, a low germination was observed for P. ciliare fascicles that never exceeded 30 % at 21 days after sowing. Optimal day/night air temperatures for germination, controlled with an environmental chamber, were 25/15 and 30/20 °C, while extreme temperatures of 15/5 and 45/35 °C inhibited germination. By sowing seeds of P. ciliare under different water potentials, created with aqueous solutions of polyethylene glycol, an optimum of ?0.03 MPa led to the highest germination, while no germination was observed at ?1.0 MPa. Monochromatic optical filters were utilized to germinate seeds under various wavelengths, of which red (650 nm) and far red (730 nm) led to the highest germination. In addition, seeds that were incubated in the dark had higher germination than those incubated under white light. Incubation in smoke water, which can stimulate germination of pyrophytic species, resulted in a marginal inhibition of germination compared with imbibition with distilled water.  相似文献   

11.
Lettuce seeds cvs Hilde, Feltham King and Avoncrisp were subjected, at different phases during imbibition at 22°C, to a high temperature (33°C) inhibitory for germination, for periods ranging from 4 to 144 h, before returning them to 22°C. The results showed, that the first 4h of imbibition and also the phase between the commencement of mitosis and the onset of radicle emergence were more sensitive to the effects of high temperature than other phases in the germination process. Short exposures (8–24 h) to 33°C commencing at the latter phase delayed germination by up to 4 days, and at the earlier by up to 8 days. Percentage germination was unaffectd except after prolonged exposures (> 48 h) from the beginning of imbibition, which reduced it. Seedling emergence from moist sieved soil was both delayed and reduced when imbibing seeds were exposed for a short period from the beginning of imbibition to 33°C compared with seeds imbibing continuously at 19°C. Germination was delayed and not reduced when seed was exposed to 33°C at the phase between commencement of mitosis and the onset of radicle emergence.  相似文献   

12.
Precise knowledge of seed quality after harvest and during storageis of particular importance for seed producers. We analyseddifferent sunflower seed lots (Helianthus annuusL.) characterizedby extremes of germination ability. We used RNA analysis tostudy possible changes in gene expression in seeds unable togerminate. Total RNA content was very small in dry seeds showinga low germination ability. Capacity for total RNA synthesisat the onset of imbibition was also reduced in these seeds.In addition, correlations were found between these parametersand germination ability at 19 °C. We demonstrated a highcorrelation between the amount of total RNA in the dry seed,the capacity of RNA synthesis at the onset of imbibition andthe seed moisture content at the time of the harvest. The abilityof dry seed mRNAs to be translatedin vitrowas also reduced andseven polypeptides, from stored mRNAs, were characteristic ofthe cotyledons from high germinability seeds. Germination canthus be affected at several levels including membrane, enzymaticand nucleic acid deteriorations. Gene expression; germination ability; Helianthus annuusL.; marker; protein; RNA; seed; sunflower  相似文献   

13.
Weedy broomrape species, such as sunflower broomrape (Orobanche cumana Wallr.) and Egyptian broomrape [Phelipanche aegyptiaca Pers. (syn. O. aegyptiaca)], require a period of pre-conditioning before they can respond to germination stimulants. Thus, the sensitivity of weedy broomrape seeds to germination stimulants could be an important factor for broomrape control. In this study, the influence of conditioning agents, conditioning period (0–21 days) and germination stimulants on the germination of sunflower broomrape and Egyptian broomrape seeds was analyzed. Without conditioning, the sunflower and Egyptian broomrape seeds exhibited negligible germination responses to the stimulants. The germination rate of the broomrape seeds increased rapidly with conditioning period and reached a maximum under a conditioning period of 4–10 days; further prolonged conditioning resulted in a decrease in the germination rate. Gibberellic acid (GA3) could not only break the dormancy of the sunflower and Egyptian broomrape seeds but also maintained the high sensitivity of these seeds even after 21 days of conditioning. Furthermore, 100 µM of GA3 induced the germination of the Egyptian broomrape seeds. The stimulants that induced Egyptian broomrape germination were ranked in decreasing order as GR24 (76.8?%), strigol (76.1?%), tobacco root exudates (49.5?%), dehydrocostus lactones (DCL, 39.2?%), and maize root exudates (18?%). In contrast, GA3 did not directly induce sunflower broomrape seed germination, which responded to strigol (62.8?%)?>?maize root exudates (58.2?%)?>?GR24 (57.9?%)?>?tobacco root exudates (41.6?%)?>?DCL (41.3?%). These results indicate specialized recognition of germination stimulants by sunflower and Egyptian broomrape. This study may contribute to a better understanding of parasitic weed germination and may lead to improved control strategies.  相似文献   

14.
Alcorn , Stanley M. (U. S. Dept. of Agric., Tucson, Ariz.), and Edwin B. Kurtz , Jr . Some factors affecting the germination of seed of the saguaro cactus (Carnegiea gigantea). Amer. Jour. Bot. 46(7): 526–529. 1959.—Germination of saguaro cactus seeds is stimulated by red light (approx. 6550 A) or daylight and far-red light (approx. 7350 A) counteracts this effect. About 0.1% germinate in continuous darkness. A single exposure to red light was most effective when the seeds were imbibed 24 hr., but maximum germination resulted from multiple exposures to red light during a 72-hr. imbibition period. The optimum temperature for germination was 25°C.; no germination occurred at 15°C. and only slight germination at 35°C. Imbibition of light-treated seeds in 0.05 to 0.2% KNO3 increased germination. Germination of seeds in either light or dark was increased by imbibing the seeds in 500 to 1000 p.p.m. gibberellic acid.  相似文献   

15.
The yield and performance of seeds from crops of winter-hardy, bolting-resistant onion grown at temperatures of 15–16, 18–19 and 22–23°C in 1979, 1980 and 1982 were compared. Yields of seed from crops grown at 22–23°C were lower than those from crops grown at lower temperatures but the seeds ripened between 11 and 32 days earlier. Seeds from crops grown at mean temperatures of above 18°C gave higher percentage germination when imbibed at 30°C than 20°C and they also gave higher percentage seedling emergence than those from crops grown at lower temperatures. Seedlings from seeds produced at mean temperatures above 18°C were heavier than those from seeds of a similar weight but produced at lower temperatures. None of these differences were associated with differences in seed weight, embryo weight or seed dormancy but were positively correlated with differences in seed N-concentration. The differences were also associated with the rate of imbibition of water as high germination, high N-content seeds had a slower rate of imbibition than low germination, low N-content seeds of the same weight.  相似文献   

16.
The incorporation of 14CO2 into unsaturated fatty acids during seed development was measured in sunflowers grown in controlled environments with day temperatures of 28°C and night temperatures of 15°C or 22°C. While the average temperatures to which the plants were exposed did not differ greatly, the ratio of linoleic acid to oleic acid synthesized was much greater at a night temperature of 15°C than at 22°C. These results support the proposal (Harris et al. 1978) that the mean minimum temperature experienced during seed development is the major environmental factor influencing the unsaturated fatty acid composition of sunflower seed oil.  相似文献   

17.
The aim of the present work was to investigate whether loss of germination ability and viability of sunflower (Helianthus annuus L.) seeds during incubation at a high temperature (45°C) was related to changes in energy metabolism, loss of membrane integrity, and/or changes in lipid composition. Pre‐treatment of seeds at 45°C progressively reduced subsequent germination at the optimal temperature (25°C). Seeds did not germinate at 45°C and almost all of them were dead after 72 h of soaking at this high temperature. This loss of seed viability was associated with a large increase in leakage of K+ and total electrolytes into the incubation medium, and with production of malondialdehyde in the embryonic axis and cotyledons, suggesting a loss of membrane integrity probably due to lipid peroxidation. ATP and ADP levels increased sharply during the first hours of imbibition at 45°C, remained high for about 24 h and then decreased. As a consequence, the energy charge followed a similar pattern. If the treatment at 45°C did not exceed 48 h, seeds recovered an apparently normal energy metabolism after transfer to 25°C, even though they lost their ability to germinate at this temperature. Therefore, energy metabolism at the whole embryo level cannot be considered as an indicator of germination ability. Incubation of seeds at 45°C resulted in an increase in triacylglycerols and diacylglycerols without a significant change in their fatty acid composition. It also induced a slight increase in phospholipid content with an increase in C16:0, C18:0 and C18:1, but with no change in C18:2. In phospholipids, the C18:2/C18:1 and (C18:1 + C18:2)/ (C16:0 + C18:0) ratios thus declined during treatment at 45°C. The results obtained suggest that deterioration of sunflower seeds during incubation at a high temperature is mainly related to membrane damage and alteration of energy metabolism, and that accumulation of malondialdehyde, which is an index of lipid peroxidation, does not correspond to a decrease in total lipids and phospholipids nor to a significant change in fatty acid composition, except in PL in which the C18:2/C18:1 and (C18:1 + C18:2)/ (C16:0 + C18:0) ratios slightly declined.  相似文献   

18.
  • Anogeissus leiocarpa (DC.) Guill. & Perr. (Combretaceae) has important economic and cultural value in West Africa as source of wood, dye and medicine. Although this tree is in high demand by local communities, its planting remains limited due to its very low propagation via seed.
  • In this study, X‐rays were used to select filled fruits in order to characterise their morphology and seed germination responses to treatment with sulphuric acid and different incubation temperatures.
  • Morphological observations highlighted a straight orthotropous seed structure. The increase in mass detected for both intact and scarified fruits through imbibition tests, as well as morphological observations of fruits soaked in methylene blue solution, confirmed that they are water‐permeable, although acid‐scarified fruits reached significantly higher mass increment values than intact ones. Acid scarification (10 min soaking in 98% H2SO4) positively affected seed germination rate but not final germination proportions. When intact fruits where incubated at a range of temperatures, no seeds germinated at 10 °C, while maximum seed germination (ca. 80%) was reached at 20 °C. T50 values ranged from a minimum of ca. 12 days at 25 °C to a maximum of ca. 34 days at 15 and 35 °C. A theoretical base temperature for germination (Tb) of ca. 10 °C and a thermal requirement for 50% germination (S) of ca. 195 °Cd were also identified for intact fruits.
  • The results of this study revealed the seed germination characteristics driven by fruit and seed morphology of this species, which will help in its wider propagation in plantations.
  相似文献   

19.
The genetic diversity of Agave plants is threatened by clonal commercial reproduction and climatic change. Sexual reproduction is uncommon and research on seed germination is scarce. The present study evaluated the seed germination of Agave lechuguilla, Agave striata, Agave americana var. marginata, Agave asperrima, Agave cupreata, Agave duranguesis, Agave angustifolia ssp. tequilana and Agave salmiana at constant temperatures (10, 15, 20, 25, 30, 35 and 40°C). Initial imbibition (after the first 12 h) was significantly variable among species, positively correlated with seed weight (r = 0.6560, P < 0.001) and increased with temperature (from 35% at 10°C to 66% at 40°C). Temperature affected maximum imbibition (83–150%) for A. asperrima, A. lechuguilla, A. salmiana and A. striata; other species averaged 110%. Most germination kinetics best fitted a logistic model, whereas only a few treatments fit a Weibull model. The time to germination onset diminished (P < 0.05) from 125–173 h at 15°C to 68–84 h at 25°C, and then ascended to 84–196 h at 35°C. The mean germination rate and seed germination percentage after 312 h peaked at 25°C (0.50–0.95% seeds/h and 85–99%, respectively) and fell (P < 0.05) to near zero at 10 and 40°C. Temperatures of 10, 35 and 40°C were partially lethal to A. asperrima, A. duranguensis and A. salmiana seeds. The time to germination onset, seed germination percentage after 312 h and mean germination rate are best described by a Gaussian distribution, with its optimum at approximately 25°C. Thus, optimum temperatures are related to the ecological characteristics of each species area.  相似文献   

20.
  • The relationship between the phytohormones, gibberellin (GA) and abscisic acid (ABA) and light and temperature on seed germination is still not well understood. We aimed to investigate the role of the ABA and GA on seed germination of Vellozia caruncularis, V. intermedia and V. alutacea in response to light/dark conditions on different temperature.
  • Seeds were incubated in GA (GA3 or GA4) or ABA and their respective biosynthesis inhibitors (paclobutrazol – PAC, and fluridone – FLU) solutions at two contrasting temperatures (25 and 40 °C). Furthermore, endogenous concentrations of active GAs and those of ABA were measured in seeds of V. intermedia and V. alutacea during imbibition/germination.
  • Exogenous ABA inhibited the germination of Vellozia species under all conditions tested. GA, FLU and FLU + GA3 stimulated germination in the dark at 25 °C (GA4 being more effective than GA3). PAC reduced seed germination in V. caruncularis and V. alutacea, but did not affect germination of V. intermedia at 40 °C either under light or dark conditions. During imbibition in the dark, levels of active GAs decreased in the seeds of V. intermedia, but were not altered in those of V. alutacea. Incubation at 40 °C decreased ABA levels during imbibition in both V. caruncularis and V. alutacea.
  • We conclude that the seeds of Vellozia species studied here require light or high temperature to germinate and ABA has a major role in the regulation of Vellozia seed germination in response to light and temperature.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号