首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Glucosinolates are plant metabolites containing an anionic nitrogeneous thioglucosidic core structure and a structurally diverse amino acid-derived side chain, which after hydrolysis by thioglucohydrolases (myrosinases) afford biological active degradation products such as nitriles and isothiocyanates. Structural diversity in glucosinolates is partially due to enzymatic modifications occurring on the preformed core structure, like the recently described oxidation of sulfides to sulfoxides catalyzed by a flavin monooxygenase identified in Arabidopsis thaliana. The enzyme product, 4-methylsulfinylbutylglucosinolate, bears a chiral sulfoxide group in its side chain. We have analyzed the epimeric purity of 4-methylsulfinylbutylglucosinolate by NMR methods using a chiral lanthanide shift reagent. The absolute configuration of the sulfoxide group has been established by comparing the 1H NMR spectra of the two sulfoximine diastereomers of natural 4-methylsulfinylbutylglucosinolate. According to our data, 4-methylsulfinylbutylglucosinolate isolated from broccoli and A. thaliana is a pure epimer and its sulfoxide group has the RS configuration. The product of the A. thaliana flavin monooxygenase has these same properties demonstrating that the enzyme is stereospecific and supporting its involvement in glucosinolate side chain formation.  相似文献   

2.
We report here a sensitive method for the determination of the absolute configurations of primary amines using exciton-coupled circular dichroism (ECCD). The method works on a microgram scale by derivatization of chiral amines with quinoline chromophores. Complexation of the chiral ligands with metal ion fixes the geometry of the chromophores, resulting in a twist that is governed by the asymmetric carbon configuration and steric environment of the amine. The absolute configurations of the primary amines can be interpreted from the couplets of the ECCD spectra of the derivatized complexes. Crystal structures, 2D NMR studies, and semiempirical calculations provide structural evidence for our model.  相似文献   

3.
X-ray structure determination of the compound (C37H42N2O6)2+ .2Br-.4CH3OH, confirms that (+)-tubocurarine is a monoquaternary salt and has established that the molecule adopts different conformations in crystals of the dibromide and dichloride salts. The crystal structure is stabilised by a number of hydrogen bonds involving the two free hydroxyl groups and the tertiary nitrogen of the tubocurarine molecule, the bromide ions and the solvent molecules. The absolute configuration of the molecule, determined by X-ray anomalous scattering, confirms the configuration assigned earlier by chemical studies.  相似文献   

4.
We report the determination of the absolute configuration of eight stereoisomers in the series of chiral 1-(thi)oxothiazolinyl-3-(thi)oxothiazolinyl toluene atropisomers 1-3, from the known absolute configuration of one stereoisomer, determined by X-ray crystallography. The method uses the affiliation between signs of rotation of polarised light during chemical transformations which preserve the absolute configuration and also during rotation around a single pivot bond producing a compound of known configuration. The use of chiral HPLC in tandem with a chirality detector gives a decisive advantage since such correlation can be performed on a mixture of a very limited quantity of compounds, without tedious purification steps. The method shown as an example in this article, which uses chiral HPLC with chirality detection, may prove useful in many other cases where the determination of the absolute configuration is necessary and where a chemical interconversion method can be used on a microscale.  相似文献   

5.
Allenmark S  Gawronski J 《Chirality》2008,20(5):606-608
Rapid progress in asymmetric synthesis stimulated a further development of methods and techniques for the determination of absolute configuration of chiral molecules. In recent years the direct methods, i.e. X-ray diffraction analysis, circular dichroism (vibrational and electronic), Raman optical activity, optical rotation measurements, as well as indirect methods for relative configuration assignment with the use of NMR spectroscopy or enzymatic transformations, are receiving increasing attention not only by specialists in the field but also by synthetic and structural chemists alike. This paper provides a short overview of the methods currently used, as well as references to contributions collected in this Thematic Issue of Chirality.  相似文献   

6.
Homologation and substitution on the carbon backbone of (S)-glutamic acid [(S)-Glu, 1], as well as absolute stereochemistry, are structural parameters of key importance for the pharmacological profile of (S)-Glu receptor ligands. We describe a series of methyl-substituted 2-aminoadipic acid (AA) analogs, and the synthesis, stereochemistry, and enantiopharmacology of 3-methyl-AA (4a-d), 4-methyl-AA (5a-d), 5-methyl-AA (6a-d), and (E)-Delta(4)-5-methyl-AA (7a and 7b) are reported. The compounds were resolved using chiral HPLC and the configurational assignments of the enantiomers were based on X-ray crystallographic analyses, chemical correlation, and CD spectral analyses. The effects of the individual stereoisomers at ionotropic and metabotropic (S)-Glu receptors (iGluRs and mGluRs) were characterized. Compounds with S-configuration at the alpha-carbon generally showed mGluR2 agonist activity of similar or slightly lower potencies than (S)-AA [e.g., EC(50) = 76 microM for (2S,4S)-4-methyl-AA (5a) as compared to EC(50) = 35 microM for (S)-AA]. The position of the methyl substituent had a profound effect on the observed pharmacology, whereas the absolute stereochemistry at the methylated carbon atom had a very limited effect on pharmacology. Structure-activity relationships at iGluRs in the rat cortical wedge preparation showed a complex pattern, some compounds being NMDA receptor agonists [e.g., EC(50) =110 microM for (2S,5RS)-5-methyl-AA (6a,b)] and some compounds showing NMDA receptor antagonist effects [e.g., IC(50) = 300 microM for (2R,4S)-4-methyl-AA (5d)]. The two unsaturated analogs (S)- (7a) and (R)-(E)-Delta(4)-5-methyl-AA (7b) turned out to be a weak AMPA receptor agonist and a weak mixed NMDA/AMPA receptor antagonist, respectively.  相似文献   

7.
Arita S  Yabuuchi T  Kusumi T 《Chirality》2003,15(7):609-614
Racemic 1- and 2-naphthylmethoxyacetic acids (1NMA and 2NMA), the chiral anisotropic reagents used for absolute configuration determination of chiral secondary alcohols and primary amines, were conveniently resolved to enantiomers (>99% ee) by condensation with L-phenylalaninol (2-amino-3-phenylpropanol), chromatographic separation of the diastereomers, and hydrolysis. This method enables large-scale preparation of enantiomeric 1NMA and 2NMA.  相似文献   

8.
The absolute configurations of plumericin (1) and isoplumericin (2), isolated from Plumeria rubra, were re-assigned based on a combination of X-ray crystal-structure determination and quantum-mechanical calculations of their circular dichroism (CD) spectra. The experimental CD spectra showed an excellent match with those calculated for the (1S,5R,8R,9R,10R) absolute configuration (corresponding to ent-1 and ent-2, resp.), opposite to that generally accepted and published in the literature. Since the (false) plumericin configuration has been often used to derive the absolute configuration of related iridoids by chemical correlation, their absolute configurations also have to be reconsidered.  相似文献   

9.
Carbamate diastereomers 3b-18b were prepared from easily accessible (S)-2-chloro-2-fluoroethanoyl isocyanate (1) and various secondary chiral alcohols. Compound 1 as a chiral analog of trichloroacetyl isocyanate undergoes the reaction with alcohols very fast, thus blocking the hydroxyl group for the purposes of NMR investigation. Moreover, the correlation of stereochemistry of 3b-18b with their (1)H NMR spectra revealed that the constitution as well as configuration influences regularly the values of chemical shift difference (deltadelta = delta(R) - delta(S)) except for those diastereomers bearing simple alkyl groups in the molecule. Spectral as well as crystallographic data manifest the predominant planar conformation of the central part of the molecule. Due to the good accessibility and high reactivity in particular, the acylisocyanate 1 might be considered, to some extent, an alternative for TAI giving additional information on a compound's spatial structure.  相似文献   

10.
An overview of chiral reagents that are used to assign the absolute configuration of particular classes of compounds using NMR spectroscopy is presented. The use of chiral derivatizing agents, chiral solvating agents, metal complexes, and liquid crystals is described. Chirality, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
The present work reports preparative enantioseparation of (RS)‐baclofen using thin‐layer chromatography (TLC) and high‐performance liquid chromatography (HPLC). Diastereomers were synthesized using a new monochloro‐s‐triazine‐based chiral derivatizing reagent (CDR), namely, N‐(4‐chloro‐6‐piperidinyl‐[1,3,5]‐triazine‐2‐yl)‐L‐phenylalanine, under microwave irradiation. Acetonitrile‐0.1% aq. triflouroacetic acid in gradient elution mode and CH3OH‐CH2Cl2 (4:5; v/v) were successful as mobile phase in HPLC and TLC, respectively. The two diastereomers were isolated by preparative TLC. Molecular dissymmetry was established by developing the lowest energy optimized structures of the diastereomers based on Density Functional Theory and with the help of 1H NMR showing anisotropic effect associated with aromatic ring of s‐triazine (in the CDR). The configuration of diastereomers was established as [L‐Phe‐(R)‐Bac] and [L‐Phe‐(S)‐Bac], where the first notation refers to the configuration of chiral auxiliary (of the CDR) and the second to that of the analyte Bac. Limits of detection were found to be 0.056 and 0.061 ng mL?1, respectively, for the two diastereomers. Determination of absolute configuration of the two diastereomers lent support to the elution order and separation mechanism.Chirality 27:299–305, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

12.
The achiral hydrocarbon tetraphenylethylene crystallizes in enantiomorphous forms (chiral space group: P21) to afford right- and left-handed hemihedral crystals, which can be recognized by solid-state circular dichroism spectroscopic analysis. Chiral organic crystals of tetraphenylethylene mediated enantioselective addition of diisopropylzinc to pyrimidine-5-carbaldehyde to give, in conjunction with asymmetric autocatalysis with amplification of chirality, almost enantiomerically pure (S)- and (R)-5-pyrimidyl alkanols whose absolute configurations were controlled efficiently by the crystalline chirality of the tetraphenylethylene substrate. Tetrakis(p-chlorophenyl)ethylene and tetrakis(p-bromophenyl)ethylene also show chirality in the crystalline state, which can also act as a chiral substrate and induce enantioselectivity of diisopropylzinc addition to pyrimidine-5-carbaldehyde in asymmetric autocatalysis to give enantiomerically enriched 5-pyrimidyl alkanols with the absolute configuration correlated with that of the chiral crystals. Highly enantioselective synthesis has been achieved using chiral crystals composed of achiral hydrocarbons, tetraphenylethylenes, as chiral inducers. This chemical system enables significant amplification of the amount of chirality using spontaneously formed chiral crystals of achiral organic compounds as the seed for the chirality of asymmetric autocatalysis.  相似文献   

13.
The absolute configurations of the diastereomers of novel amino acid ester derivatives of 2,3‐substituted isoindolinones, which are known as apoptosis activators due to their ability to inhibit the MDM2‐p53 PPI, were assigned using NMR and computational methods. Procedures for diastereomer separation and determining the absolute configuration were developed to perform the study. The high significance of N‐benzyl fragment for the determination of the diastereomer absolute configuration by NMR methods was established; it is determined by a number of factors inherent in this fragment and the structural features of the studied substrates. Analysis of the individual isomer activity showed that the target inhibitory effect of S‐ and R‐isoindolinone L‐valinates differs by less than 20%. It can be explained by the presence of a flexible linker between the isoindolinone core and amino acid fragment, which provides the optimal arrangement of the molecule in the hydrophobic cavity of MDM2 for both isomers.  相似文献   

14.
The separation of enantiomeric sugars by chromatographic methods   总被引:1,自引:0,他引:1  
This paper has reviewed the number of chromatographic methods by which one may determine the absolute configuration of sugars. Both indirect methods (converting the enantiomeric pair into diastereomers) and direct methods (using chiral stationary phases) have been discussed. Resolving reagents for the indirect methods include chiral hydroxy compounds, chiral amines, and chiral thiols; with subsequent separation of the diastereomers either by gas-liquid chromatography or by high pressure liquid chromatography. Direct methods discussed have exclusively utilized chiral substitution of organopolysiloxane phases for the separation of enantiomeric sugars as volatile derivatives by gas-liquid chromatography.  相似文献   

15.
An asymmetric route was developed for the synthesis of a class of novel glucocorticoid receptor ligand derivatives 1. The key step of this synthesis involves a diastereoselective addition of chiral sulfoxide anion to a trifluoromethyl ketone precursor. The resulting diastereomers are readily separable and can be converted to the corresponding chiral epoxide and chiral alkyne intermediates (2 and 3). This sequence of reactions is suitable for large-scale preparation of these chiral intermediates and derivatives of 1. The absolute stereochemistry of the biologically active enantiomer of these GR ligands has also been determined.  相似文献   

16.
Essential background on the determination of absolute configuration by way of single-crystal X-ray diffraction (XRD) is presented. The use and limitations of an internal chiral reference are described. The physical model underlying the Flack parameter is explained. Absolute structure and absolute configuration are defined and their similarities and differences are highlighted. The necessary conditions on the Flack parameter for satisfactory absolute-structure determination are detailed. The symmetry and purity conditions for absolute-configuration determination are discussed. The physical basis of resonant scattering is briefly presented and the insights obtained from a complete derivation of a Bijvoet intensity ratio by way of the mean-square Friedel difference are exposed. The requirements on least-squares refinement are emphasized. The topics of right-handed axes, XRD intensity measurement, software, crystal-structure evaluation, errors in crystal structures, and compatibility of data in their relation to absolute-configuration determination are described. Characterization of the compounds and crystals by the physicochemical measurement of optical rotation, CD spectra, and enantioselective chromatography are presented. Some simple and some complex examples of absolute-configuration determination using combined XRD and CD measurements, using XRD and enantioselective chromatography, and in multiply-twinned crystals clarify the technique. The review concludes with comments on absolute-configuration determination from light-atom structures.  相似文献   

17.
The S absolute configuration of both chiral centers of xylindein was assigned using X-ray crystallographic heavy atom analysis after its conversion to a synthetic derivative. Crystallographic analysis of xylindein crystallized with phenols revealed that the proposed structure is the proper tautomer in the crystals.  相似文献   

18.
Sixteen diribonucleoside (3'-5')-H-phosphonates were synthesized via condensation of the protected ribonucleoside 3'-H-phosphonates with nucleosides, and the influence of a nucleoside sequence on the observed stereoselectivity was analyzed. 31P NMR spectroscopy was used to evaluate a relationship between chemical shift and absolute configuration at the phosphorous center of the H-phosphonate diesters as well as of the corresponding phosphorothioate diesters. Although for the most cases such correlation was found, there was however several exceptions to the rule where the relative positions of resonances arisingfrom Rp and Sp diastereomers were reversed.  相似文献   

19.
MalphaNP acid (+/-)-1, 2-methoxy-2-(1-naphthyl)propionic acid, was enantioresolved by the use of phenylalaninol (S)-(-)-4; a diastereomeric mixture of amides formed from acid (+/-)-1 and amine (S)-(-)-4 was easily separated by fractional recrystallization and/or HPLC on silica gel, yielding amides (R;S)-(-)-5a and (S;S)-(+)-5b. Their absolute configurations were determined by X-ray crystallography by reference to the S configuration of the phenylalaninol moiety. Amide (R;S)-(-)-5a was converted to oxazoline (R;S)-(+)-8a, from which enantiopure MalphaNP acid (R)-(-)-1 was recovered. In a similar way, enantiopure MalphaNP acid (S)-(+)-1 was obtained from amide (S;S)-(+)-5b. These reactions provide a new route for the large-scale preparation of enantiopure MalphaNP acid, a powerful chiral reagent for the enantioresolution of alcohols and simultaneous determination of their absolute configurations by (1)H NMR anisotropy.  相似文献   

20.
The configuration of the diastereoisomers of 6-(4-methylthiophenyl)-1,2,3,5,6,10b-hexahydropyrrolo[2,1-a]isoquinoline 1 (McN-5652) is determined and unequivocally assigned by NMR spectroscopy (NOE measurements) and an X-ray structural analysis of the trans diastereoisomer. The enantiomers of cis-1 are separated by preparative HPLC on a chiral phase. One of the enantiomers of cis-1 represents the precursor for imaging the serotonin 5-HT transporter with positron emission tomography (PET).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号