首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A thermophilic extracellular -amylase from Bacillus licheniformis   总被引:13,自引:0,他引:13  
A strain of Bacillus licheniformis isolated from soil produced an extracellular α-amylase(s) with unusual characteristics. The enzyme was purified 126-fold by starch adsorption, DEAE-cellulose treatment, and CM-cellulose column chromatography. Four active protein bands were detected by disc electrophoresis in poly-acrylamide gel although the enzyme behaved as a single peak during both ultracen-trifugation and chromatography using CM-cellulose and Sephadex G-100. The enzyme showed a very broad pH-activity curve and had substantial activity in the alkaline range. The optimal temperature was 76 °C at pH 9.O. The enzyme was stable between pH 6 and 11 at 25 °C, and below 60 °C at pH 8.0. Using Sephadex G-100 gel filtration, a molecular weight of 22,500 was estimated for the enzyme. The action pattern on amylose and amylopectin is unique in that the predominant product during all stages of hydrolysis is maltopentaose.  相似文献   

2.
Aminopeptidase is isolated and purified from the culture liquid of the thermophilic strain of Bacillus licheniformis. The aminopeptidase predominantly splits off N-terminal leucin in short peptides and hydrolyzes leucinamide as well. The molecular weight of the enzyme is about 60 kDa. The enzyme is able to form aggregates. Optimum of aminopeptidase activity was demonstrated at pH 8.0-8.3 and temperature of 85 degrees C. The enzyme is inactivated by metal-binding reagents and reducing substances, and is activated by cobalt and PCMB ions. The EDTA-inactivated enzyme activity is reduced by cobalt and zinc ions, however the latter has no activating action. The enzyme under study is characterized by high thermostability: in the presence of the substrate at the temperature of 90 degrees C the reaction linearity is retained for not less than 2 h and without the substrate the half-life of the aminopeptidase at 90 degrees C is 145 min. Extracellular aminopeptidase of the thermophilic strain of B. licheniformis is a new enzyme differing from the aminopeptidases described by the present in high thermostability, induced, evidently, by the presence of one or several disulphide bonds in the enzyme molecule.  相似文献   

3.
4.
A new esterase activity from Bacillus licheniformis was characterized from an Escherichia coli recombinant strain. The protein was a single polypeptide chain with a molecular mass of 81 kDa. The optimum pH for esterase activity was 8-8.5 and it was stable in the range 7-8.5. The optimum temperature for activity was 45 degrees C and the half-life was 1 h at 64 degrees C. Maximum activity was observed on p-nitrophenyl caproate with little activity toward long-chain fatty acid esters. The enzyme had a KM of 0.52 mM for p-nitrophenyl caproate hydrolysis at pH 8 and 37 degrees C. The enzyme activity was not affected by either metal ions or sulfydryl reagents. Surprisingly, the enzyme was only slightly inhibited by PMSF. These characteristics classified the new enzyme as a thermostable esterase that shared similarities with lipases. The esterase might be useful for biotechnological applications such as ester synthesis.  相似文献   

5.
The genes encoding the thermostable alpha-amylases of Bacillus stearothermophilus and B. licheniformis were cloned in Escherichia coli, and their DNA sequences were determined. The coding and deduced polypeptide sequences are 59 and 62% homologous to each other, respectively. The B. stearothermophilus protein differs most significantly from that of B. licheniformis in that it possesses a 32-residue COOH-terminal tail. Transformation of E. coli with vectors containing either gene resulted in the synthesis and secretion of active enzymes similar to those produced by the parental organisms. A plasmid was constructed in which the promoter and the NH2-terminal two-thirds of the B. stearothermophilus coding sequence was fused out of frame to the entire mature coding sequence of the B. licheniformis gene. Approximately 1 in 5,000 colonies transformed with this plasmid was found to secrete an active amylase. Hybridization analysis of plasmids isolated from these amylase-positive colonies indicated that the parental coding sequences had recombined by homologous recombination. DNA sequence analysis of selected hybrid genes revealed symmetrical, nonrandom distribution of loci at which the crossovers had resolved. Several purified hybrid alpha-amylases were characterized and found to differ with respect to thermostability and specific activity.  相似文献   

6.
An esterase gene from the moderate thermophilic strain Bacillus licheniformis LCB40 was cloned and expressed in Escherichia coli. Comparison of the amino acid sequence of the esterase with those of known lipases and esterases showed the presence of the well-conserved Gly-X-Ser-X-Gly pentapeptide, with an alanine replacing the first glycine. This substitution has never been reported for an esterase but it is present in the lipases from Bacillus subtilis, Bacillus pumilus and Galactomyces candidum. The amino acid sequence showed similarities with lipases and with mammalian lecithin-cholesterol acyltranferases and no similarities with esterases. The enzyme activity of a crude extract from a recombinant Escherichia coli strain showed hydrolysis of p-nitrophenyl caprylate (pNPC8) as for esterases, but not of p-nitrophenyl palmitate (pNPC16) or olive oil such as for lipases. Thus, the enzyme displays the original property of associating the activity of an esterase with a primary sequence showing high similarity with lipases.  相似文献   

7.
Strains of thermophilic bacilli were screened for cellulolytic activity by gel diffusion assay on selective medium at 55°C. Strain B-41361, identified as a strain of Bacillus licheniformis, displayed activity against carboxymethylcellulose. Zymogram analysis demonstrated several catalytically active polypeptides with the most prominent species having a mass of 37 kDa. The enzyme was purified 60-fold with a 17% yield and specific activity of 183 U/mg. The amino terminal sequence was homologous to members of glycoside hydrolase family 5. Optimal temperature was 65°C (measured over 30 min), but the enzyme was most stable at 60°C, retaining greater than 90% activity after one hour. The enzyme had a broad pH range, with maximal activity at pH 6.0, 75% maximal activity at pH 4.5, and 40% at pH 10. The enzyme hydrolyzed p-nitrophenylcellobioside, barley β-glucan, and lichenan, but no activity was detected against avicel or acid-swollen cellulose.Mention of a trade name or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.  相似文献   

8.
The esterase from the thermophilic eubacterium Bacillus acidocaldarius is a thermophilic and thermostable monomeric protein with a molecular mass of 34 KDa. The enzyme, characterized as a "B-type" carboxylesterase, displays the maximal activity at 65 degrees C. Interestingly, it is also quite active at room temperature, an unusual feature for an enzyme isolated from a thermophilic microorganism. We investigated the effect of temperature on the structural properties of the enzyme, and compared its structural features with those of the esterase from the hyperthermophilic archaeon Archaeoglobus fulgidus. In particular, the secondary structure and the thermal stability of the esterase were studied by FT-IR spectroscopy, while information on the conformational dynamics of the enzyme were obtained by frequency-domain fluorometry and anisotropy decays. Our data pointed out that the Bacillus acidocaldarius enzyme possesses a secondary structure rich in alpha-helices as described for the esterase isolated from Archaeoglobus fulgidus. Moreover, infrared spectra indicated a higher accessibility of the solvent ((2)H(2)O) to Bacillus acidocaldarius esterase than to Archaeoglobus fulgidus enzyme suggesting, in turn, a less compact structure of the former enzyme. The fluorescence studies showed that the intrinsic tryptophanyl fluorescence of the Bacillus acidocaldarius protein was well represented by the three-exponential model, and that the temperature affected the protein conformational dynamics. The data suggested an increase in the protein flexibility on increasing the temperature. Moreover, comparison of Bacillus acidocaldarius esterase with the Archaeoglobus fugidus enzyme fluorescence data indicated a higher flexibility of the former enzyme at all temperatures tested, supporting the infrared data and giving a possible explanation of its unusual relative high activity at low temperatures. Proteins 2000;40:473-481.  相似文献   

9.
2,3-Butanediol is an important compound that can be used in many areas, especially as a platform chemical and liquid fuel. But traditional 2,3-butanediol producing microorganisms, such as Klebsiella pneumonia and K. xoytoca, are pathogens and they can only ferment sugars at 37°C. Here, we reported a newly developed Bacillus licheniformis. A protoplast transformation system was developed and optimized for this organism. With this transformation method, a marker-less gene deletion protocol was successfully used to knock out the ldh gene of B. licheniformis BL1 and BL3. BL1 was isolated earlier from soil for lactate production and it was further evolved to BL3 for xylose utilization. Combined with pH and aeration control, ldh mutant BL5 and BL8 can efficiently ferment glucose and xylose to D-(-) 2,3-butanediol at 50°C, pH 5.0. For glucose and xylose, the specific 2,3-butanediol productivities are 29.4 and 26.1 mM/h, respectively. The yield is 0.73 mol/mol for BL8 in xylose and 0.9 mol/mol for BL5 and BL8 in glucose. The D-(-) 2,3-butanediol optical purity is more than 98%. As far as we know, this is the first reported high temperature butanediol producer to match the simultaneous saccharification and fermentation conditions. Therefore, it has potential to further lower butanediol producing cost with low cost lignocellulosic biomass in the near future.  相似文献   

10.
The serine proteinase from B. licheniformis was purified by affinity chromatography on the sorbent obtained by attachment of p-(omega-aminomethyl)-phenylboronic acid via an amino group to CH-Sepharose. The use of this sorbent specific to the serine proteinases active sites resulted in a 35-fold purification of the enzyme with an apparent activity yield of 288%. Such a high activity yield is due to a removal of the enzyme inhibitors. The N-terminal sequence of B. licheniformis extracellular serine proteinase traced for 35 amino acid residues coincides with that of subtilisin Carlberg, a serine proteinase presumed to be secreted by a B. subtilis strain. Since the amino acid composition as well as the functional properties of these two enzymes did not reveal any noticeable differences, it was assumed that both proteinases are very similar, if not identical. This conclusion leads to reconsideration of the existing concept on an extremely fast rate of subtilisin evolution. Three multiple forms of B. licheniformis extracellular serine proteinase were found to differ only in their net charges, presumably as a result of partial deamidation of Asn or Gln residues within their structure.  相似文献   

11.
This work is a report of the characterization of an alkaline lipolytic enzyme isolated from Bacillus subtilis DR8806. The extracellular extract was concentrated using ammonium sulfate, and ultrafiltration. The active enzyme was purified by Q-sepharose ion exchange chromatography. The molecular mass of the enzyme was estimated to be 60.25 kDa based on SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis). The optimum pH and temperature of this enzyme were observed to be 8.0 and 50 °C, respectively. The enzyme exhibited a half-life of 72 min at its optimum temperature. It was stable in the presence of metal ions (10 mM) such as Ca2+, K+ and Na+, whereas Cu2+, Fe2+, Zn2+, Mn2+, Co2+, Mg2+ and Hg2+ were found to have inhibitory effects. However, the enzyme activity was not affected significantly by 1% Triton X-100. The study of substrate specificity showed that the purified enzyme has a preferential specificity for small ester of p-nitrophenyl acetate (C2), and it was the most efficiently hydrolyzed substrate as compared to the other esters. The kinetic parameters showed that the enzyme has Km of 4.2 mM and Vmax of 151 μmol min−1 mg−1 for p-nitrophenyl acetate. The hydrolysis rates of the fluorescence substrates were increased in the presence of the purified enzyme. Regarding the features of the enzyme, it may be utilized as a novel candidate for industrial applications.  相似文献   

12.
Adenine-auxotrophic mutant of Bacillus licheniformis formed considerable amount of guanosine from guanine. The guanosine formation was stimulated by the addition of penicillin to the growing cells and by the presence of uridine in the crude extract. The crude extract preserved for long time showed the changes of the enzyme actions for added guanine.  相似文献   

13.
Bacillus stearothermophilus has been reported to produce an extracellular esterase with molecular weight of 42–47 kDa. Extracellular esterase activity in Bacillus stearothermophilus (NCIB 13335) was found to reside in protein with a molecular weight less than 10 kDa. This small esterase was responsible for all the esterase activity observed in this strain under the conditions studied.  相似文献   

14.
Summary A tentative structure and composition of a surfactant, BL-86, produced byBacillus licheniformis 86 is described. The surfactant is a mixture of lipopeptides with the major components ranging in size from 979 to 1091 Da and varying in increments of 14 Da. The variation in molecular weight represents changes in the number of methylene groups in the lipid and/or peptide portion of the surfactant. There are 7 amino acids per molecule. The peptide portion is composed of the following amino acids: glutamic acid or glutamine (glx), aspartic acid or asparagine (asx), valine, leucine, and isoleucine at a ratio of 1.01.01.43.00.6, respectively. The leucine is present as both thed andl isomers at a ratio of about 21, respectively. Forty percent of the molecules containl-valine instead ofl-isoleucine. The glx and asx are present as a combination ofl-glutamic acid andl-asparagine and/orl-glutamine andl-aspartic acid. The N-terminus of the peptide is blocked, most likely by a peptide bond to the lipid portion. An ester carbonyl structure is present, which could be a part of a lactone ring connecting the position of the lipid to one of the carboxyl groups in the peptide. The lipid portion is composed of, on average, 8–9 methylene groups, and contains a mixture of linear and branched tails. Results of DCI-MS and FAB-MS analyses, as well as surface tension measurements, of purified BL-86 HPLC fractions support the proposed composition.  相似文献   

15.
An aminopeptidase A (EC 3.4.11.7) was purified to homogeneity from Bacillus licheniformis NS115 and its enzymatic properties were characterized. The enzyme had an apparent molecular mass of 64 kDa, consisting of heterodimeric 42 kDa and 22 kDa subunits, and is a new enzyme from N-terminal analysis of heavy and light subunits. The light suhunit had no catalytic activity against the substrate and apparent Km values of heavy and whole enzyme were 0.26 and 0.087 mM of γ-glutamyl-p-nitroanilide, respectively.  相似文献   

16.
From Bacillus licheniformis a site-specific restriction endonuclease, named BliI, has been purified and characterized. BliI was able to digest lambda DNA at pH 9.1 over a wide temperature range (25-65 degrees C). Digestion of lambda and psi X174 DNAs with BliI produced banding patterns identical to those seen with HaeIII. Therefore, BliI and HaeIII endonculeases are isoschizomers.  相似文献   

17.
18.
A new Bacillus licheniformis strain, 603, isolated from a mixture of drilling fluid and subsurface thermal water, has been found to produce a cyclic lipopeptide which is released into cultural medium as well as present in cells as the major lipid constituent (57% of the total cell lipids extractable with 2:1 chloroform-methanol). The quantitative ratio of the extracellular and intracellular lipopeptide has been estimated as 23:10. The metabolite represents a heptapeptide, L-Asp-->L-Leu-->L-Leu-->L-Val-->L-Val-->L-Glu-->L-Leu, N-acylated to the N-terminal amino acid, L-Asp, by a 3-hydroxy fatty acid (from 13:0 to 17:0 with n-, iso-, and anteiso-chains), the 3-OH group of which is esterified by the C-terminal amino acid, L-Leu. The chemical structure of the lipopeptide has been established by means of infrared (IR), 1H- and 13C-nuclear magnetic resonance (NMR) spectroscopy, electrospray ionisation (ESI) mass spectrometry (MS), including secondary ion mass spectrometry, along with chemical and enzymatic degradation. Although a diversity of similar metabolites synthesised by various B. licheniformis strains are presently known, such a structure has not been reported thus far. Added to the growth medium of strain 603 at the concentration of 1.6 microg/ml, the lipopeptide prevents adhesion of cells to a glass surface. Also, it exhibits a considerable growth-inhibiting activity against Corynebacterium variabilis and a much lower activity against Acinetobacter sp.  相似文献   

19.
A moderately thermophilic bacterium, designated strain CAN55, was isolated from the gas-washing wastewaters of the phosphate industry, located in Sfax, Tunisia, after enrichment on 1-decanethiol, a mercaptan used as the sole carbon and energy source. Strain CAN55 belonged to the Bacillus genus and was closely related to Bacillus licheniformis, with 16S rRNA gene sequence similarity of 99.2%. It was able to degrade 83% of 1-decanethiol (3 mM), and 39% of decyl disulfide, the product of spontaneous autoxidation, after 14 days of incubation at 55 °C, and without yeast extract added. Strain CAN55 was also capable of degrading 70% of 1-dodecanethiol (3 mM) after 14 days of incubation at 55 °C. During the growth on decanethiol and dodecanethiol, the decrease of surface tensions of cell-free culture supernatants from 55.1 to 40 mN/m and from 56.1 to 41 mN/m, respectively, after 26 h of incubation at 55 °C, was an agreement with the production of biosurfactant(s). In addition, strain CAN55 degraded 1-heptanethiol and cyclohexylmercaptan thus suggesting that this isolate may be useful for the bioremediation of mercaptan contaminated sites.  相似文献   

20.
L Li  F Su  Y Wang  L Zhang  C Liu  J Li  C Ma  P Xu 《Journal of bacteriology》2012,194(15):4133-4134
Both Bacillus licheniformis strains 10-1-A and 5-2-D are efficient producers of 2,3-butanediol. Here we present 4.3-Mb and 4.2-Mb assemblies of their genomes. The key genes for the regulation and metabolism of 2,3-butanediol production were annotated, which may provide further insights into the molecular mechanism for the production of 2,3-butanediol with high yield and productivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号