首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The complement C3a anaphylatoxin is a major molecular mediator of innate immunity. It is a potent activator of mast cells, basophils and eosinophils and causes smooth muscle contraction. Structurally, C3a is a relatively small protein (77 amino acids) comprising a N-terminal domain connected by 3 native disulfide bonds and a helical C-terminal segment. The structural stability of C3a has been investigated here using three different methods: Disulfide scrambling; Differential CD spectroscopy; and Reductive unfolding. Two uncommon features regarding the stability of C3a and the structure of denatured C3a have been observed in this study. (a) There is an unusual disconnection between the conformational stability of C3a and the covalent stability of its three native disulfide bonds that is not seen with other disulfide proteins. As measured by both methods of disulfide scrambling and differential CD spectroscopy, the native C3a exhibits a global conformational stability that is comparable to numerous proteins with similar size and disulfide content, all with mid-point denaturation of [GdmCl]1/2 at 3.4-5 M. These proteins include hirudin, tick anticoagulant protein and leech carboxypeptidase inhibitor. However, the native disulfide bonds of C3a is 150-1000 fold less stable than those proteins as evaluated by the method of reductive unfolding. The 3 native disulfide bonds of C3a can be collectively and quantitatively reduced with as low as 1 mM of dithiothreitol within 5 min. The fragility of the native disulfide bonds of C3a has not yet been observed with other native disulfide proteins. (b) Using the method of disulfide scrambling, denatured C3a was shown to consist of diverse isomers adopting varied extent of unfolding. Among them, the most extensively unfolded isomer of denatured C3a is found to assume beads-form disulfide pattern, comprising Cys36-Cys49 and two disulfide bonds formed by two pair of consecutive cysteines, Cys22-Cys23 and Cys56-Cys57, a unique disulfide structure of polypeptide that has not been documented previously.  相似文献   

2.
Insulin-like growth factor (IGF-1) contains three disulfide bonds. In the presence of denaturant and thiol catalyst, IGF-1 shuffles its native disulfide bonds and denatures to form a mixture of scrambled isomers. The composition of scrambled IGF varies under different denaturing conditions. Among the 14 possible scrambled IGF isomers, the yield of the beads-form isomer is shown to be directly proportional to the strength of the denaturing condition. This paper demonstrates a new approach to quantify the extent of unfolding of the denatured protein.  相似文献   

3.
The native core structure of hirudin, a thrombin specific inhibitor, contains 24 hydrogen bonds, two stretches of -sheet and three disulfide bonds. Hirudin unfolds in the presence of denaturant and thiol catalyst by shuffling its native disulfide bonds and converting to scrambled structures that consist of 11 identified isomers. The composition of scrambled isomers, which characterizes the structure of denatured hirudin, varies as a function of denaturing conditions. The unfolding pathway of hirudin has been constructed by quantitative analysis of scrambled isomers unfolded under increasing concentrations of various denaturants. The results demonstrate a progressive expansion of the polypeptide chain and the existence of a structurally defined stable intermediate along the pathway of unfolding.  相似文献   

4.
The structure of denatured alpha-lactalbumin (alpha-LA) has been characterized using the method of disulfide scrambling. Under denaturing conditions (urea, guanidine hydrochloride, guanidine thiocyanate, organic solvent or elevated temperature) and in the presence of thiol initiator, alpha-LA denatures by shuffling its four native disulfide bonds and converts to a mixture of fully oxidized scrambled structures. Analysis by reversed-phase HPLC reveals that the denatured alpha-LA comprises a minimum of 45 fractions of scrambled isomers. Among them, six well populated isomers have been isolated and structurally characterized. Their relative concentrations, which represent the fingerprinting of the denatured alpha-LA, vary substantially under different denaturing conditions. These results permit independent plotting of the denaturation and unfolding curves of alpha-LA. Most importantly, unique isomers of partially unfolded alpha-LA were shown to populate at mild and selected denaturing conditions. Organic solvent disrupts preferentially the hydrophobic alpha-helical domain, generating a predominant isomer containing two native disulfide bonds at the beta-sheet domain and two scrambled disulfide bonds at the alpha-helical region. Thermal denaturation selectively unfolds the beta-sheet domain of alpha-LA, producing a prevalent isomer that exhibits structural characteristics of the molten globule state of alpha-LA.  相似文献   

5.
The technique of disulfide scrambling permits reversible conversion of the native and denatured (scrambled) proteins via shuffling and reshuffling of disulfide bonds. Under strong denaturing conditions (e.g. 6 m guanidinium chloride) and in the presence of a thiol initiator, alpha-lactalbumin (alphaLA) denatures by shuffling its four native disulfide bonds and converts to an assembly of 45 species of scrambled isomers. Among them, two predominant isomers, designated as X-alphaLA-a and X-alphaLA-d, account for about 50% of the total denatured structure of alphaLA. X-alphaLA-a and X-alphaLA-d, which adopt the disulfide patterns of (1-2,3-4,5-6,7-8) and (1-2,3-6,4-5,7-8), respectively, represent the most unfolded structures among the 104 possible scrambled isomers (Chang, J.-Y., and Li, L. (2001) J. Biol. Chem. 276, 9705-9712). In this study, X-alphaLA-a and X-alphaLA-d were purified and allowed to refold through disulfide scrambling to form the native alphaLA. Folding intermediates were trapped kinetically by acid quenching and analyzed quantitatively by reversed phase high pressure liquid chromatography. The results revealed two major on-pathway productive intermediates, two major off-pathway kinetic traps, and at least 30 additional minor transient intermediates. Of the two major on-pathway intermediates, one takes on a native-like alpha-helical domain, and the other comprises a structured beta-sheet, calcium binding domain. The two major kinetic traps are apparently stabilized by locally formed non-native-like structures. Overall, the folding mechanism of alphaLA is essentially congruent with the model of "folding funnel" furnished with a rather intricate energy landscape.  相似文献   

6.
Conformational stability of proteins (including disulfide containing proteins) has been routinely characterized by spectroscopic techniques. Proteins which lack adequate signal of circular dichroism may require unconventional technique. Secretory Leucocyte Protease Inhibitor (SLPI) is a 107 amino acids protein with a high density of disulfide pairing (eight). The native SLPI has no hydrophobic core and contains very little hydrogen bonded secondary structure [Gruetter, M., Fendrich, G., Huber, R., and Bode, W. (1988) The 2.5 A X-ray crystal structure of the acid stable proteinase inhibitor from human mucous secretions analyzed in its complex with bovine alpha-chymotrypsin. The EMBO J. 7, 345-352.]. In this study, conformational stability of SLPI has been investigated by the method of disulfide scrambling, which permits quantification of the native and denatured (scrambled) proteins by HPLC. Due to high heterogeneity of denatured SLPI, the native and scrambled SLPI are extensively overlapped on HPLC. This impediment was further overcome by the development of a novel method which distinguishes the native and scrambled isomers of SLPI by exploiting the relative stability of their disulfide bonds. The study reveals mid-point denaturation of SLPI at 1.36 M of GdmSCN, 4.0 M of GdmCl and >8 M urea. Based on the GdmCl denaturation curve, the unfolding free energy (DeltaG(H20)) of SLPI was estimated to be 4.56 kcal/mol. The results of our studies suggest an alternative strategy for analyzing conformational stability of disulfide proteins that are not suitable to the conventional spectroscopic techniques.  相似文献   

7.
Plasma plasminogen is the precursor of the tumor angiogenesis inhibitor, angiostatin. Generation of angiostatin in blood involves activation of plasminogen to the serine protease plasmin and facilitated cleavage of two disulfide bonds and up to three peptide bonds in the kringle 5 domain of the protein. The mechanism of reduction of the two allosteric disulfides has been explored in this study. Using thiol-alkylating agents, mass spectrometry, and an assay for angiostatin formation, we show that the Cys462-Cys541 disulfide bond is already cleaved in a fraction of plasma plasminogen and that this reduced plasminogen is the precursor for angiostatin formation. From the crystal structure of plasminogen, we propose that plasmin ligands such as phosphoglycerate kinase induce a conformational change in reduced kringle 5 that leads to attack by the Cys541 thiolate anion on the Cys536 sulfur atom of the Cys512-Cys536 disulfide bond, resulting in reduction of the bond by thiol/disulfide exchange. Cleavage of the Cys512-Cys536 allosteric disulfide allows further conformational change and exposure of the peptide backbone to proteolysis and angiostatin release. The Cys462-Cys541 and Cys512-Cys536 disulfides have −/+RHHook and −LHHook configurations, respectively, which are two of the 20 different measures of the geometry of a disulfide bond. Analysis of the structures of the known allosteric disulfide bonds identified six other bonds that have these configurations, and they share some functional similarities with the plasminogen disulfides. This suggests that the −/+RHHook and −LHHook disulfides, along with the −RHStaple bond, are potential allosteric configurations.  相似文献   

8.
Summary Four enhanced carbonyl carbon resonances were observed whenStreptomyces subtilisin inhibitor (SSI) was labeled by incorporating specifically labeled [1-13C]Cys. The13C signals were assigned by the15N,13C double-labeling method along with site-specific mutagenesis. Changes in the spectrum of the labeled protein ([C]SSI) were induced by reducing the disulfide bonds with various amounts of dithiothreitol (DTT). The results indicate that, in the absence of denaturant, the Cys71-Cys101 disulfide bond of each SSI subunit can be reduced selectively. This disulfide bond, which is in the vicinity of the reactive site scissile bond Met73-Val74, is more accessible to solvent than the other disulfide bond. Cys35-Cys50, which is embedded in the interior of SSI. This half-reduced SSI had 65% of the inhibitory activity of native SSI and maintained a conformation similar to that of the fully oxidized SSI. Reoxidation of the half reduced-folded SSI by air regenerates fully active SSI which is indistinguishable with intact SSI by NMR. In the presence of 3 M guanidine hydrochloride (GuHCl), however, both disulfide bonds of each SSI subunit were readily reduced by DTT. The fully reduced-unfolded SSI spontaneously refolded into a native-like structure (fully reduced-folded state), as evidenced by the Cys carbonyl carbon chemical shifts, upon removing GuHCl and DTT from the reaction mixture. The time course of disulfide bond regeneration from this state by air oxidation was monitored by following the NMR spectral changes and the results indicated that the disulfide bond between Cys71 and Cys101 regenerates at a much faster rate than that between Cys35 and Cys50.Nomenclature of the various states of SSI that are observed in the present study Fully oxidized-folded native or intact (without GuHCl or DTT) - half reduced-folded (Cys71-Cys101 reduced; DTT without GuHCl) - inversely half reduced-folded (Cys35-Cys50 reduced; a reoxidation intermediate from fully reduced-folded state) - fully reduced-unfolded (reduced by DTT in the presence of GuHCl) - fully reduced-folded (an intermediate state obtained by removing DTT and GuHCl from the fully reduced-unfolded SSI reaction mixture)  相似文献   

9.
The positions of the disulfide bonds of huwentoxin-I, a neurotoxin from the spiderSelenocosmia huwena, have been determined. The existence of three disulfide bonds in the native toxin was demonstrated by mass spectroscopy and the lack of reactivity with a thiol reagent. The assignment procedure involved a combination of tryptic digestion of the native toxin and sequence analysis of both intact andin situ S-carboxymethylated toxin.In situ carboxymethylation is shown to be a useful procedure in sequencing of cysteine- and cystine-containing peptides. Sequence analysis of the intact, cross-linked toxin indicated that no amino acid phenylthiohydantoin (PTH) derivative is seen for the first half-cystine in a cross-linked pair, but that the PTH of dehydroalanine, which can be detected at 313 nm, is seen at the position of the second half-cystine. By sequencing disulfide cross-linked tryptic fragments, the three disulfide linkages in huwentoxin-I could be assigned as Cys2-Cys17, Cys9-Cys22, and Cys16-Cys29.  相似文献   

10.
The positions of the disulfide bonds of huwentoxin-I, a neurotoxin from the spiderSelenocosmia huwena, have been determined. The existence of three disulfide bonds in the native toxin was demonstrated by mass spectroscopy and the lack of reactivity with a thiol reagent. The assignment procedure involved a combination of tryptic digestion of the native toxin and sequence analysis of both intact andin situ S-carboxymethylated toxin.In situ carboxymethylation is shown to be a useful procedure in sequencing of cysteine- and cystine-containing peptides. Sequence analysis of the intact, cross-linked toxin indicated that no amino acid phenylthiohydantoin (PTH) derivative is seen for the first half-cystine in a cross-linked pair, but that the PTH of dehydroalanine, which can be detected at 313 nm, is seen at the position of the second half-cystine. By sequencing disulfide cross-linked tryptic fragments, the three disulfide linkages in huwentoxin-I could be assigned as Cys2-Cys17, Cys9-Cys22, and Cys16-Cys29.  相似文献   

11.
Chang J  Ballatore A 《FEBS letters》2000,473(2):183-187
In the presence of denaturant and thiol initiator, the native bovine pancreatic trypsin inhibitor (BPTI) denatures by shuffling its native disulfide bonds and converts to a mixture of scrambled isomers. The extent of denaturation is evaluated by the relative yields of the scrambled and native species of BPTI. BPTI is an exceedingly stable molecule and can be effectively denatured only by guanidine thiocyanate (GdmSCN) at concentrations higher than 3-4 M. The denatured BPTI consists of at least eight fractions of scrambled isomers. Their composition varies under increasing concentrations of GdmSCN. In the presence of 6 M GdmSCN, the most predominant fraction of scrambled BPTI accounts for 56% of the total structure of denatured BPTI. Structural analysis reveals that this predominant fraction contains the bead-form isomer of scrambled BPTI, bridged by three pairs of neighboring cysteines, Cys5-Cys14, Cys30-Cys38 and Cys51-Cys55. The extreme conformational stability of BPTI has important implications in its distinctive folding pathway.  相似文献   

12.
Human plasma protein S is a nonenzymatic cofactor for activated protein C (APC) in the inactivation of coagulation factors Va and VIIIa, and helps to provide an essential negative feedback on blood coagulation. Previous indirect evidence suggested that the thrombin-sensitive region (TSR:residues 47–75, 1 disulfide) and the first epidermal growth factorlike region (EGF1: residues 76–116, 3 disulfides) of protein S may be functionally important for expression of its APC cofactor activity. To study the functional importance of these modules directly, access to the isolated TSR and EGF1 modules would be preferred. Recombinant expression of protein S intact TSR and correctly folded EGF1 has not been possible. Here we describe the synthesis of both TSR and EGF1 modules by stepwise solid phase peptide synthesis using the in situ neutralization/2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate activation procedure for tert-butoxycarbonyl chemistry. For the TSR, correct intramodular disulfide bonding was confirmed. To overcome folding difficulties with the EGF1, a two-step oxidation procedure was used in which the cysteines involved in the middle, crossing, disulfide bond (Cys85-Cys102) remained protected with acetamidomethyl (Acm) groups after hydrogen fluoride treatment of the peptide resin. Selective formation of the first two disulfide bonds (Cys80-Cys93 and Cys104-Cys113) was followed by release of the Acm groups and subsequent formation of the third disulfide bond (Cys85-Cys102). CD studies revealed 54% of β-sheet/turn in the EGF1 that is characteristic for EGF modules. Deuterium exchange studies suggested a very tightly packed core in EGF1 that is not accessible to the bulk solvent, likely a result from the compact structure caused by its three disulfide bonds. The 30% β-sheet structure observed in the TSR involved amide protons that could be readily exchanged by deuterons, likely reflecting a more flexible structure of the TSR loop in contrast to the rigid structure of EGF1. The establishment of synthetic access to the TSR and EGF1 of protein S provides a versatile tool to study interactions of these modules with the blood coagulation components of the anticoagulant plasma protein C pathway. © 1998 John Wiley & Sons, Inc. Biopoly 46: 53–63, 1998  相似文献   

13.
The unfolding and denaturation curves of potato carboxypeptidase inhibitor (PCI) were investigated using the technique of disulfide scrambling. In the presence of denaturant and thiol initiator, the native PCI denatures by shuffling its native disulfide bonds and converts to form a mixture of scrambled PCI that consists of 9 out of a possible 14 isomers. The denaturation curve is determined by the fraction of native PCI converted to scrambled isomers under increasing concentrations of denaturant. The concentration of guanidine thiocyanate, guanidine hydrochloride, and urea required to denature 50% of the native PCI was found to be 0.7, 1.45, and 8 m, respectively. The PCI unfolding curve was constructed through the analysis of structures of scrambled isomers that were denatured under increasing concentrations of denaturant. These results reveal the existence of structurally defined unfolding intermediates and a progressive expansion of the polypeptide chain. The yield of the beads-form isomer (Cys(8)-Cys(12), Cys(18)-Cys(24), and Cys(27)-Cys(34)) as a fraction of total denatured PCI was shown to be directly proportional to the strength of the denaturing condition. Furthermore, the PCI sequence was unable to fold quantitatively into a single native structure. Under physiological conditions, the scrambled isomers of PCI that constitute about 4% of the protein were in equilibrium with native PCI.  相似文献   

14.
Human alpha-thrombin is a very important plasma serine protease, which is involved in physiologically vital processes like hemostasis, thrombosis, and activation of platelets. Knowledge regarding the structural stability of alpha-thrombin is essential for understanding its biological regulation. Here, we investigated the structural and conformational stability of alpha-thrombin using the techniques of disulfide reduction and disulfide scrambling. alpha-Thrombin is composed of a light A-chain (36 residues) and a heavy B-chain (259 residues) linked covalently by an inter-chain disulfide bond (Cys(1)-Cys(122)). The B-chain is stabilized by three intra-chain disulfide bonds (Cys(42)-Cys(58), Cys(168)-Cys(182), and Cys(191)-Cys(220)) (Chymotrypsinogen nomenclature). Upon reduction with dithiothreitol (DTT), alpha-thrombin unfolded in a 'sequential' manner with sequential reduction of Cys(168)-Cys(182) within the B-chain followed by the inter-chain disulfide, generating two distinct partially reduced intermediates, I-1 and I-2, respectively. Conformational stability of alpha-thrombin was investigated by the technique of disulfide scrambling. alpha-Thrombin denatures by scrambling its native disulfide bonds in the presence of denaturant [urea, guanidine hydrochloride (GdmCl) or guanidine thiocyanate (GdmSCN)] and a thiol initiator. During the process, cleavage of the inter-chain disulfide bond and release of the A-chain from B-chain was the foremost event. The three disulfides in the B-chain subsequently scrambled to form three major isomers (designated as X-Ba, X-Bb, and X-Bc). Complete denaturation of alpha-thrombin was observed at low concentrations of denaturants (0.5 M GdmSCN, 1.5 M GdmCl, or 3 M urea) indicating low conformational stability of the protease.  相似文献   

15.
The conformations of native proteins are in principle, and in most cases, dictated by the law of thermodynamics. Accordingly, a native protein must always exist in equilibrium with a minor concentration of nonnative (denatured) conformational isomers even at nondenaturing conditions. The presence of an infinitesimal quantity of nonnative conformational isomers at physiological conditions is biologically relevant due to their propensity to aggregate, which is an underlying cause of many neurodegenerative diseases. However, their detection and quantification are inherently difficult. In this article, we describe a simple strategy using the technique of disulfide scrambling to identify and quantify such minute concentrations of nonnative isomers. It is demonstrated that even for small stable proteins such as epidermal growth factor and hirudin, approximately 1% of heterogeneous nonnative isomers coexist with the native proteins under physiological conditions.  相似文献   

16.
A three-disulfide form of hen egg white lysozyme with Cys6 and Cys127 blocked by carboxymethyl groups was prepared, purified, and characterized for eventual use in protein folding experiments. Trypsin digestion followed by proline-specific endopeptidase digestion facilitated the unambiguous assignment of the disulfide bond pairings and the modified residues in this derivative. 3SS-lysozyme demonstrated nearly full enzymatic activity at itspH optimum,pH 5.5. The 3SS-lysozyme derivative and unmodified lysozyme were shown to be identical by CD spectroscopy atpH 3.6. Immunochemical binding assays demonstrated that the conformation of lysozyme was perturbed predominantly only locally by breaking and blocking the disulfide bond between Cys6 and Cys127. Both 3SS-lysozyme and unmodified lysozyme exhibited reversible thermally induced transitions atpH 2.0 but theT m of 3SS-lysozyme, 18.9°C, was found to be 34° lower than that of native lysozyme under the same conditions. The conformational chemical potential of the denatured form of unmodified lysozyme was determined from the transition curves to be approximately 6.7 kcal/mol higher than that of the denatured form of 3SS-lysozyme, atpH 2.0 and 35°C, if the conformational chemical potential for the folded forms ofboth 3SS-lysozyme and unmodified lysozyme is arbitrarily assumed to be 0.0 kcal/mol. A calculation of the increase in the theoretical loop entropy of denatured 3SS-lysozyme resulting from the cleavage of the Cys6-Cys127 disulfide bond, however, yielded a value of only 5.4 kcal/mol for the difference in conformational chemical potential. This suggests that, in addition to the entropic component, there is also an enthalpic contribution to the difference in the conformational chemical potential corresponding to approximately 1.3 kcal/mol. Thus, it is concluded that the reduction and blocking of the disulfide bond between Cys6 and Cys127 destabilizes 3SS-lysozyme relative to unmodified lysozyme predominantly by stabilizing the denatured conformation by increasing its chain entropy.Cornell Biotechnology Army Research Office Predoctoral Fellow, 1986–1989.  相似文献   

17.
The unfolding and denaturation curves of leech carboxypeptidase inhibitor (LCI) were elucidated using the technique of disulfide scrambling. In the presence of thiol initiator and denaturant, the native LCI denatures by shuffling its native disulfide bonds and transforms into a mixture of scrambled species. 9 of 104 possible scrambled isomers of LCI, amounting to 90% of total denatured LCI, can be distinguished. The denaturation curve that plots the fraction of native LCI converted into scrambled isomers upon increasing concentrations of denaturant shows that the concentration of guanidine thiocyanate and guanidine hydrochloride required to reach 50% of denaturation is 2.4 and 3.6 m, respectively. In contrast, native LCI is resistant to urea denaturation even at high concentration (8 m). The LCI unfolding pathway was defined based on the evolution of the relative concentration of scrambled isoforms of LCI upon denaturation. Two populations of scrambled species suffer variations along the unfolding pathway. One accumulates as intermediates under strong denaturing conditions and corresponds to open or relaxed structures, among which the beads-form isomer is found. The other population shows an inverse correlation between their relative abundances and the denaturing conditions and should have another kind of non-native structure that is more compact than the unfolded state. The rate constants of unfolding of LCI are low when compared with other disulfide-containing proteins. Overall, the results presented in this study show that LCI, a molecule with potential biotechnological applications, has slow kinetics of unfolding and is highly stable.  相似文献   

18.
Summary ShK toxin, a 35-residue peptide isolated from the Caribbean sea anemone Stichodactyla helianthus, is a potent inhibitor of the Kv 1.3 potassium channel in lymphocytes. The natural toxin contains three disulfide bonds. The disulfide pairings of the synthetic ShK toxin were elucidated as a prerequisite for studies on its structure-function relationships. The toxin was fragmented at pH 6.5 using either thermolysin or a mixture of trypsin and chymotrypsin followed by thermolysin. The fragments were isolated by RP-HPLC and were identified by sequence analysis and MALDI-TOF mass spectrometry. The three disulfides were unambiguously identified in either proteolytic digest: Cys3 to Cys35, Cys12 to Cys28 and Cys17 to Cys32. The Cys3-Cys35 disulfide, linking the amino- and carboxyl-termini, defines the characteristic cyclic structure of the molecule. A similar disulfide pairing motif is found in the snake venom-derived potassium channel blocker dendrotoxin and the mammalian antibiotic peptide defensins.  相似文献   

19.
Chang J  Bulychev A  Li L 《FEBS letters》2000,487(2):298-300
A predominant conformational isomer of non-native alpha-lactalbumin (alpha-LA) has been purified by thermal denaturation of the native alpha-LA using the technique of disulfide scrambling. This unique isomer retains a substantial content of alpha-helical structure. It is stabilized by two native disulfide bonds within the alpha-helical domain and two scrambled non-native disulfide bonds at the beta-sheet domain. This denatured isomer of alpha-LA exhibits structural characteristics that are consistent with the well-documented molten globule state. The ability to prepare a stabilized and structurally defined molten globule provides a useful model for studying the folding and unfolding pathways of proteins.  相似文献   

20.
The crucial step of folding of recombinant proteins presents serious challenges to obtaining the native structure. This problem is exemplified by insulin‐like growth factor (IGF)‐I which when refolded in vitro produces the native three‐disulfide structure, an alternative structure with mispaired disulfide bonds and other isomeric forms. To investigate this phenomenon we have examined the refolding properties of an analog of IGF‐I which contains a 13‐amino acid N‐terminal extension and a charge mutation at position 3 (Long‐ [Arg3]IGF‐I). Unlike IGF‐I, which yields 45% of the native structure and 24% of the alternative structure when refolded in vitro, Long‐[Arg3]GF‐I yields 85% and 10% of these respective forms. To investigate the interactions that affect the refolding of Long‐[Arg3]IGF‐I and IGF‐I, we acid‐trapped folding intermediates and products for inclusion in a kinetic analysis of refolding. In addition to non‐native intermediates, three native‐like intermediates were identified, that appear to have a major role in the in vitro refolding pathway of Long‐[Arg3]IGF‐I; a single‐disulfide Cys18–Cys61 intermediate, an intermediate with Cys18–Cys61 and Cys6–Cys48 disulfide bonds and another with Cys18–Cys61 and Cys47–Cys52 disulfide bonds. Furthermore, from our kinetic analysis we propose that the Cys18‐Cys61, Cys6‐Cys48 intermediate forms the native structure, not by the direct formation of the last (Cys47‐Cys52) disulfide bond, but by rearrangement via the Cys18–Cys61 intermediate and a productive Cys18–Cys61, Cys47–Cys52 intermediate. In this pathway, the last disulfide bond to form involves Cys6 and Cys48. Finally, we apply this pathway to IGF‐I and conclude that the divergence in the in vitro folding pathway of IGF‐I is caused by non‐native interactions involving Glu3 that stabilize the alternative structure. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 62: 693–703, 1999.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号