首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A quantitative fluorogenic PCR method for detecting methanogenic and methanotrophic orders was established using a refined primer set for the methyl coenzyme M reductase subunit A gene (mcrA). The method developed was applied to several microbial communities in which diversity and abundance of methanogens or anaerobic methanotrophs (ANMEs) was identified by 16S rRNA gene clone analysis, and strong correlations between the copy numbers of mcrA with those of archaeal 16S rRNA genes in the communities were observed. The assay can be applied to detecting and assessing the abundance of methanogens and/or ANMEs in anoxic environments that could not be detected by 16S rRNA gene sequence analyses.  相似文献   

2.
Dimethylsulfide and methane thiol in sediment porewater of a Danish estuary   总被引:1,自引:1,他引:0  
Seasonal variation of dimethylsulfide (DMS) and methane thiol (MSH) concentrations in sediment porewater was determined in a Danish estuary. Dimethylsulfide (DMDS) was never found. Detectable DMS levels of up to 0.1 M were found only in the summer and only within the upper 5 cm of the sediment. The DMS accumulation was probably associated with decomposing fragments of macro-algae in the surface layer. Significant MSH accumulation of up to 1 M was found only in the deep, CH4-rich sediment below the SO4 2- zone. With depth, a detectable MSH level could thus be observed below the 1 mM SO4 2--isopleth which also marked the SO4 2--CH4 transition. The transition zone was located deeper in the sediment in winter (20–25 cm depth) than in summer (5–10 cm depth). The absence of MSH in the SO4 2- zone could be due to rapid utilization of the compound by SO4 2--reducing bacteria. A possible involvement of MSH in anaerobic CH4 oxidation at the transition zone is discussed; CH4 and sulfide (HS- form, pH 7) are proposed to form MSH and H2 which in turn may be metabolized by, e.g. SO4 2--reducing bacteria.  相似文献   

3.
温室气体甲烷减排是全球变化领域的研究热点,甲烷厌氧氧化(anaerobic methane oxidation,AOM)过程是一个以前被忽视的甲烷汇,在调控全球甲烷收支平衡及减缓温室效应等方面扮演着十分重要的角色。AOM微生物以甲烷为唯一电子供体,与硫酸盐(SO42-)、亚硝酸盐(NO2-)/硝酸盐(NO3-)、金属离子(Fe3+、Mn4+、Cr6+)等结合完成氧化还原过程,该过程是耦合碳、氮、硫循环的关键环节。本文系统整理分析了不同AOM类型、发生机理、相关功能微生物类群(ANME-1、ANME-2、ANME-3、NC10、MBG-D)及影响AOM过程的关键调控因子的最新研究进展。结果发现,目前80%以上研究都集中在对最常见电子受体类型(SO42-/NO3-/NO2-/Fe3+/Mn4+)的AOM相关过程,而忽视了潜在的新型电子受体(AQDS/HAs O42-/Cr6+/ClO4-等)的耦合作用过程和相对应的微生物类型及作用机理。对未来AOM研究方向提出展望,以期为研究甲烷厌氧氧化菌在不同生态系统中的生态分布及减缓全球温室气体排放提供新的思路。  相似文献   

4.
Continued current emissions of carbon dioxide (CO2) and methane (CH4) by human activities will increase global atmospheric CO2 and CH4 concentrations and surface temperature significantly. Fields of paddy rice, the most important form of anthropogenic wetlands, account for about 9% of anthropogenic sources of CH4. Elevated atmospheric CO2 may enhance CH4 production in rice paddies, potentially reinforcing the increase in atmospheric CH4. However, what is not known is whether and how elevated CO2 influences CH4 consumption under anoxic soil conditions in rice paddies, as the net emission of CH4 is a balance of methanogenesis and methanotrophy. In this study, we used a long-term free-air CO2 enrichment experiment to examine the impact of elevated CO2 on the transformation of CH4 in a paddy rice agroecosystem. We demonstrate that elevated CO2 substantially increased anaerobic oxidation of methane (AOM) coupled to manganese and/or iron oxides reduction in the calcareous paddy soil. We further show that elevated CO2 may stimulate the growth and metabolism of Candidatus Methanoperedens nitroreducens, which is actively involved in catalyzing AOM when coupled to metal reduction, mainly through enhancing the availability of soil CH4. These findings suggest that a thorough evaluation of climate-carbon cycle feedbacks may need to consider the coupling of methane and metal cycles in natural and agricultural wetlands under future climate change scenarios.  相似文献   

5.
Microbial processes influencing methane emission from rice fields   总被引:7,自引:0,他引:7  
Irrigated rice fields are an important source of atmospheric methane. In order to improve our understanding of the controlling processes, we measured in situ CH4 emission and CH4 oxidation in an Italian rice field in 1998 and 1999, and studied CH4 production in soil and root samples. The CH4 emission rates were correlated with diurnal temperature variations and showed pronounced seasonal and interannual variations. The contribution of CH4 oxidation to total CH4 flux, determined by specific inhibition with difluoromethane, decreased from 40% at the beginning to zero at the end of the season. The stable carbon isotopic composition of the emitted CH4 also decreased. The CH4‐oxidizing bacteria probably became limited by nitrogen as indicated by the seasonal decrease of NH4+. Thus, CH4 oxidation had little effect on CH4 emission. Methane production on rice roots was relatively constant over the season. Methane production in soil slowly increased after flooding and was highest in the middle of the season. Pore water concentrations of CH4 showed a similar seasonal pattern. In 1999, CH4 production increased later in the season and reached lower rates than in 1998. An additional drainage in 1999 resulted in higher ferric iron concentrations, higher soil redox potentials and lower acetate concentrations. As a result, acetate‐utilizing methanogens were probably out‐competed by iron‐reducers so that a larger percentage of [2–14C]acetate was converted to 14CO2 instead of 14CH4. The residual CH4 production was relatively low and was mainly due to H2/CO2‐dependent methanogenesis. Experiments with radioactive bicarbonate and with methyl fluoride as specific inhibitor showed that the theoretical ratio of 7:3 of methanogenesis from acetate vs. H2/CO2 was only reached later in the season when total CH4 production was at the maximum. In conclusion, our results give a mechanistic explanation for the intraseasonal and interannual differences in CH4 emission.  相似文献   

6.
Anaerobic oxidation of methane (AOM) was investigated in hydrothermal sediments of Guaymas Basin based on δ13C signatures of CH4, dissolved inorganic carbon and porewater concentration profiles of CH4 and sulfate. Cool, warm and hot in-situ temperature regimes (15–20 °C, 30–35 °C and 70–95 °C) were selected from hydrothermal locations in Guaymas Basin to compare AOM geochemistry and 16S ribosomal RNA (rRNA), mcrA and dsrAB genes of the microbial communities. 16S rRNA gene clone libraries from the cool and hot AOM cores yielded similar archaeal types such as Miscellaneous Crenarchaeotal Group, Thermoproteales and anaerobic methane-oxidizing archaea (ANME)-1; some of the ANME-1 archaea formed a separate 16S rRNA lineage that at present seems to be limited to Guaymas Basin. Congruent results were obtained by mcrA gene analysis. The warm AOM core, chemically distinct by lower porewater sulfide concentrations, hosted a different archaeal community dominated by the two deep subsurface archaeal lineages Marine Benthic Group D and Marine Benthic Group B, and by members of the Methanosarcinales including ANME-2 archaea. This distinct composition of the methane-cycling archaeal community in the warm AOM core was confirmed by mcrA gene analysis. Functional genes of sulfate-reducing bacteria and archaea, dsrAB, showed more overlap between all cores, regardless of the core temperature. 16S rRNA gene clone libraries with Euryarchaeota-specific primers detected members of the Archaeoglobus clade in the cool and hot cores. A V6-tag high-throughput sequencing survey generally supported the clone library results while providing high-resolution detail on archaeal and bacterial community structure. These results indicate that AOM and the responsible archaeal communities persist over a wide temperature range.  相似文献   

7.
微生物甲烷氧化反硝化耦合反应研究进展   总被引:2,自引:1,他引:1  
甲烷氧化反硝化耦合过程是连接碳循环和氮循环的重要桥梁.该过程的深入研究有助于完善人们对全球碳氮生物化学循环的认识.甲烷作为反硝化外加气体碳源,既能调控大气甲烷平衡,有效减缓由甲烷引起的温室效应,又能降低反硝化工艺中因投入外加碳源带来的成本.因此近年来甲烷氧化反硝化耦合反应及其机理研究倍受关注.本文主要讨论了好氧和厌氧两种类型的甲烷氧化反硝化过程,重点对其微生物耦合反应机理及其影响因素进行了综述,同时指出了其工程化应用存在的问题,并对其应用前景提出展望.
  相似文献   

8.
9.
随着功能微生物介导的亚硝酸盐型厌氧甲烷氧化(nitrite-dependent anaerobic methane oxidation,N-DAMO)过程被发现,人们对自然界的碳氮循环有了全新的认识,该过程成为自然生态系统中温室气体甲烷的汇,同时还是氮污染的消减途径。本文系统介绍了N-DAMO过程反应机理以及参与该过程的亚硝酸盐型厌氧甲烷氧化细菌(Candidatus Methylomirabilis oxyfera)的生理生化特征,并对研究该功能菌的分子微生物方法进行了汇总。通过对不同自然生境中该细菌的研究报道进行总结分析,揭示各生境中年均降水量、年均温度、所处不同自然区等大尺度宏观环境因子及碳源、氮源、pH和氧气含量等生存因子对其群落结构的潜在影响,最后在展望中提出此功能菌在未来可深入研究的方向,期望能厘清厌氧甲烷氧化过程及其功能菌在碳、氮循环中的生态学功能。  相似文献   

10.
Miyajima  Toshihiro  Wada  Eitaro 《Hydrobiologia》1998,382(1-3):113-118
The oxidative consumption of methane (CH4) generally proceeds with a significant isotope fractionation, and isotopic variations in CH4 observed in sulfate-containing anaerobic sediments have often been interpreted as an indicator of anaerobic methane oxidation at the expense of sulfate. However, we found variations in δ13C value of CH4 depending on sulfate availability in tropical swamp sediments, in which no anaerobic CH4 oxidation was detected. In one sediment, the range of δ13C variation due to sulfate was as large as 20‰. The variations in δ13C of decomposed organic matter and CO2 failed to explain the variation in CH4 δ13C. We postulate a syntrophic linkage between sulfate-reducing and methanogenic bacteria via acetate as a mechanism of the observed δ'13C variation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
刘俊霞  薛丹  黄新亚  刘建亮  高永恒  陈槐 《生态学报》2021,41(13):5317-5327
泥炭地是主要的甲烷(CH4)排放源,甲烷循环过程对水位变化响应敏感。研究选取两块具有水位差异的泥炭地土壤,通过厌氧培养实验探究水位变化对泥炭地甲烷产生和甲烷厌氧氧化(Methane Anaerobic Oxidation,AOM)潜势的影响,并分析影响其潜势大小的生物地球化学因子。结果显示,高水位泥炭地(0 cm) CH4产生累积量为(0.89±0.01)μg/g,要显著高于低水位(-30 cm:(0.70±0.03)μg/g)泥炭地甲烷产生量,但低水位AOM累积量要显著高于高水位泥炭地(0 cm:(2829.93±35.99)μg/g),低水位泥炭地AOM量为(3588.06±24.78)μg/g。通过相关性分析发现甲烷产生潜势与含水量和DOC具有显著相关性,AOM潜势与含水量、pH、DOC具有显著相关性,含水量和DOC是影响若尔盖泥炭地甲烷产生及AOM潜势大小的重要因子。此外,发现高水位泥炭地甲烷产生潜势对温度升高的响应较为明显,特别是表层土壤(0-20 cm)。本研究明确了水位变化对若尔盖泥炭地甲烷产生及AOM潜势的影响特征,估算了全国泥炭地甲烷产生及AOM潜势的大小,以期为减缓全球气候变暖提供一定的理论支撑。  相似文献   

12.
氮依赖型甲烷厌氧氧化菌(nitrite-dependent anaerobic methane oxidation bacteria,n-damo细菌,属于NC10门)是最近10年来微生物生态学领域的研究热点。然而,对该类群基于现有数据的生态分布、群落结构和系统进化的整合分析还未见报道。【目的】为了更好地将近年来针对该类群的研究做一次全面梳理,本文通过整合前人已有发表数据和结合自身实验数据两方面进行。【方法】一方面,利用NCBI数据库(数据搜集到2016年11月)中所有n-damo细菌序列对其进行生物信息学分析;另一方面,对大九湖泥炭地表层泥炭利用16S rRNA二代测序技术对该类群进行检测,并同前人数据进行对比。【结果】n-damo细菌主要在沉积物、湿地和水稻土检出;基于pmo A基因的n-damo细菌的平均检出率是基于16S rRNA基因检出率的7倍,但是这两类基因分子标记物所得到的多样性指数保持相对稳定(1.4-3.4);贫氮的大九湖泥炭其NC10的丰度仅为0.067%。【结论】n-damo类群种群相对稳定,暗示其行使的生态功能相对单一;贫氮的大九湖泥炭其极低的NC10丰度暗示氮对NC10是限制因子;具有真正氮依赖型甲烷厌氧氧化细菌的Group A可能只占很少的一部分(小于20%),暗示出该类群真正的生态潜能需要进一步评估。本次整合分析为更好的理解n-damo细菌的生活环境、评估不同基因分子标记物下n-damo细菌的检出率、不同亚类群比如Group A和Group B等的丰度和真正的潜在生态功能提供参考。  相似文献   

13.
亚硝酸盐型甲烷厌氧氧化(nitrite-dependent anaerobic methane oxidation,N-DAMO)是耦合氮循环和碳循环的关键环节,主要是由亚硝酸盐型甲烷厌氧氧化菌(Candidatus Methylomirabilis oxyfera)介导完成,对于研究全球氮和碳元素的生物地球化学循环具有重要意义。本文首先总结了国内外N-DAMO的影响因素和在不同自然生态系统中的分布;然后阐述了N-DAMO菌的生理生化特性及其富集培养优化实验和检测技术,最后探讨了N-DAMO技术的应用现状。本综述不仅有助于揭示全球碳氮循环的耦合作用机制,也为N-DAMO反应耦合其他厌氧生物处理过程应用到污水的除碳脱氮上提供了理论依据。  相似文献   

14.
Rates of rhizospheric methane oxidation were evaluated by aerobic incubations of subcores collected in flooded anoxic soils populated by emergent macrophytes, by greenhouse whole plant incubations, and by CH4 stable isotopic analysis. Subcore incubations defined upper limits for rhizospheric methane oxidation on an areal basis which were equal to or greater than emission rates. These rates are considered upper limits because O2 did not limit CH4 uptake as is likely to occur in situ. The ratio of maximum potential methane oxidation (MO) to methane emission (ME) ranged from 0.7 to 1.9 in Louisiana rice (Oryza sativa), from 1.0 to 4.0 in a N. Florida Sagittaria lancifolia marsh, and from 5.6 to 51 in Everglades Typha domingensis and Cladium jamaicense areas. Methane oxidation/methane emission ratios determined in whole plant incubations of Sagittaria lancifolia under oxic and anoxic conditions ranged from 0.5 to 1.6. Methane oxidation activity associated with emergent aquatic macrophytes was found primarily in fine root material. A weak correlation was observed between live root biomass and CH4 uptake in Typha. Rhizomes showed small or zero rates of methane uptake and no uptake was associated with plant stems. Methane stable isotope data from a S. lancifolia marsh were as follows: CH4 emitted from plants: −61.6 ± 0.3%; CH4 within stems: −42.0 ± 0.2%; CH4 within sedimentary bubbles: −51.7 ± 0.3%). The 13C enrichment observed relative to emitted CH4 could be due to preferential mobilization of CH4 containing the lighter isotope and/or the action of methanotrophic bacteria.  相似文献   

15.
甲烷氧化过程中铜的作用研究进展   总被引:1,自引:1,他引:1  
苏瑶  孔娇艳  张萱  夏芳芳  何若 《生态学杂志》2014,25(4):1221-1230
甲烷生物氧化在全球甲烷平衡和温室效应控制中扮演着重要的角色,而铜是甲烷生物氧化过程中的重要影响因子.一方面,铜是调控不同类型甲烷单加氧酶表达的主要影响因子,是组成颗粒性甲烷单加氧酶的必需金属元素;另一方面,在自然环境体系中,铜含量及其形态的变化对甲烷氧化菌的分布、代谢甲烷和非甲烷类有机化合物的能力以及甲烷氧化菌的特异性铜捕获系统也会产生较大影响.准确把握铜在甲烷生物氧化过程中发挥的作用将有助于全面了解甲烷生物氧化过程,进而更好地指导甲烷氧化微生物在温室气体减排及非甲烷有机物污染修复中的应用.本文主要从铜的角度,概述了铜对甲烷氧化菌的分布和活性的影响,介绍了铜在调控甲烷单加氧酶的表达和活性以及调节甲烷氧化菌铜捕获系统方面的作用,并展望了其研究方向.  相似文献   

16.
Anaerobic oxidation of methane coupled to denitrification (AOM-D) in a membrane biofilm reactor (MBfR), a platform used for efficiently coupling gas delivery and biofilm development, has attracted attention in recent years due to the low cost and high availability of methane. However, experimental studies have shown that the nitrate-removal flux in the CH4-based MBfR (<1.0 g N/m2-day) is about one order of magnitude smaller than that in the H2-based MBfR (1.1–6.7 g N/m2-day). A one-dimensional multispecies biofilm model predicts that the nitrate-removal flux in the CH4-based MBfR is limited to <1.7 g N/m2-day, consistent with the experimental studies reported in the literature. The model also determines the two major limiting factors for the nitrate-removal flux: The methane half-maximum-rate concentration (K2) and the specific maximum methane utilization rate of the AOM-D syntrophic consortium (kmax2), with kmax2 being more important. Model simulations show that increasing kmax2 to >3 g chemical oxygen demand (COD)/g cell-day (from its current 1.8 g COD/g cell-day) and developing a new membrane with doubled methane-delivery capacity (Dm) could bring the nitrate-removal flux to ≥4.0 g N/m2-day, which is close to the nitrate-removal flux for the H2-based MBfR. Further increase of the maximum nitrate-removal flux can be achieved when Dm and kmax2 increase together.  相似文献   

17.
Evidence supporting a key role for anaerobic methane oxidation in the global methane cycle is reviewed. Emphasis is on recent microbiological advances. The driving force for research on this process continues to be the fact that microbial communities intercept and consume methane from anoxic environments, methane that would otherwise enter the atmosphere. Anaerobic methane oxidation is biogeochemically important because methane is a potent greenhouse gas in the atmosphere and is abundant in anoxic environments. Geochemical evidence for this process has been observed in numerous marine sediments along the continental margins, in methane seeps and vents, around methane hydrate deposits, and in anoxic waters. The anaerobic oxidation of methane is performed by at least two phylogenetically distinct groups of archaea, the ANME-1 and ANME-2. These archaea are frequently observed as consortia with sulfate-reducing bacteria, and the metabolism of these consortia presumably involves a syntrophic association based on interspecies electron transfer. The archaeal member of a consortium apparently oxidizes methane and shuttles reduced compounds to the sulfate-reducing bacteria. Despite recent advances in understanding anaerobic methane oxidation, uncertainties still remain regarding the nature and necessity of the syntrophic association, the biochemical pathway of methane oxidation, and the interaction of the process with the local chemical and physical environment. This review will consider the microbial ecology and biogeochemistry of anaerobic methane oxidation with a special emphasis on the interactions between the responsible organisms and their environment. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
Microbes catalyze all major geochemical cycles on earth. However, the role of microbial traits and community composition in biogeochemical cycles is still poorly understood mainly due to the inability to assess the community members that are actually performing biogeochemical conversions in complex environmental samples. Here we applied a polyphasic approach to assess the role of microbial community composition in modulating methane emission from a riparian floodplain. We show that the dynamics and intensity of methane consumption in riparian wetlands coincide with relative abundance and activity of specific subgroups of methane-oxidizing bacteria (MOB), which can be considered as a minor component of the microbial community in this ecosystem. Microarray-based community composition analyses demonstrated linear relationships of MOB diversity parameters and in vitro methane consumption. Incubations using intact cores in combination with stable isotope labeling of lipids and proteins corroborated the correlative evidence from in vitro incubations demonstrating γ-proteobacterial MOB subgroups to be responsible for methane oxidation. The results obtained within the riparian flooding gradient collectively demonstrate that niche partitioning of MOB within a community comprised of a very limited amount of active species modulates methane consumption and emission from this wetland. The implications of the results obtained for biodiversity–ecosystem functioning are discussed with special reference to the role of spatial and temporal heterogeneity and functional redundancy.  相似文献   

19.
20.
填埋覆土甲烷氧化微生物及甲烷氧化作用机理研究进展   总被引:8,自引:1,他引:8  
甲烷是一种长期存在于大气中的温室气体,它对温室效应的贡献率是二氧化碳的26倍.生活垃圾填埋场是大气甲烷的主要产生源之一,由其产生的甲烷约占全球甲烷排放总量的1.5%~15%.甲烷氧化微生物在调节全球甲烷平衡中起着重要作用.垃圾填埋场覆土具有相当强的甲烷氧化能力.填埋覆土甲烷氧化菌及其氧化作用机理的研究,已成为环境微生物学研究领域的热点之一.本文对生活垃圾填埋场填埋覆土中甲烷氧化微生物、甲烷氧化机理及动力学机制、甲烷与微量填埋气体的共氧化机制以及影响甲烷氧化的环境因子研究的最新进展进行综述,并对生活垃圾填埋场甲烷氧化微生物的研究进行展望.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号