首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
A method for quantitative determination of acidic phospholipids by thin-layer chromatography (TLC) followed by densitometry is described. The total lipids were separated into neutral and acidic fractions by DEAE-Sephadex column chromatography. A clear-cut separation of acidic phospholipids was achieved by high-performance TLC with a solvent system of chloroform/acetone/acetic acid/formic acid/water (60/60/4/10/3). Each phospholipid band was quantitated by densitometry with the use of an internal standard. The lipid compositions of sheep and mouse erythrocytes and of rat liver and kidney were determined by the present method.  相似文献   

2.
The binding of H+ to troponin C induces a large conformational change and an enhancement of the tyrosyl fluorescence. Carboxyl groups with abnormal pK' values of 6.0 appear to be controlling these changes.  相似文献   

3.
A method for the isolation of the RNA portion of RNA-linked DNA fragments has been developed. The method capitalizes on the selective degradation of DNA by the 3′ to 5′ exonuclease associated with bacteriophage T4 DNA polymerase. After hydrolysis of the DNA portion, the RNA of RNA-linked DNA is recovered mostly as RNA tipped with a deoxyribomononucleotide and a small fraction as pure RNA. On the other hand, the 5′ ends of RNA-free DNA are recovered mostly as dinucleotides and a small fraction as mononucleotides.Using this method, we have isolated the primer RNA for T4 phage DNA synthesis. Nascent short DNA pieces were isolated from T4 phage-infected Escherichia coli cells and the 5′ ends of the pieces were dephosphorylated and then phosphorylated with polynucleotide kinase and [γ-32P]ATP. After selective degradation of the DNA portions, [5′-32P]oligoribonucleotides (up to pentanucleotide) were obtained with covalently bound deoxymononucleotides at their 3′ ends. More than 40% of the oligoribonucleotides isolated were pentanucleotides with pApC at the 5′-terminal dinucleotide. The 5′-terminal nucleotide of the tetraribonucleotides was AMP, but that of the shorter chains was not unique. The pentanucleotide could represent the intact primer RNA for T4 phage DNA synthesis.  相似文献   

4.
We have determined the nucleotide sequence of a secondary λ attachment site in proAB, a site that accounts for 3% of lysogens isolated from Escherichia coli strains deleted for the primary site. Direct sequence analysis of the transducing bacteriophages carrying the left and right att junctions, as well as the recombinant pro+ phage reveals that the proAB site shares an 11-nucleotide interrupted homology with the core sequence of the primary site. We have compared the proABatt site with other secondary attachment sites to gain insights into the structural features important for λ integration.  相似文献   

5.
The ssb-1 gene encoding a mutant Escherichia coli single-stranded DNA-binding protein has been cloned into plasmid pACYC184. The amount of overproduction of the cloned ssb-1 gene is dependent upon its orientation in the plasmid. In the less efficient orientation, 25-fold more mutant protein is produced than in strains carrying only one (chromosomal) copy of the gene: the other orientation results in more than 60-fold overproduction of this protein. Analysis of the effects of overproduction of the ssb-1 encoded protein has shown that most of the deficiencies associated with the ssb-1 mutation when present in single gene copy, including temperature-sensitive conditional lethality and deficiencies in amplified synthesis of RecA protein and ultraviolet light-promoted induction of prophage λ+, are reversed by increased production of ssb-1 mutant protein. These results provide evidence in vivo that SSB protein plays an active role in recA-dependent processes. Homogenotization of a nearby genetic locus (uvrA) was identified in the cloning of the ssb-1 mutant gene. This observation has implications in the analysis of uvrA? mutant strains and will provide a means of transferring ssb? mutations from plasmids to the chromosome. On a broader scale, the observation may provide the basis of a general strategy to transfer mutations between plasmids and chromosomes.  相似文献   

6.
Catabolite repression is not involved in the regulation of catalase gene expression. The presence of glucose in minimal salts media and LB medium did not affect the basal levels of catalase but did enhance catalase synthesis following induction with either hydrogen peroxide or ascorbate. The cofactor for catabolite gene activator protein, cAMP, did not affect either the basal levels or the rate or extent of catalase synthesis. Catalase synthesis occurred normally in an adenylate cyclase mutant where β-galactosidase, a catabolite-sensitive enzyme was not synthesized.  相似文献   

7.
Transcriptional control of IS1 transposition in Escherichia coli   总被引:5,自引:0,他引:5  
  相似文献   

8.
Native methionyl-tRNA synthetase from Escherichia coli (a dimer of molecular weight 172,000) can be converted by mild proteolysis into a well-defined monomeric fragment of molecular weight 64,000. This fragment retains full specificity towards methionine and tRNAMet, and has unimpaired activity in both the activation and aminoacylation reactions.This paper describes the structure of the active fragment, as determined by an X-ray crystallographic study at 2.5 Å resolution using five heavy-atom derivatives. The elongated molecule (90 Å × 52 Å × 44 Å) contains several α-helices, which account for 43% of the residues. Three domains can be distinguished in the structure: (1) a central core beginning at the N-terminus, consisting of a five-stranded parallel pleated sheet with α-helices connecting the β-strands; (2) a second domain with less-ordered structure, inserted between the third and fourth strand of the central sheet; (3) a C-terminal domain, beginning after the fifth parallel strand, very rich in α-helices.These three domains are organized in a biglobular structure; one globule contains the first and the second domain (N-terminal globule), the other the third domain. The two globules, linked together by a single chain, are separated by a large cleft.The most salient feature of the structure is the presence, in the N-terminal domain, of a “nucleotide binding fold” similar to that first observed in dehydrogenases. This makes methionyl-tRNA synthetase, and possibly all aminoacyl-tRNA synthetases, a new member of this family of nucleotide binding proteins possessing the characteristic “Rossmann fold”.  相似文献   

9.
On the basis of the observation that dnaA protein binds preferentially to DNA fragments carrying the Escherichia coli chromosomal replication origin (oriC), the binding sites were investigated by DNase I footprinting. As a result, three strong binding sites were identified in the minimal oriC sequence. The respective binding sites were 16 to 17 base-pairs long, and contained a common sequence (5') T-G-T-G-(G/T)-A-T-A-A-C (3') in the middle, although their polarities were not the same. Since mutants defective in function for autonomous replication have been isolated in the corresponding positions of the common sequence at each binding site, dnaA protein-binding at these sites seems to be significant for replication initiation.  相似文献   

10.
The co-operative interaction of 30 S ribosomal subunit proteins S6, S8, S15 and S18 with 16 S ribosomal RNA from Escherichia coli was studied by (1) determining how the binding of each protein is influenced by the others and (2) characterizing a series of protein-rRNA fragment complexes. Whereas S8 and S15 are known to associate independently with the 16 S rRNA, binding of S18 depended upon S8 and S15, and binding of S6 was found to require S8, S15 and S18. Ribonucleoprotein (RNP) fragments were derived from the S8-, S8/S15- and S6/S8/S15/S18-16 S rRNA complexes by partial RNase hydrolysis and isolated by electrophoresis through Mg2+-containing polyacrylamide gels or by centrifugation through sucrose gradients. Identification of the proteins associated with each RNP by gel electrophoresis in the presence of sodium dodecyl sulfate demonstrated the presence of S8, S8 + S15 and S6 + S8 + S15 + S18 in the corresponding fragment complexes. Analysis of the rRNA components of the RNP particles confirmed that S8 was bound to nucleotides 583 to 605 and 624 to 653, and that S8 and S15 were associated with nucleotides 583 to 605, 624 to 672 and 733 to 757. Proteins S6, S8, S15 and S18 were shown to protect nucleotides 563 to 605, 624 to 680, 702 to 770, 818 to 839 and 844 to 891, which span the entire central domain of the 16 S rRNA molecule (nucleotides 560 to 890). The binding site for each protein contains helical elements as well as single-stranded internal loops ranging in size from a single bulged nucleotide to 20 bases. Three terminal loops and one stem-loop structure within the central domain of the 16 S rRNA were not protected in the four-protein complex. Interestingly, bases within or very close to these unprotected regions have been shown to be accessible to chemical and enzymatic probes in 30 S subunits but not in 70 S ribosomes. Furthermore, nucleotides adjacent to one of the unprotected loops have been cross-linked to a region near the 3' end of 16 S rRNA. Our observations and those of others suggest that the bases in this domain that are not sequestered by interactions with S6, S8, S15 or S18 play a role involved in subunit association or in tertiary interactions between portions of the rRNA chain that are distant from one-another in the primary structure.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Under the balanced condition of growth of E. coli cells, no distinct difference is observed in stable RNA and protein synthesis between CP78 (rel+) and CP79 (rel), whereas a considerable difference is present in RNA accumulation between NF161 (rel+) and NF162 (rel), where NF161 < NF162. The RNA content of NF161 is lower than that of NF162 in four different cultures with different growth rates. These two sets of isogenic pairs of rel+ and rel strains are commonly used in the study of rel gene function; however, NF161 is a mutant in the spoT gene whose product may be responsible for the degradation of ppGpp. The basal levels of ppGpp in these four strains growing with three different growth rates were examined: NF161 (rel+spoT) has a much higher content of ppGpp than do other strains. Furthermore, the contents of ppGpp tend to be lower when the above four strains are growing at a faster rate. Thus a close correlation seems to exist between the content of RNA and the basal level of ppGpp under the condition of balanced growth.  相似文献   

12.
The nascent DNA synthesized by permeable cells of Bacillus subtilis in the presence of 5'-mercurideoxycytidine triphosphate and 2',3'-dideoxyATP has been isolated and characterized. The newly synthesized DNA was isolated free from other cellular nucleic acids by affinity chromatography on thiol-substituted agarose. The number average chain length of the nascent DNA synthesized in one minute at 25 degrees C was 33 nucleotide residues, due to the chain-terminating action of 2',3'-dideoxyATP. Several lines of evidence indicated that at least 90% of the DNA thus isolated carried a terminally phosphorylated RNA moiety at its 5'-end: (1) the nascent DNA was resistant to exonucleolytic degradation by spleen phosphodiesterase unless first hydrolyzed by strong alkali or ribonuclease; (2) the 5'-termini of nascent DNA could not be phosphorylated by polynucleotide kinase unless first treated with alkaline phosphatase or subjected to hydrolysis by strong alkali or ribonuclease; (3) alkaline hydrolysis of nascent DNA labeled with 32P at the 5'-end released unlabeled DNA with a free 5'-terminus and 32P-labeled ribonucleoside 3',5'-bisphosphates; (4) ribonuclease degradation of similarly labeled material produced an unlabeled DNA-containing polynucleotide fraction and 32P-labeled ribo-oligonucleotides; (5) chromatography on dihydroxyboryl cellulose showed that the RNA moiety lacked a 3'-terminal cis-diol grouping (even after treatment with alkaline phosphatase) unless first subjected to the 3'-exonucleolytic action of bacteriophage T4 DNA polymerase. The sequence of the ribonucleotide chains was elucidated by end-group labeling with polynucleotide kinase and digestion with various ribonucleases. The ribonucleotide moiety was primarily three and four residues in length with the predominant sequence (pp)pApG(pC)1-2pDNA. The possibility that it represents a primer for discontinuous DNA synthesis is discussed.  相似文献   

13.
Results presented indicate that two distinct essential sulfhydryl residues are present in the Escherichia coli B glycogen synthase. One residue is modified by iodoacetic acid and can be protected by ADP or ADPglucose. The other site can be modified by 5,5′-dithiobis (2-nitrobenzoic acid) and is protected by glycogen. Each reagent appears to be specific for a given site and thus allows the two sites to be distingushed.  相似文献   

14.
The structure of alkaline phosphatase from Escherichia coli has been determined to 2.8 A resolution. The multiple isomorphous replacement electron density map of the dimer at 3.4 A was substantially improved by molecular symmetry averaging and solvent flattening. From these maps, polypeptide chains of the dimer were built using the published amino acid sequence. Stereochemically restrained least-squares refinement of this model against native data, starting with 3.4 A data and extending in steps to 2.8 A resolution, proceeded to a final overall crystallographic R factor of 0.256. Alkaline phosphatase-phosphomonoester hydrolase (EC 3.1.3.1) is a metalloenzyme that forms an isologous dimer with two reactive centers 32 A apart. The topology of the polypeptide fold of the subunit is of the alpha/beta class of proteins. Despite the similarities in the overall alpha/beta fold with other proteins, alkaline phosphatase does not have a characteristic binding cleft formed at the carboxyl end of the parallel sheet, but rather an active pocket that contains a cluster of three functional metal sites located off the plane of the central ten-stranded sheet. This active pocket is located near the carboxyl ends of four strands and the amino end of the antiparallel strand, between the plane of the sheet and two helices on the same side. Alkaline phosphatase is a non-specific phosphomonoesterase that hydrolyzes small phosphomonoesters as well as the phosphate termini of DNA. The accessibility calculations based on the refined co-ordinates of the enzyme show that the active pocket barely accommodates inorganic phosphate. Thus, the alcoholic or phenolic portion of the substrate would have to be exposed on the surface of the enzyme. Two metal sites, M1 and M2, 3.9 A apart, are occupied by zinc. The third site, M3, 5 A from site M2 and 7 A from site M1, is occupied by magnesium or, in the absence of magnesium, by zinc. As with other zinc-containing enzymes, histidine residues are ligands to zinc site M1 (three) and to zinc site M2 (one). Ligand assignment and metal preference indicate that the crystallographically found metal sites M1, M2 and M3 correspond to the spectroscopically deduced metal sites A, B and C, respectively. Arsenate, a product analog and enzyme inhibitor, binds between Ser102 and zinc sites M1 and M2. The position of the guanidinium group of Arg 166 is within hydrogen-bonding distance from the arsenate site.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
The hydrolysis of several aminoacylated transfer RNAs, by double-strand-specific ribonuclease from Naja oxiana was studied. The sensitivity to this enzyme of Phe-tRNAPhe, Glu-tRNAGlu and Met-tRNAmMet from Escherichia coli and Phe-tRNAPhe from yeast was examined, both in the free state and complexed to E. coli elongation factor Tu. The hydrolysis patterns in the isolated state were similar for all aminoacylated tRNAs except Glu-tRNA2Glu, which exhibited striking differences probably arising from the existence of several subpopulations of tRNA2Glu. When engaged in a ternary complex with EF-Tu and GTP, the aminoacyl-tRNAs were efficiently protected in the amino acid acceptor and TΨC helices, showing that the interaction with EF-Tu primarily takes place at the -C-C-A end and at the amino acid acceptor and TΨC helices. In all cases an increased reactivity of the anticodon stem was observed in the complexed tRNA, possibly resulting from a conformational change in this region of the tRNAs.  相似文献   

16.
17.
The kinetics of formation and of dissociation of open complexes (RPo) between Escherichia coli RNA polymerase (R) and the lambda PR promoter (P) have been studied as a function of temperature in the physiological range using the nitrocellulose filter binding assay. The kinetic data provide further evidence for the mechanism R + P in equilibrium I1 in equilibrium I2 in equilibrium RPo, where I1 and I2 are kinetically distinguishable intermediate complexes at this promoter which do not accumulate under the reaction conditions investigated. The overall second-order association rate constant (ka) increases dramatically with increasing temperature, yielding a temperature-dependent activation energy in the range 20 kcal (near 37 degrees C) to 40 kcal (near 13 degrees C) (1 kcal = 4.184 kJ). Both isomerization steps (I1----I2 and I2----RPo) appear to be highly temperature dependent. Except at low temperatures (less than 13 degrees C) the step I1----I2, which we attribute to a conformational change in the polymerase with a large negative delta Cp degrees value, is rate-limiting at the reactant concentrations investigated and hence makes the dominant contribution to the apparent activation energy of the pseudo first-order association reaction. The subsequent step I2----RPo, which we attribute to DNA melting, has a higher activation energy (in excess of 100 kcal) but only becomes rate-limiting at low temperature (less than 13 degrees C). The initial binding step R + P in equilibrium I1 appears to be in equilibrium on the time-scale of the isomerization reactions under all conditions investigated; the equilibrium constant for this step is not a strong function of temperature and is approximately 10(7) M-1 under the standard ionic conditions of the assay (40 mM-Tris . HCl (pH 8.0), 10 mM-MgCl2, 0.12 M-KC1). The activation energy of the dissociation reaction becomes increasingly negative at low temperatures, ranging from approximately -9 kcal near 37 degrees C to -30 kcal near 13 degrees C. Thermodynamic (van't Hoff) enthalpies delta H degrees of open complex formation consequently are large and temperature-dependent, increasing from approximately 29 to 70 kcal as the temperature is reduced from 37 to 13 degrees C. The corresponding delta Cp degrees value is approximately -2.4 kcal/deg. We propose that this large negative delta Cp degrees value arises primarily from the burial of hydrophobic surface in the conformational change (I1 in equilibrium I2) in RNA polymerase in the key second step of the mechanism.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
A strong correlation exists between the relative frequencies of occurrence of the amino acids in bulk Escherichia coli protein and their genetic map positions when the latter are indexed against the position of the origin of DNA synthesis. The greater the production of the amino acid, the closer its operon is to the origin.  相似文献   

19.
20.
Three initiation factors (IF1, IF2, and IF3) have been highly purified from Escherichia coli and extensively characterized, but little is known about the molecular forms of these proteins as they occur in vivo. We have analyzed molecular-weight and charge forms in crude cell lysates by polyacrylamide gel electrophoresis followed by immunoblotting with antibodies specific for the initiation factors. Freshly grown bacterial cells were lysed by sonication in buffer containing sodium dodecyl sulfate, and the lysate was fractionated by gel electrophoresis. Proteins from the gel were electrotransferred to a nitrocellulose sheet which was treated with a specific rabbit antiserum followed by radiolabeled Staphylococcus aureus protein A. Autoradiography showed only one major band each for IF1 and IF3, exactly corresponding to the isolated factors. For IF2, two molecular-weight forms were detected which were identical with purified IF2a and IF2b. No evidence for precursor forms was found. Two-dimensional gel analysis showed no charge heterogeneity for IF1, IF2a, and IF3, but multiple forms were seen for IF2b. Analysis of phosphoproteins from cells grown in radioactive phosphate medium ruled out the possibility that phosphorylation occurs on the initiation factors, elongation factors, or ribosomal proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号