首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 801 毫秒
1.
We examined changes in zeta potential (the surface charge density, zeta) of the complexes of liposome (nmol)/DNA (microg) (L/D) formed in water at three different ratios (L/D=1, 10 and 20) by changing the ionic strength or pH to find an optimum formulation for in vivo gene delivery. At high DNA concentrations, zeta of the complexes formed in water at L/D=10 was significantly lowered by adding NaCl (zeta=+8.44+/-3.1 to -27.6+/-3.5 mV) or increasing pH from 5 (zeta=+15.3+/-1.0) to 9 (zeta=-22.5+/-2.5 mV). However, the positively charged complexes formed at L/D=20 (zeta=+6.2+/-3.5 mV) became negative as NaCl was added at alkaline pH as observed in medium (zeta=-19.7+/-9.9 mV). Thus, the complexes formed in water under the optimum condition were stable and largely negatively charged at L/D=1 (zeta=-58.1+/-3.9 mV), unstable and slightly positively charged at L/D=10 (zeta=+8.44+/-3.7 mV), and unstable and largely positively charged at L/D=20 (zeta=+24.3+/-3.6 mV). The negatively charged complexes efficiently delivered DNA into both solid and ascitic tumor cells. However, the positively charged complexes were very poor in delivering DNA into solid tumors, yet were efficient in delivering DNA into ascitic tumors grown in the peritoneum regardless of complex size. This slightly lower gene transfer efficiency of the negatively charged complexes can be as efficient as the positively charged ones when an injection is repeated (at least two injections), which is the most common case for therapy regimes. The results indicate that optimum in vivo lipofection may depend on the site of tumor growth.  相似文献   

2.
Ultradeformable liposomes containing penetration enhancers were created to deliver NaFl. Vesicles were investigated for their particle size, zeta potential, NaFl entrapment efficiency (%EE), loading efficiency, and in vitro skin penetration. The vesicles obtained were spherical in shape, with a particle size of less than 100 nm and a negative surface charge (-6 to -11 mV). The %EE of NaFl loaded in vesicles ranged from 37 to 48%. Ultradeformable liposomes with monoterpenes (d-limonene, 1,8-cineole and geraniol) significantly improved NaFl penetration through the skin. Confocal laser scanning microscopy analysis confirmed skin-penetration results and was used to evaluate the behavior of hydrophilic compounds penetrating through the skin.  相似文献   

3.
We have tested the zeta potential (zeta, the surface charge density) of transfection complexes formed in serum-free medium as a rapid and reliable technique for screening transfection efficiency of a new reagent or formulation. The complexes of CAT plasmid DNA (1 microgram) and DC-chol/DOPE liposomes (3-20 nmol) were largely negatively charged (zeta=-15 to -21 mV), which became neutral or positive as 0.5 microgram or a higher amount of poly-L-lysine (PLL, MW 29300 or MW 204000) was added (-3.16+/-3.47 to +6.04+/-2.23 mV). However, the complexes of CAT plasmid DNA (1 microgram) and PLL MW 29300 (0.5 microgram or higher) were neutral or positively charged (-3.22+/-2.3 to +6.55+/-0.64 mV), which remained the same as 6.6 nmol of the liposomes was added. The complexes formed between two positively charged compounds, PLL MW 29300 (0.5 microgram) and the liposomes (3-20 nmol), were as closely positively charged as DNA/PLL or DNA/liposomes/PLL complexes (+3.31+/-0.41 to 7.16+/-1.0 mV). These results indicate that PLL determined the overall charge of the DNA/liposome/PLL ternary complexes. The complexes formed with histone (0.75 microgram or higher) were also positively charged, whose transfection activity was as high as PLL MW 29300. However, the complexes formed with protamine or PLL MW 2400 remained negatively charged. These observations are in good agreement with the transfection activity of the formulation containing each polycationic polymer. The presence of PLL MW 29300 did not change the hydrodynamic diameter of DNA/liposome/PLL complexes (d(H)=275-312 nm). The complexes made of different sizes of PLL (MW 2400 and 204000) also did not significantly change their size. This suggests that DNA condensation may not be critical. Therefore, zeta of the transfection complex can predict the transfection efficiency of a new formulation or reagent.  相似文献   

4.
Vasoactive intestinal peptide (VIP) stimulates active Cl- secretion by the intestinal epithelium, a process that depends upon the maintenance of a favorable electrical driving force established by a basolateral membrane K+ conductance. To demonstrate the role of this K- conductance, we measured short-circuit current (I(SC)) across monolayers of the human colonic secretory cell line, T84. The serosal application of VIP (50 nM) increased I(SC) from 3 +/- 0.4 microA/cm2 to 75 +/- 11 microA/cm2 (n = 4), which was reduced to a near zero value by serosal applications of Ba2+ (5 mM). The chromanol, 293B (100 microM), reduced I(SC) by 74%, but charybdotoxin (CTX, 50 nM) had no effect. We used the whole-cell voltage-clamp technique to determine whether the K+ conductance is regulated by cAMP-dependent phosphorylation in isolated cells. VIP (300 nM) activated K+ current (131 +/- 26 pA, n = 15) when membrane potential was held at the Cl- equilibrium potential (E(Cl-) = -2 mV), and activated inward current (179 +/- 28 pA, n = 15) when membrane potential was held at the K+ equilibrium potential (E(K+) = -80 mV); however, when the cAMP-dependent kinase (PKA) inhibitor, PKI (100 nM), was added to patch pipettes, VIP failed to stimulate these currents. Barium (Ba2+ , 5 mM), but not 293B, blocked this K+ conductance in single cells. We used the cell-attached membrane patch under conditions that favor K + current flow to demonstrate the channels that underlie this K+ conductance. VIP activated inwardly rectifying channel currents in this configuration. Additionally, we used fura-2AM to show that VIP does not alter the intracellular Ca2+ concentration, [Ca2 +]i. Caffeine (5 mM), a phosphodiesterase inhibitor, also stimulated K+ current (185 +/- 56 pA, n = 8) without altering [Ca2+]i. These results demonstrate that VIP activates a basolateral membrane K+ conductance in T84 cells that is regulated by cAMP-dependent phosphorylation.  相似文献   

5.
All the standard in vitro lipofection has been routinely performed in serum-free medium as the transfection activity of liposome/DNA complexes is sensitive to the presence of serum. In this study, we have demonstrated that lipid-rich serum lipoprotein included in the transfection medium strongly inhibited the transfection activity of DC-chol liposome/DNA complexes in five different cell types (CHO, 293, A2780CP, A431 and SKBR3). The levels of inhibition by serum lipoprotein were rather greater than those by serum and varied with cell types. However, this inhibition was completely abolished by delipidation of serum. Thus, delipidated serum can be included in the transfection medium. The complexes formed in the presence of serum (zeta=-18.2+/-1.07 mV), delipidated serum (zeta=-19.6+/-0.54 mV), IgG (zeta=-21.6+/-1.92 mV) or serum lipoprotein (zeta=-10.5+/-2.33 mV) were as much negatively charged as those in serum-free medium (zeta=-21.3+/-1.60 mV). The results suggest that the inhibition of liposome-mediated transfection by serum was not associated with charges of serum proteins but with lipids or lipid-associated proteins present in serum.  相似文献   

6.
Submucosal glands secrete macromolecules and liquid that are essential for normal airway function. To determine the mechanisms responsible for airway gland secretion and the interaction between gland secretion and epithelial ion transport, studies were performed in porcine tracheal epithelia by using the hillocks and Ussing techniques. No significant baseline gland fluid flux (J(G)) was measured by the hillocks technique after 3 min, and the epithelia had an average potential difference of 7.5 +/- 0.5 mV (lumen negative) with a short-circuit current of 73 +/- 4 microA/cm(2), as measured by the Ussing technique. The secretagogue methacholine induced concentration-dependent increases in J(G) after 3 min from 0.003 microl. min(-1). cm(-2) at 0.1 microM to 0.41 +/- 0.04 microl. min(-1). cm(-2) at 1,000 microM, with a 0.9 +/- 0.1 mV hyperpolarization of the epithelium at 1,000 microM. When the epithelium was pretreated for 3 min with the sodium channel blocker amiloride, the methacholine (1,000 microM)-induced J(G) increased to 0.67 +/- 0.09 microl. min(-1). cm(-2), and the hyperpolarization increased to 2.2 +/- 0.5 mV over the amiloride-pretreated level. When pretreated for 3 min with the chloride channel blocker diphenylamine-2-carboxylic acid, the methacholine (1,000 microM)-induced J(G) was inhibited to 0.20 +/- 0.06 microl. min(-1). cm(-2), and the methacholine-induced hyperpolarization was abolished. These data indicate that, in porcine airways, methacholine-induced J(G) may be increased by inhibition of sodium absorption and decreased by inhibition of chloride secretion.  相似文献   

7.
Intramembranous charge movement was measured in cut twitch fibers mounted in a double Vaseline-gap chamber with either a tetraethylammonium chloride (TEA.Cl) or a TEA2.SO4 solution (13-14 degrees C) in the central pool. Charge vs. voltage data were fitted by a single two-state Boltzmann distribution function. The average values of V (the voltage at which steady-state charge is equally distributed between the two Boltzmann states), k (the voltage dependence factor), and qmax/cm (the maximum charge divided by the linear capacitance, both per unit length of fiber) were V = -53.3 mV (SEM, 1.1 mV), k = 6.3 mV (SEM, 0.3 mV), qmax/cm = 18.0 nC/microF (SEM, 1.1 nC/microF) in the TEA.Cl solution; and V = -35.1 mV (SEM, 1.8 mV), k = 10.5 mV (SEM, 0.9 mV), qmax/cm = 36.3 nC/microF (SEM, 3.2 nC/microF) in the TEA2.SO4 solution. These values of k are smaller than those previously reported for cut twitch fibers and are as small as those reported for intact fibers. If a correction is made for the contributions of currents from under the Vaseline seals, V = -51.2 mV (SEM, 1.1 mV), k = 7.2 mV (SEM, 0.4 mV), qmax/cm = 22.9 nC/microF (SEM, 1.4 nC/microF) in the TEA.Cl solution; and V = -34.0 mV (SEM, 1.9 mV), k = 10.1 mV (SEM, 1.1 mV), qmax/cm = 38.8 nC/microF (SEM, 3.2 nC/microF) in the TEA2.SO4 solution. With this correction, however, the fit of the theoretical curve to the data is poor. A good fit with this correction can be obtained with a sum of two Boltzmann distribution functions. The first has average values V = -33.0 mV (SEM, 2.8 mV), k = 11.0 mV (SEM, 0.5 mV), qmax/cm = 10.6 nC/microF (SEM, 1.0 nC/microF) in the TEA.Cl solution; and V = -20.0 mV (SEM, 3.3 mV), k = 17.0 mV (SEM, 2.0 mV), qmax/cm = 36.4 nC/microF (SEM, 2.3 nC/microF) in the TEA2.SO4 solution. The second has average values V = -56.5 mV (SEM, 1.3 mV), k = 2.9 mV (SEM, 0.4 mV), qmax/cm = 13.2 nC/microF (SEM, 1.0 nC/microF) in the TEA.Cl solution; and V = -41.6 mV (SEM, 1.4 mV), k = 2.5 mV (SEM, 0.8 mV), qmax/cm = 11.8 nC/microF (SEM, 1.7 nC/microF) in the TEA2.SO4 solution. When a fiber is depolarized to near V of the second Boltzmann function, a slowly developing "hump" appears in the ON-segment of the current record.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
For a large smooth particle with charges at the surface, the electrophoretic mobility is proportional to the zeta potential, which is related to the charge density by the Gouy-Chapman theory of the diffuse double layer. This classical model adequately describes the dependence of the electrophoretic mobility of phospholipid vesicles on charge density and salt concentration, but it is not applicable to most biological cells, for which new theoretical models have been developed. We tested these new models experimentally by measuring the effect of UO2++ on the electrophoretic mobility of model membranes and human erythrocytes in 0.15 M NaCl at pH 5. We used UO2++ for these studies because it should adsorb specifically to the bilayer surface of the erythrocyte and should not change the density of fixed charges in the glycocalyx. Our experiments demonstrate that it forms high-affinity complexes with the phosphate groups of several phospholipids in a bilayer but does not bind significantly to sialic acid residues. As observed previously, UO2++ adsorbs strongly to egg phosphatidylcholine (PC) vesicles: 0.1 mM UO2++ changes the zeta potential of PC vesicles from 0 to +40 mV. It also has a large effect on the electrophoretic mobility of vesicles formed from mixtures of PC and the negative phospholipid phosphatidylserine (PS): 0.1 mM UO2++ changes the zeta potential of PC/PS vesicles (10 mol % PS) from -13 to +37 mV. In contrast, UO2++ has only a small effect on the electrophoretic mobility of either vesicles formed from mixtures of PC and the negative ganglioside GM1 or erythrocytes: 0.1 mM UO2++ changes the apparent zeta potential of PC/GM1 vesicles (17 mol % GM1) from -11 to +5 mV and the apparent zeta potential of erythrocytes from -12 to -4 mV. The new theoretical models suggest why UO2++ has a small effect on PC/GM1 vesicles and erythrocytes. First, large groups (e.g., sugar moieties) protruding from the surface of the PC/GM1 vesicles and erythrocytes exert hydrodynamic drag. Second, charges at the surface of a particle (e.g., adsorbed UO2++) exert a smaller effect on the mobility than charges located some distance from the surface (e.g., sialic acid residues).  相似文献   

9.
The density of surface charge associated with the calcium channel pore was estimated from the effect of extracellular ionic strength on block by La3+. Currents carried by 2 mM Ba2+ were recorded from isolated frog sympathetic neurons by the whole-cell patch-clamp technique. In normal ionic strength (120 mM N-methyl-D-glucamine, NMG), La3+ blocked the current with high affinity (IC50 = 22 nM at 0 mV). La3+ block was relieved by strong depolarization in a time- and voltage-dependent manner. After unblocking, open channels reblocked rapidly at 0 mV, allowing estimation of association and dissociation rates for La3+: k(on) = (7.2 +/- 0.7) x 10(8) M(-1) s(-1), k(off) = 10.0 +/- 0.5 s(-1). To assess surface charge effects, La3+ block was also measured in low ionic strength (12.5 mM NMG) and high ionic strength (250 mM NMG). La3+ block was higher affinity and faster by two- to threefold in 12.5 mM NMG, with little effect of 250 mM NMG. The data could be described by Gouy-Chapman theory with a surface charge density of approximately 1 e-/3000-4000 A2. These results indicate that there is a small but detectable surface charge associated with the pore of voltage-dependent calcium channels.  相似文献   

10.
Water oxidation at photosystem II Mn-cluster is mediated by the redox-active tyrosine Y(Z). We calculated the redox potential (E(m)) of Y(Z) and its symmetrical counterpart Y(D), by solving the linearized Poisson-Boltzmann equation. The calculated E(m)(Y( )/Y(-)) were +926 mV/+694 mV for Y(Z)/Y(D) with the Mn-cluster in S2 state. Together with the asymmetric position of the Mn-cluster relative to Y(Z/D), differences in H-bond network between Y(Z) (Y(Z)/D1-His(190)/D1-Asn(298)) and Y(D) (Y(D)/D2-His(189)/D2-Arg(294)/CP47-Glu(364)) are crucial for E(m)(Y(Z/D)). When D1-His(190) is protonated, corresponding to a thermally activated state, the calculated E(m)(Y(Z)) was +1216 mV, which is as high as the E(m) for P(D1/D2). We observed deprotonation at CP43-Arg(357) upon S-state transition, which may suggest its involvement in the proton exit pathway. E(m)(Y(D)) was affected by formation of P(D2)(+) (but not P(D1)(+)) and sensitive to the protonation state of D2-Arg(180). This points to an electrostatic link between Y(D) and P(D2).  相似文献   

11.
Enzymatically isolated myocytes from ferret right ventricles (12-16 wk, male) were studied using the whole cell patch clamp technique. The macroscopic properties of a transient outward K+ current I(to) were quantified. I(to) is selective for K+, with a PNa/PK of 0.082. Activation of I(to) is a voltage-dependent process, with both activation and inactivation being independent of Na+ or Ca2+ influx. Steady-state inactivation is well described by a single Boltzmann relationship (V1/2 = -13.5 mV; k = 5.6 mV). Substantial inactivation can occur during a subthreshold depolarization without any measurable macroscopic current. Both development of and recovery from inactivation are well described by single exponential processes. Ensemble averages of single I(to) channel currents recorded in cell-attached patches reproduce macroscopic I(to) and indicate that inactivation is complete at depolarized potentials. The overall inactivation/recovery time constant curve has a bell-shaped potential dependence that peaks between -10 and -20 mV, with time constants (22 degrees C) ranging from 23 ms (-90 mV) to 304 ms (-10 mV). Steady-state activation displays a sigmoidal dependence on membrane potential, with a net aggregate half- activation potential of +22.5 mV. Activation kinetics (0 to +70 mV, 22 degrees C) are rapid, with I(to) peaking in approximately 5-15 ms at +50 mV. Experiments conducted at reduced temperatures (12 degrees C) demonstrate that activation occurs with a time delay. A nonlinear least- squares analysis indicates that three closed kinetic states are necessary and sufficient to model activation. Derived time constants of activation (22 degrees C) ranged from 10 ms (+10 mV) to 2 ms (+70 mV). Within the framework of Hodgkin-Huxley formalism, Ito gating can be described using an a3i formulation.  相似文献   

12.
Ultradeformable liposomes containing penetration enhancers were created to deliver NaFl. Vesicles were investigated for their particle size, zeta potential, NaFl entrapment efficiency (%EE), loading efficiency, and in vitro skin penetration. The vesicles obtained were spherical in shape, with a particle size of less than 100 nm and a negative surface charge (–6 to –11 mV). The %EE of NaFl loaded in vesicles ranged from 37 to 48%. Ultradeformable liposomes with monoterpenes (d-limonene, 1,8-cineole and geraniol) significantly improved NaFl penetration through the skin. Confocal laser scanning microscopy analysis confirmed skin-penetration results and was used to evaluate the behavior of hydrophilic compounds penetrating through the skin.  相似文献   

13.
The zeta potential of Lactobacillus acidophilus CRL 640, a measure of the net distribution of electrical charges on the bacterial surface, is a function of the glucose concentration in the growing media. With 2% glucose, cells in the stationary phase showed a zeta potential of -45 +/- 2 mV. With these cells, the zeta potential after freezing and thawing decreased to -32 +/- 2 mV and there was a decrease in viability. The changes in the surface potential correlated with damage to the cell surface as shown by electron microscopy. Freeze-thawed cells incubated in a rich medium recovered a zeta potential of -38 +/- 2 mV without cell growth. L. acidophilus CRL 640 showed the same value of surface potential as control cells when they were frozen and thawed in 2 M glycerol.  相似文献   

14.
Kálmán L  Williams JC  Allen JP 《Biochemistry》2011,50(16):3310-3320
The energetics of a Mn cofactor bound to modified reaction centers were determined, including the oxidation/reduction midpoint potential and free energy differences for electron transfer. To determine these properties, a series of mutants of Rhodobacter sphaeroides were designed that have a metal-ion binding site that binds Mn2+ with a dissociation constant of 1 μM at pH 9.0 (Thielges et al. (2005) Biochemistry 44, 7389-7394). In addition to the Mn binding site, each mutant had changes near the bacteriochlorophyll dimer, P, that resulted in altered P/P+ oxidation/reduction midpoint potentials, which ranged from 480 mV to above 800 mV compared to 505 mV for wild type. The bound Mn2+ is redox active and after light excitation can rapidly reduce the oxidized primary electron donor, P+. The extent of P+ reduction was found to systematically range from a full reduction in the mutants with high P/P+ midpoint potentials to no reduction in the mutant with a potential comparable to wild type. This dependence of the extent of Mn2+ oxidation on the P/P+ midpoint potential can be understood using an equilibrium model and the Nernst equation, yielding a Mn2+/Mn3+ oxidation/reduction midpoint potential of 625 mV at pH 9. In the presence of bicarbonate, the Mn2+/Mn3+ potential was found to be 90 mV lower with a value of 535 mV suggesting that the bicarbonate serves as a ligand to the bound Mn. Measurement of the electron transfer rates yielded rate constants for Mn2+ oxidation ranging from 30 to 120 s(-1) as the P/P+ midpoint potentials increased from 670 mV to approximately 805 mV in the absence of bicarbonate. In the presence of bicarbonate, the rates increased for each mutant with values ranging from 65 to 165 s(-1), reflecting an increase in the free energy difference due to the lower Mn2+/Mn3+ midpoint potential. This dependence of the rate constant on the P/P+ midpoint potential can be understood using a Marcus relationship that yielded limits of at least 150 s(-1) and 290 meV for the maximal rate constant and reorganization energy, respectively. The implications of these results are discussed in terms of the energetics of proteins with redox active Mn cofactors, in particular, the Mn4Ca cofactor of photosystem II.  相似文献   

15.
Effects of cyclooxygenase (COX) inhibitors on transport parameters of the frog corneal epithelium were studied. Epithelial cells of the intact cornea were impaled with microelectrodes. Under short-circuit current (I(sc)) conditions, 10(-4) M ibuprofen (IBU) (non-specific COX inhibitor) or 5 x 10(-5) M rofecoxib (COX-2 inhibitor) were added to the tear solution. With ibuprofen, I(sc) decreased by 1.0 from 3.1 microA/cm2; intracellular potential, V(o), depolarized by 14.2 from -56.9 mV; IBU did not affect the transepithelial conductance, g(t), or the apical membrane fractional resistance, fR(o). With rofecoxib, I(sc) decreased by 0.9 from 4.3 microA/cm2; V(o) depolarized by 18 from -62.4 mV; g(t) significantly increased by 0.03 from 0.37 ms/cm2; and fR(o) decreased by 12 from 50. Basolateral membrane K+ and apical membrane Cl- partial conductances were studied by the ion substitution method. Depolarization of V(o) by an increase in stromal K+ from 4 to 79 mM was smaller with IBU (17.5 mV) or rofecoxib (19.2 mV) than without the inhibitors (29.1 and 29.3 mV, respectively). Depolarization of V(o), by a decrease in tear Cl- from 81 to 8.1 mM, was abolished by the COX inhibitors. Decrease in I(sc) and V(o) can be explained by a decrease in the K+ and Cl-? conductances. Experiments with amphotericin B ruled out a major effect of the inhibitors on the Na+/K+ ATPase pump.  相似文献   

16.
Reiter TA  Rusnak F 《Biochemistry》2004,43(3):782-790
Bacteriophage lambda protein phosphatase (lambdaPP) is a member of a large superfamily of metallophosphoesterases, including serine/threonine protein phosphatases, purple acid phosphatases, 5'-nucleotidase, and DNA repair enzymes such as Mre11. Members of this family share several common characteristics, including a common phosphoesterase motif, secondary structural fold (betaalphabetaalphabeta), and metal ligand environment, and often accommodate a dinuclear metal center. The identity of the active site metals often differs between family members. Despite the extensive spectroscopic studies of several family members, only the standard redox potential of porcine purple acid phosphate (PAP) has been measured. In this report, we investigate the redox properties of another member of this protein family. The standard redox potentials of the mono-Fe, Fe-Zn, and Fe-Fe metalloisoforms of lambdaPP were determined from anaerobic redox titration experiments. Two different S = 5/2, mono-Fe3+ lambdaPP species were identified: the first with an E/D approximately 0.17, g = 8.9 and 4.8, and an Eo' approximately +130 mV; the second with E/D approximately 0.05, g = 6.7, 5.9, and 4.4, and an Eo' approximately +120 mV. The first and second mono-Fe3+ species are thought to represent Fe present in the M2 and M1 sites, respectively. The addition of Zn2+ to mono-Fe3+ lambdaPP results in a decrease in both mono-Fe3+ species and the appearance of a new S = 5/2, Fe(3+)-Zn2+ species (E/D approximately 0.02, g = 5.9, and an Eo' > +175 mV). The Fe-Fe lambdaPP titration revealed an S = 1/2, Fe(3+)-Fe2+ (g < 2) species with an Eo' > +128 mV. These results suggest that the active site of lambdaPP supports a high oxidation potential for both metal sites and may indicate an equally oxidizing active site for other member metallophosphoesterases.  相似文献   

17.
In the present study, the impact of chromium(III) complexes ([Cr(salen)(H2O)2](+) (1), [Cr(en)3]3+ (2) and [Cr(EDTA)(H2O)]- (3)) on the biophysical properties of mucin like specific viscosity, zeta potential and particle size has been investigated. It is evident from the present investigation that the nature of the coordinated ligand has a major role to play in bringing about the changes in the physical characteristics of the glycoprotein. It was observed that (1) and (3) because of their coordinate mode of binding lead to decrease in the specific viscosity of mucin, whereas (2) on the other hand was found to bring about drastic increase in the mucin viscosity due to sol-gel transition in the mucin conformation. Complex (2) was found to gradually lower the zeta potential value of mucin (particle size=51.5 nm) from -24.8 +/- 1.31 mV to -0.58 +/- 0.30 mV, which reveals aggregation (particle size=216 nm) and subsequent sedimentation of mucin with an increase in the average diameter of mucin particles. The binding of (2) to mucin was found to impart resistance to mucin against both tryptic and O-glycanase digestion, suggesting that, the aggregation of mucin causes conformational as well as configurational changes in the glycoprotein; thus perturbing the location of carbohydrate domains.  相似文献   

18.
Study of the excitatory sodium current (INa) intact heart muscle has been hampered by the limitations of voltage clamp methods in multicellular preparations that result from the presence of large series resistance and from extracellular ion accumulation and depletion. To minimize these problems we voltage clamped and internally perfused freshly isolated canine cardiac Purkinje cells using a large bore (25-microns diam) double-barreled flow-through glass suction pipette. Control of [Na+]i was demonstrated by the agreement of measured INa reversal potentials with the predictions of the Nernst relation. Series resistance measured by an independent microelectrode was comparable to values obtained in voltage clamp studies of squid axons (less than 3.0 omega-cm2). The rapid capacity transient decays (tau c less than 15 microseconds) and small deviations of membrane potential (less than 4 mV at peak INa) achieved in these experiments represent good conditions for the study of INa. We studied INa in 26 cells (temperature range 13 degrees-24 degrees C) with 120 or 45 mM [Na+]o and 15 mM [Na+]i. Time to peak INa at 18 degrees C ranged from 1.0 ms (-40 mV) to less than 250 microseconds (+ 40 mV), and INa decayed with a time course best described by two time constants in the voltage range -60 to -10 mV. Normalized peak INa in eight cells at 18 degrees C was 2.0 +/- 0.2 mA/cm2 with [Na+]o 45 mM and 4.1 +/- 0.6 mA/cm2 with [Na+]o 120 mM. These large peak current measurements require a high density of Na+ channels. It is estimated that 67 +/- 6 channels/micron 2 are open at peak INa, and from integrated INa as many as 260 Na+ channels/micron2 are available for opening in canine cardiac Purkinje cells.  相似文献   

19.
The skin of Rana pipiens can be shown to excrete H+ in an in vitro preparation. This H+ excretion is increased by placing the frog in metabolic acidosis. In addition, H+ excretion is increased by the presence of HCO-3-CO2 on the serosal or inside surface of the skin. Removal of Na+ from the outside bathing solution of the skin has no apparent effect on H+ excretion. Ouabain inhibits H+ excretion by the skin of acidotic frogs almost completely, in the absence of exogenous CO2. In the presence of 5% CO2 ouabain inhibits H+ excretion by 50%. In the acidotic frog skin the H+ excretion was reduced by abolishing the spontaneous potential difference. While in the normal skin there was no effect. When the P.d. was clamped at -10 to -100 mV there was no effect on H+ excretion, while there was a slight depression of H+ excretion when the P.d. was clamped at +10 to +100 mV (outside to inside the skin). In the presence of 5% CO2 there was a marked depression of H+ excretion when clamped at -10 to -100 mV in the normal skin. In metabolic acidosis there was a marked stimulation when clamped at -10 to -100 mV.  相似文献   

20.
Hammer A  Grüttner C  Schumann R 《Protist》1999,150(4):375-382
Laboratory experiments were carried out to investigate the effect of food quality, measured as surface charge of the particles, on capture efficiency and ingestion rate by the heterotrophic dinoflagellate Oxyrrhis marina. Fluorescent particles in two size classes of around 1 and 4 microm and of 7 different qualities were offered to the flagellate: carbohydrate and albumin particles, the algae Synechocystis spec. and Chlorella spec., carboxylated microspheres, silicate particles and bacteria. Rates of particle uptake showed significant differences depending on particle size and quality, and ranged from 0 to 4 particles cell(-1) h(-1). Ingestion rates were up to 4 times higher for 4 pm particles than for 1 microm particles, which indicates strong size-selective feeding. Our main result is that the surface charge or zeta potential, of artificial particles, i.e. carboxylated microspheres (> or = -107 mV) and silicate particles, strongly differ from more natural and natural food (< or = -17 mV). For both size classes Oxyrrhis had ingestion rates up to 4 times higher for particles with less negative charge, such as albumin particles or algae. Thus, the zeta potential of the model food should be considered in experimental design. Particles with a zeta potential similar to that of natural food, e.g. albumin, seem to be the preferred model food.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号