首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Curcumin was investigated as an inhibitor of glycogen synthase kinase-3β (GSK-3β) in an attempt to explain some of its interesting multiple pharmacological effects, such as its anti-diabetic, anti-inflammatory, anti-cancer, anti-malarial and anti-alzheimer's properties. The investigation included simulated docking experiments to fit curcumin within the binding pocket of GSK-3β followed by experimental in vitro and in vivo validations. Curcumin was found to optimally fit within the binding pocket of GSK-3β via several attractive interactions with key amino acids. Experimentally, curcumin was found to potently inhibit GSK-3β (IC50 = 66.3 nM). Furthermore, our in vivo experiments illustrated that curcumin significantly increases liver glycogen in fasting Balb/c mice. Our findings strongly suggest that the diverse pharmacological activities of curcumin are at least partially mediated by inhibition of GSK-3β.  相似文献   

2.
3.
Numerous studies have highlighted the implications of the glycogen synthase kinase 3 (GSK-3) in several processes associated with Alzheimer’s disease (AD). Therefore, GSK-3 has become a crucial therapeutic target for the treatment of this neurodegenerative disorder. Hereby, we report the design and multistep synthesis of ethyl 4-oxo-pyrazolo[4,3-d][1–3]triazine-7-carboxylates and their biological evaluation as GSK-3 inhibitors. Molecular modelling studies allow us to develop this new scaffold optimising the chemical structure. Potential binding mode determination in the enzyme and the analysis of the key features in the catalytic site are also described. Furthermore, the ability of pyrazolotriazinones to cross the blood–brain barrier (BBB) was evaluated by passive diffusion and those who showed great GSK-3 inhibition and permeation to the central nervous system (CNS) showed neuroprotective properties against tau hyperphosphorylation in a cell-based model. These new brain permeable pyrazolotriazinones may be used for key in vivo studies and may be considered as new leads for further optimisation for the treatment of AD.  相似文献   

4.
Several polycations were tested for their abilities to inhibit the activity of glycogen synthase kinase 3 (GSK-3). L-Polylysine was the most powerful inhibitor of GSK-3 with half-maximal inhibition of glycogen synthase phosphorylation occurring at approx. 100 nM. D-Polylysine and histone H1 were also inhibitory, but the concentration dependence was complex, and DL-polylysine was the least effective inhibitor. Spermine caused about 50% inhibition of GSK-3 at 0.7 mM and 70% inhibition at 4 mM. Inhibition of GSK-3 by L-polylysine could be blocked or reversed by heparin. A heat-stable polycation antagonist isolated from swine kidney cortex also blocked the inhibitory effect of L-polylysine on GSK-3 and blocked histone H1 stimulation of protein phosphatase 2A activity. Under the conditions tested, L-polylysine also inhibited GSK-3 catalyzed phosphorylation of type II regulatory subunit of cAMP-dependent protein kinase and a 63 kDa brain protein, but only slightly inhibited phosphorylation of inhibitor 2 or proteolytic fragments of glycogen synthase that contain site 3 (a + b + c). L-Polylysine at a concentration (200 nM) that caused nearly complete inhibition of GSK-3 stimulated casein kinase I and casein kinase II, but had virtually no effect on the catalytic subunit of cAMP-dependent protein kinase. These results suggest that polycations can be useful in controlling GSK-3 activity. Polycations have the potential to decrease the phosphorylation state of glycogen synthase at site 3, both by inhibiting GKS-3 as shown in this study and by stimulating the phosphatase reaction as shown previously (Pelech, S. and Cohen, P. (1985) Eur. J. Biochem. 148, 245-251).  相似文献   

5.
Frog oocyte glycogen synthase properties differ significantly under in vitro or in vivo conditions. The K(mapp) for UDP-glucose in vivo was 1.4mM (in the presence or absence of glucose-6-P). The in vitro value was 6mM and was reduced by glucose-6-P to 0.8mM. Under both conditions (in vitro and in vivo) V(max) was 0.2 m Units per oocyte in the absence of glucose-6-P. V(max) in vivo was stimulated 2-fold by glucose-6-P, whereas, in vitro, a 10-fold increase was obtained. Glucose-6-P required for 50% activation in vivo was 15 microM and, depending on substrate concentrations, 50-100 microM in vitro. The prevailing enzyme obtained in vitro was the glucose-6-P-dependent form, which may be converted to the independent species by dephosphorylation. This transformation could not be observed in vivo. We suggest that enzyme activation by glucose-6-P in vivo is due to allosteric effects rather than to dephosphorylation of the enzyme. Regulatory mechanisms other than allosteric activation and covalent phosphorylation are discussed.  相似文献   

6.
1. Glycogen synthase from rabbit skeletal muscle was phosphorylated by phosphorylase kinase to yield synthase b2. 2. Dephosphorylation and activation of synthase b2 by the catalytic subunits of protein phosphatase-1 (PP-1c) and protein phosphatase-2A (PP-2Ac) was studied. The apparent Km of PP-1c and PP-2Ac were 3.3 microM and 6.2 microM, respectively. The apparent Vmax of PP-1c was about two times larger than that of PP-2Ac. 3. Ligands with phosphate moiety (AMP, glucose-6-P at high concentration) caused an inhibition in dephosphorylation by both phosphatases. Spermine inhibited the dephosphorylation by PP-1c and stimulated the action of PP-2Ac. Therefore it can be employed to distinguish the phosphatases using synthase b2 as substrate.  相似文献   

7.
Glycogen synthase I (EC 2.4.1.11) from rat and from rabbit skeletal muscle was phosphorylated in vitro by glycogen synthase kinase 4 (EC 2.7.1.37) to the extent of 0.8 phosphates/subunit. For both phosphorylated enzymes, the activity ratio (activity without glucose 6-P divided by activity with 8 mM glucose 6-P) was 0.8 when determined with low concentrations of glycogen synthase and/or short incubation times. However, the activity ratio was 0.5 with high enzyme concentrations and longer incubation times. It was found that the lower activity ratios result largely from UDP inhibition of activity measured in the absence of glucose 6-P. Inhibition by UDP was much less pronounced for glycogen synthase I, indicating that a major consequence of phosphorylation by glycogen synthase kinase 4 is an increased sensitivity to UDP inhibition.  相似文献   

8.
Calmodulin-dependent protein kinase II from rat brain underwent autophosphorylation and the autophosphorylation caused a marked decrease in the enzyme activity. Calmodulin-dependent glycogen synthase kinase from rabbit skeletal muscle was also inactivated by incubation under autophosphorylating conditions. The inactivation of the protein kinases by the autophosphorylation may be an important self-regulatory mechanism in controlling the enzyme activities.  相似文献   

9.

Background  

The glycogen synthase kinase 3 (GSK3)/SHAGGY-like kinases (GSKs) are non-receptor serine/threonine protein kinases that are involved in a variety of biological processes. In contrast to the two members of the GSK3 family in mammals, plants appear to have a much larger set of divergent GSK genes. Plant GSKs are encoded by a multigene family; analysis of the Arabidopsis genome revealed the existence of 10 GSK genes that fall into four major groups. Here we characterized the structure of Arabidopsis and rice GSK genes and conducted the first broad phylogenetic analysis of the plant GSK gene family, covering a taxonomically diverse array of algal and land plant sequences.  相似文献   

10.
Phosphorylation of rat liver glycogen synthase by phosphorylase kinase   总被引:2,自引:0,他引:2  
Phosphorylation of rat liver glycogen synthase by rabbit skeletal muscle phosphorylase kinase results in the incorporation of approximately 0.8-1.2 mol of PO4/subunit. Analyses of the tryptic peptides by isoelectric focusing and thin layer chromatography reveal the presence of two major 32P-labeled peptides. Similar results were obtained when the synthase was phosphorylated by rat liver phosphorylase kinase. This extent of phosphorylation does not result in a significant change in the synthase activity ratio. In contrast, rabbit muscle glycogen synthase is readily inactivated by rabbit muscle phosphorylase kinase; this inactivation is further augmented by the addition of rabbit muscle cAMP-dependent protein kinase or cAMP-independent synthase (casein) kinase-1. Addition of cAMP-dependent protein kinase after initial phosphorylation of liver synthase with phosphorylase kinase, however, does not result in an inactivation or additional phosphorylation. The lack of additive phosphorylation under this condition appears to result from the phosphorylation of a common site by these two kinases. Partial inactivation of liver synthase can be achieved by sequential phosphorylation with phosphorylase kinase followed by synthase (casein) kinase-1. Under this assay condition, the phosphate incorporation into the synthase is additively increased and the synthase activity ratio (-glucose-6-P/+glucose-6-P) is reduced from 0.95 to 0.6. Nevertheless, if the order of the addition of these two kinases is reversed, neither additive phosphorylation nor inactivation of the synthase is observed. Prior phosphorylation of the synthase by phosphorylase kinase transforms the synthase such that it becomes a better substrate for synthase (casein) kinase-1 as evidenced by a 2- to 4-fold increase in the rate of phosphorylation. This increased rate of phosphorylation of the synthase appears to result from the rapid phosphorylation of a site neighboring that previously phosphorylated by phosphorylase kinase.  相似文献   

11.
12.
A series of sixteen benzoylthioureas derivatives were initially evaluated in vitro against the epimastigote form of Trypanosoma cruzi. All of the tested compounds inhibited the growth of this form of the parasite, and due to the promising anti-epimastigote activity from three of these compounds, they were also assayed against the trypomastigote and amastigote forms. ADMET-Tox in silico predictions and molecular docking studies with two main enzymatic targets (cruzain and CYP-51) were performed for the three compounds with the highest activity. The docking studies showed that these compounds can interact with the active site of cruzain by hydrogen bonds and can be coordinated with Fe-heme through the carbonyl oxygen atom of the CYP51. These findings can be considered an important starting point for the proposal of the benzoylthioureas as potent, selective, and multi-target antitrypanosomal agents.  相似文献   

13.
Neurofilament (NF), a major neuronal intermediate filament, is composed of three subunits, NF-L, NF-M, and NF-H. All three subunits contain a well conserved glutamate (E)-rich region called "E-segment" in the N terminus of the tail region. Although the E-segments of NF-L and NF-M are phosphorylated by casein kinases, it has not been observed in NF-H. Using mass spectrometric analysis, we identified phosphorylation of the E-segment of NF-H, prepared from rat spinal cords, at Ser-493 and Ser-501 in the Ser-Pro sequences. The E-segment kinase was isolated from rat brain extract using column chromatography and identified as glycogen synthase kinase (GSK) 3beta. GSK3beta was shown to phosphorylate at Ser-493 in vitro by phosphopeptide mapping and site-directed mutagenesis, and in vivo in HEK293 cells using the phospho-Ser-493 antibody, but did not phosphorylate Ser-501. GSK3beta preferred Ser-493 to the KSP-repeated sequences for phosphorylation sites in the NF-H tail domain. Moreover, Ser-493 was a better phosphorylation site for GSK3beta than other proline-directed protein kinases, Cdk5/p35 and ERK. GSK3beta in the spinal cord extract was associated with NF cytoskeletons. Taken together, we concluded that Ser-493 in the E-segment of NF-H is phosphorylated by GSK3beta in rat spinal cords.  相似文献   

14.
Novel series of some triazolo[4,3-b]pyridazine derivatives were designed and synthesized. All the newly synthesized compounds were evaluated for their cytotoxic activity at 10−5 M concentration towards 60 cancer cell lines according to USA NCI protocol. Most of the synthesized compounds showed good activity against SR (leukemia) cell panel. The most active compounds, 2f and 4a were subjected for further evaluation at a five dose level screening and their efficacy for c-Met kinase inhibition was determined in vitro. Binding mode of these derivatives was explored via molecular docking.  相似文献   

15.
Inhibition of the accumulation of protease-resistant prion protein (PrP-res) is a prime strategy in the development of potential transmissible spongiform encephalopathy (TSE) therapeutics. Here we show that curcumin (diferoylmethane), a major component of the spice turmeric, potently inhibits PrP-res accumulation in scrapie agent-infected neuroblastoma cells (50% inhibitory concentration, approximately 10 nM) and partially inhibits the cell-free conversion of PrP to PrP-res. In vivo studies showed that dietary administration of curcumin had no significant effect on the onset of scrapie in hamsters. Nonetheless, other studies have shown that curcumin is nontoxic and can penetrate the brain, properties that give curcumin advantages over inhibitors previously identified as potential prophylactic and/or therapeutic anti-TSE compounds.  相似文献   

16.
Famotidine was investigated as an inhibitor of glycogen synthase kinase-3β (GSK-3β) in an attempt to explain the molecular mechanism of its hypoglycemic side effects. The investigation included simulated docking experiments, in vitro enzyme inhibition assay, glycogen sparing studies using animal models and single dose oral glucose tolerance test (OGTT). Docking studies showed how famotidine is optimally fit within the binding pocket of GSK-3β via numerous attractive interactions with some specific amino acids. Experimentally, famotidine could inhibit GSK-3β (IC50 = 1.44 μM) and increased significantly liver glycogen spares in fasting animal models. Moreover, a single oral dose of famotidine was shown to decrease the glycemic response curve after 75 g OGTT  相似文献   

17.
The phosphorylation of rabbit skeletal muscle glycogen synthase by casein kinase I is markedly enhanced if the enzyme has previously been phosphorylated by cAMP-dependent protein kinase. The presence of phosphate in the primary cAMP-dependent protein kinase sites, sites 1a, 1b, and 2 (serine 7), increases the activity of casein kinase I toward residues in the vicinity of these sites. This synergistic phosphorylation correlates with potent inactivation of the glycogen synthase. Analysis of the NH2 terminus of the enzyme subunit indicated that phosphorylation at serine 7 caused serine 10 to become a preferred casein kinase I site and that phosphoserine can be an important recognition determinant for casein kinase I. This finding can also explain how epinephrine stimulation of skeletal muscle provokes significant increases in the phosphorylation state of serine residues, in particular serine 10, not recognized by cAMP-dependent protein kinase.  相似文献   

18.
19.
20.
Purified glycogen synthase is contaminated with traces of two protein kinases that can phosphorylate the enzyme. One is protein kinase dependent on adenosine 3':5'-monophosphate (cyclic AMP) and the second is an activity termed glycogen synthase kinase-2 [Nimmo, H.G. and Cohen P, (1974)]. Glycogen synthase kinase-2 has been found to be localized relatively specifically in the protein-glycogen complex. It has been purified 4000-fold by two procedures, both of which involve disruption of the complex, followed by the DEAE-cellulose and phosphocellulose chromatographies. However the salt concentration at which glycogen synthase kinase-2 is eluted from DEAE-cellulose depends on the method that is used to disrupt the complex. The results indicate that glycogen synthase kinase-2 is firmly attached to a protein component of the complex. The isolation procedures separate glycogen synthase kinase-2 from phosphorylase kinase, cyclic AMP-dependent protein kinase and other glycogen-metabolising enzymes. Glycogen synthase kinase-2 is the major phosvitin kinase in skeletal muscle, although glycogen synthase is a six to eight-fold better substrate than phosvitin under the standard assay conditions. Phosphorylase kinase and phosphorylase b are not substrates for glycogen synthase kinase 2. Following incubation with cyclic-AMP-dependent protein kinase, cyclic AMP and Mg-ATP, the phosphorylation of glycogen synthase reaches a plateau at 1.0 molecules of phosphate incorporated per subunit and the activity ratio measured in the absence and presence of glucose 6-phosphate falls from 0.8 to a plateau of 0.18. The Ka for glucose 6-phosphate of this phosphorylated species, termed glycogen synthase b1, is the 0.6 mM. Following incubation with glycogen synthase kinase-2 and Mg-ATP, the phosphorylation reaches a plateau of 0.92 molecules of phosphate incorporated per subunit and the activity ratio decreases to a plateau of 0.08. The Ka for glucose 6-phosphate of this phosphorylated species, termed glycogen synthetase b2, is 4 mM. In the presence of both cyclic-AMP-dependent protein kinase and glycogen synthase kinase-2, the phosphorylation of glycogen synthase reaches a plateau when 1.95 molecules of phoshophate have been incorporated per subunit. The activity ratio is 0.01 and the Ka for glucose 6-phosphate is 10 mM. The results indicate that glycogen synthase can be regulated by two distinct phosphorylation-dephosphorylation cycles. The implication of these findings for the regulation of glycogen synthase in vivo are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号