首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies in this laboratory identified a series of 7 alpha-alkylamide analogues of 17 beta-oestradiol which are pure antioestrogens. Among this initial lead series of compounds, exemplified by ICI 164,384, none was of sufficient in vivo potency to merit serious consideration as a candidate for clinical evaluation. Further structure-activity studies identified a new compound, ICI 182,780, 7 alpha-[9-(4,4,5,5,5-pentafluoro-pentylsulphinyl)nonyl]oestra-1,3,5(10)- triene-3,17 beta-diol, with significantly increased antioestrogenic potency. The antiuterotrophic potency of ICI 182,780 is more than 10-fold greater than that of ICI 164,384. ICI 182,780 has no oestrogen-like trophic activity and, like ICI 164,384 is peripherally selective in its antioestrogenic effects. The increased in vivo potency of ICI 182,780 was also reflected, in part, by intrinsic activity at the oestrogen receptor and in the growth inhibitory potency of ICI 182,780 in MCF-7 human breast cancer cells. ICI 182,780 was a more effective inhibitor of MCF-7 growth than 4'-hydroxytamoxifen, producing an 80% reduction of cell number under conditions where 4'-hydroxytamoxifen achieved a maximum of 50% inhibition. Sustained antioestrogenic effects of ICI 182,780, following a single parenteral dose of ICI 182,780 in oil suspension, were apparent in both rats and pigtail monkeys. In vivo, the antitumour activity of ICI 182,780 was demonstrated with xenografts of MCF-7 and Br10 human breast cancers in athymic mice where, over a 1 month period, a single injection of ICI 182,780 in oil suspension achieved effects comparable with those of daily tamoxifen treatment. Thus, ICI 182,780 provides the opportunity to evaluate clinically the potential therapeutic benefits of complete blockade of oestrogen effects in endocrine-responsive human breast cancer.  相似文献   

2.
The immortalized human breast epithelial MCF-10F cell line, although estrogen receptor alpha negative, develops cell proliferating activities and invasiveness indicative of neoplastic transformation, after treatment with 17-beta-estradiol (E-2). These effects are similar to those produced by benzo[a]pyrene (BP). Since we have previously reported changes in the nuclear parameters accompanying BP-induced tumorigenesis in MCF-10F cells, we have examined whether similar alterations occur in E-2-treated cells. We therefore studied DNA amounts and other nuclear parameters in Feulgen-stained MCF-10F cells after treatment with various concentrations of E-2, BP, the estrogen antagonist ICI 182,780, and E-2 in the presence of ICI 182,780. E-2 caused a certain loss of DNA and changes in the nuclear size and chromatin supraorganization of MCF-10F cells. Many of these changes were similar to those produced by BP and were indicative of neoplastic transformation. More intense chromatin remodelling was seen with 70 nM E-2. Since these changes were not abrogated totally or partially by ICI 182,780, the neoplastic transformation of MCF-10F cells stimulated by E-2 involved a process that was independent of estrogen alpha-receptors. The changes produced by ICI 182,780 alone were attributed to effects other than its well-known anti-estrogenic activity.  相似文献   

3.
Tetratricopeptide repeat domain 9 (TTC9) mRNA was drastically up-regulated by progesterone in progesterone receptor-transfected breast cancer cells MDA-MB-231. This up-regulation is coupled with progesterone-mediated growth inhibition and induction of focal adhesion. We have generated mouse polyclonal antibody against a predicted 222 aa TTC9 protein and identified a 25 kDa TTC9 protein that is widely expressed in human tissues, with the highest expression in the brain. Immunostaining and cell fractionation studies revealed that TTC9 is predominantly localized to the endoplasmic reticulum. The level of TTC9 protein in MCF-7 cells is regulated by various factors and chemical reagents including estrogen, progesterone, growth factors, ICI182,780, and p38 kinase inhibitor SB203580. Growth factor-induced TTC9 protein expression was inhibited by estrogen and abolished by ERK inhibitor PD98059. Though the function of TTC9 is not yet clear, the susceptibility of its protein level to biological and chemical agents suggests that TTC9 is a biologically significant protein.  相似文献   

4.
Antiestrogens are efficient inhibitors of estrogen-mediated growth of human breast cancer. Besides inhibiting estradiol-stimulated growth, antiestrogens may have a direct growth-inhibitory effect on estrogen receptor (ER) positive cells and thus be more efficient than aromatase inhibitors, which will only abrogate estrogen-dependent tumor growth. To address this issue, we have used the human breast cancer cell line MCF-7/S9 as a model system which is maintained in a chemically defined medium without serum and estrogen. The addition of estradiol results in an increase in cell growth rate. Thus, the MCF-7/S9 cell line is estrogen-responsive but not estrogen-dependent. Three different types of antiestrogens, namely tamoxifen, ICI 182,780 and EM-652 were found to exert a significant and dose-dependent inhibition of basal growth of MCF-7/S9 cells. The growth-inhibitory effect of the three antiestrogens was prevented by simultaneous estradiol treatment. Antiestrogen treatment also reduced the basal pS2 mRNA expression level, thus indicating spontaneous estrogenic activity in the cells. However, treatment with the aromatase inhibitor had no effect on basal cell growth, excluding that endogenous estrogen synthesis is involved in basal growth. These data demonstrate that in addition to their estrogen antagonistic effect, antiestrogens have a direct growth-inhibitory effect which is ER-mediated. Consequently, in the subset of ER positive breast cancer patients with estrogen-independent tumor growth, antiestrogen therapy may be superior to treatment with aromatase inhibitors which only inhibit estrogen formation but do not affect cancer cell growth in the absence of estrogens.  相似文献   

5.
6.
Summary This study was undertaken in order to examine the estrogen sensitivity of HKT-1097, an established cell line recently derived from diethylstilbestrol (DES)-induced kidney tumors in Syrian hamsters. Estrogen receptor (ER) level in HKT-1097, determined by enzyme-linked immunoassay, was 67 fmol/mg protein, i.e., a value approx. 30% lower than that found in Syrian hamster kidney tumors. ER immunostaining in cells fixed with Carnoy's mixture, as well as ER demonstration by Western blotting, suggested DES-induced nuclear translocation or stabilization of the receptor within the nucleus. Kinetic parameters of estrogen binding to ER in HKT-1097 cells were 8.4×10−11 M and 60.8 fmol/mg protein for K d and Bmax, respectively. The K d of estrogen binding to ER in HKT-1097 was close to that evaluated for the receptor in breast cancer-derived MCF-7 cell line, whereas the Bmax value was approx. seven times lower in HKT-1097 as compared to MCF-7. In HKT-1097 cells, antiestrogens ICI 182,780 and RU 58,668 induced ER downregulation and competed with estrogen binding to the receptor. As demonstrated by Western blot analysis, DES exposure led to an increased expression of progesterone receptor (PgR) in HKT-1097 cells. Addition of DES to estrogen-free medium produced a stimulation of growth in both HKT-1097 and MCF-7 cells, but the mitogenic effect was less marked for HKT-1097. Despite the fact that ICI 182,780 and RU 58,668 clearly interact with HKT-1097 cell ER, they appeared unable to suppress DES-induced stimulation of growth and increase of PgR expression.  相似文献   

7.
8.
Estrogens are mitogenic for estrogen receptor (ER)-positive breast cancer cells. Current treatment of ER-positive breast tumors is directed towards interruption of estrogen activity. We report that treatment of ER-positive breast cancer cells with kaempferol resulted in a time- and dose-dependent decrease in cell number. The concentration required to produce 50% growth inhibition at 48 h was approximately 35.0 and 70.0 microM for ER-positive and ER-negative breast cancer cells, respectively. For MCF-7 cells, a reduction in the ER-alpha mRNA equivalent to 50, 12, 10% of controls was observed 24 h after treatment with 17.5, 35.0, and 70.0 microM of kaempferol, respectively. Concomitantly, these treatments led to a 58, 80, and 85% decrease in ER-alpha protein. The inhibitory effect of kaempferol on ER-alpha levels was seen as early as 6 h post-treatment. Kaempferol treatment also led in a dose-dependent decrease in the expression of progesterone receptor (PgR), cyclin D1, and insulin receptor substrate 1 (IRS-1). Immunocytochemical study revealed that ER-alpha protein in kaempferol-treated MCF-7 cells formed an aggregation in the nuclei. Kaempferol also induced degradation of ER-alpha by a different pathway than that were observed for the antiestrogen ICI 182,780 and estradiol. Estradiol-induced MCF-7 cell proliferation and expression of the estrogen-responsive-element-reporter gene activity were abolished in cells co-treated with kaempferol. These findings suggest that modulation of ER-alpha expression and function by kaempferol may be, in part, responsible for its anti-proliferative effects seen in in vitro.  相似文献   

9.
10.
11.
12.
In oestrogen receptor (ER)-positive breast carcinoma cells, 17β-oestradiol suppresses a dose-dependent induction of cell death by tumour necrosis factor alpha (TNF). The ability of oestrogens to promote cell survival in ER-positive breast carcinoma cells is linked to a coordinate increase in Bcl-2 expression, an effect that is blocked with the pure anti-oestrogen ICI 182,780. The role of Bcl-2 in MCF-7 cell survival was confirmed by stable overexpression of Bcl-2 which resulted in suppression of apoptosis induced by doxorubicin (DOX), paclitaxel (TAX) and TNF as compared to vector-control cells. The pure anti-oestrogen ICI 182,780 in combination with TNF, DOX or TAX potentiated apoptosis in vector-transfected cells. Interestingly, pre-treatment with ICI 182,780 markedly enhanced chemotherapeutic drug- or TNF-induced apoptosis in Bcl-2 expressing cells, an effect that was correlated with ICI 182,780 induced activation of c-Jun N-terminal kinase. Our results suggest that the effects of oestrogens/anti-oestrogens on the regulation of apoptosis may involve coordinate activation of signalling events and Bcl-2 expression.  相似文献   

13.
14.
15.
BCL2 family members affect cell fate decisions in breast cancer but the role of BCL-W (BCL2L2) is unknown. We now show the integrated roles of the antiapoptotic BCL-W and BCL2 in affecting responsiveness to the antiestrogen ICI 182,780 (ICI; Fulvestrant Faslodex), using both molecular (siRNA; shRNA) and pharmacologic (YC137) approaches in three breast cancer variants; MCF-7/LCC1 (ICI sensitive), MCF-7/LCC9 (ICI resistant), and LY2 (ICI resistant). YC137 inhibits BCL-W and BCL2 and restores ICI sensitivity in resistant cells. Co-inhibition of BCL-W and BCL2 is both necessary and sufficient to restore sensitivity to ICI, and explains mechanistically the action of YC137. These data implicate functional cooperation and/or redundancy in signaling between BCL-W and BCL2, and suggest that broad BCL2 family member inhibitors will have greater therapeutic value than targeting only individual proteins. Whereas ICI sensitive MCF-7/LCC1 cells undergo increased apoptosis in response to ICI following BCL-W±BCL2 co-inhibition, the consequent resensitization of resistant MCF-7/LCC9 and LY2 cells reflects increases in autophagy (LC3 cleavage; p62/SQSTM1 expression) and necrosis but not apoptosis or cell cycle arrest. Thus, de novo sensitive cells and resensitized resistant cells die through different mechanisms. Following BCL-W+BCL2 co-inhibition, suppression of functional autophagy by 3-methyladenine or BECN1 shRNA reduces ICI-induced necrosis but restores the ability of resistant cells to die through apoptosis. These data demonstrate the plasticity of cell fate mechanisms in breast cancer cells in the context of antiestrogen responsiveness. Restoration of ICI sensitivity in resistant cells appears to occur through an increase in autophagy-associated necrosis. BCL-W, BCL2, and BECN1 integrate important functions in determining antiestrogen responsiveness, and the presence of functional autophagy may influence the balance between apoptosis and necrosis.  相似文献   

16.
Beta-estradiol (17beta-E2) augments VEGF-A expression in various estrogen targeted organs and cells including breast tumor derived cell lines, via an ER-alpha mediated pathway. Ironically, 17beta-E2 is able to regulate some genes via ER-alpha independent pathways. In the present study, we sought to determine whether 17beta-E2 can modulate VEGF-A expression in absence of ER-alpha, and therefore, three different cell lines including ER-alpha+ MCF-7, and ER-alpha SKBR-3 and HMEC were used for this study. The present study demonstrates that 17beta-E2 also induces VEGF-A mRNA expression in ER-negative SKBR-3 breast tumor cells in a manner similar to that observed in ER-positive MCF-7 cells. Blocking the induced-expression by antiestrogen ICI 182,780 indicates the induction pathway is ER dependent. While ER-alpha mRNA is absent in both HMEC and SKBR-3 cells, the impact of estrogen was found only in SKBR-3 cells, suggesting the existence of an analogue to ER-alpha or overlapping signal in these cells. Consistent with this suggestion, the present studies demonstrate the existence of an ER-alpha(var2) protein in MCF-7 and in SKBR-3 cells. This variant is predominantly localized in the nuclei of SKBR-3 cells. Importantly, specific binding of 17beta-E2 by these cells suggest the ER-alpha(var2) may act as active receptor in SKBR-3 cells.  相似文献   

17.
A coculture system was developed to investigate the interactions between MCF-10A breast epithelial cells and MCF-7 breast cancer cells stably expressing the green fluorescent protein (MCF-7-GFP). Studies with this MCF-10A/MCF-7-GFP coculture system on microtiter plates and on reconstituted basement membrane (Matrigel), revealed paracrine inhibition of MCF-7-GFP cell proliferation. Epidermal growth factor, which in monocultures modestly enhanced MCF-7-GFP and markedly increased MCF-10A cell proliferation, greatly inhibited MCF-7-GFP cell proliferation in MCF-10A/MCF-7-GFP cocultures. 17beta-Estradiol, which stimulated MCF-7-GFP but not MCF-10A cell proliferation in monoculture, inhibited MCF-7-GFP cell proliferation in MCF-10A/MCF-7-GFP cocultures, an effect that was blocked by the antiestrogen, ICI 182,780. On Matrigel, complex MCF-10A/MCF-7-GFP cellular interactions were observed in real time that resulted in the formation of acinus-like structures. These results indicate a role of normal epithelial cells in inhibiting tumor-cell proliferation and demonstrate the utility of this coculture system as a model of early paracrine control of breast cancer.  相似文献   

18.
To identify genes involved in breast cancer, polymerase chain reaction-selected cDNA subtraction was utilized to construct a breast cancer-subtracted library. Differential screening of the library isolated the growth factor-inducible immediate-early gene Cyr61, a secreted, cysteine-rich, heparin binding protein that promotes endothelial cell adhesion, migration, and neovascularization. Northern analysis revealed that Cyr61 was expressed highly in the invasive breast cancer cell lines MDA-MB-231, T47D, and MDA-MB-157; very low levels were found in the less tumorigenic MCF-7 and BT-20 breast cancer cells and barely detectable amounts were expressed in the normal breast cells, MCF-12A. Univariate analysis showed a significant or borderline significant association between Cyr61 expression and stage, tumor size, lymph node positivity, age, and estrogen receptor levels. Interestingly, expression of Cyr61 mRNA increased 8- to 12-fold in MCF-12A and 3- to 5-fold in MCF-7 cells after 24- and 48-h exposure to estrogen, respectively. Induction of Cyr61 mRNA was blocked by tamoxifen and ICI182,780, inhibitors of the estrogen receptor. Stable expression of Cyr61 cDNA under the regulation of a constitutive promoter in MCF-7 cells enhanced anchorage-independent cell growth in soft agar and significantly increased tumorigenicity and vascularization of these tumors in nude mice. Moreover, overexpression of Cyr61 in MCF-12A normal breast cells induced their tumor formation and vascularization in nude mice. In summary, these results suggest that Cyr61 may play a role in the progression of breast cancer and may be involved in estrogen-mediated tumor development.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号