首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on experiments on agarose gels and tissue, a procedure has been developed which greatly improves the sensitivity and the specifity of the Kossa method for demonstrating calcium in tissue. Tissue calcium is immobilized by acetonic oxalic acid, which simultaneously removes the other sorts of anions capable of precipitating silver ions (e.g. phosphate, carbonate). The resulting submicroscopic grains of calcium oxalate are converted first into silver oxalate then into metallic silver by a treatment with silver nitrate followed by an ultra-violet irradiation (Kossa reaction). These submicroscopic metallic silver grains are enlarged up to microscopic visibility by means of physical development, which makes the staining highly sensitive. Co-staining of the argyrophil sites in the tissue is totally suppressed by various tricks, which render the silver staining selective for calcium.  相似文献   

2.
In an attempt to establish the exact location of calcium within the preacetabular glands of cercariae of Schistosoma mansoni, these larvae were exposed to reagents (potassium oxalate, potassium pyroantimonate, chloranilic acid, and silver nitrate) useful in the detection of calcium, and were subsequently observed with the aid of light and electron microscopes. Cercariae incubated in potassium oxalate and viewed in polarized light showed birefringence only in the preacetabular gland funduses. At the ultrastructural level, the preacetabular glands of potassium oxalate-treated cercariae had no electron-dense precipitate, but instead had translucent, irregularly shaped inclusions, similar to spaces left by volatilized calcium oxalate as described by others. Pyroantimonate treatment, on the other hand, localized the reaction in the electron-lucent areas of the light-spotted granules. The von Kossa silver nitrate procedure destroyed the secretory granules; therefore, an electron-dense precipitate was distributed throughout the gland. However, pretreatment with chloranilic acid before fixation preserved the granules, and subsequent exposure to the von Kossa silver nitrate gave a reaction identical to that obtained with the pyroantimonate alone. When viewed in polarized light, chloranilic acid-incubated cercariae showed birefringence in the fundus and duct areas.  相似文献   

3.
Summary The effect of time on the formation of metallic silver by tissue reducing groups follows a curve which can be devided into three main parts. In the first, which may last for several hours, the reaction is very slow, and only an undetectably small amount of metallic silver is produced. In the second period the speed of the reaction first increases in a progressive manner and then begins to decrease gradually; during the third period the speed approaches zero asymptotically. Binding of the silver ions by the tissue commences initially at its fastest rate; the level then decreases steadily to zero within about a quarter of an hour. There is no direct relationship between the amount of silver ion bound to the tissue and the formation of metallic silver. The latter cannot take place by way of direct (non-catalysed) reaction. The following mechanism is proposed for the process: Transfer of electrons from the reducing molecules to the silver ions is mediated at first by certain tissue sites (catalytic points) and then also by the steadily increasing total surface area of the metallic silver grains (autocatalysis). On the basis of this mechanism, several anomalies of both the argentaffin and argyrophil reactions are explained.  相似文献   

4.
The effect of time on the formation of metallic silver by tissue reducing groups follows a curve which can be divided into three main parts. In the first, which may last for several hours, the reaction is very slow, and only an undetectably small amount of metallic silver is produced. In the second period the speed of the reaction first increases in a progressive manner and then begins to decrease gradually; during the third period the speed approaches zero asymptotically. Binding of the silver ions by the tissue commences initially at its fastest rate; the level then decreases steadily to zero within about a quarter of an hour. There is no direct relationship between the amount of silver ion bound to the tissue and the formation of metallic silver. The latter cannot take place by way of direct (non-catalysed) reaction. The following mechanism is proposed for the process: Transfer of electrons from the reducing molecules to the silver ions is mediated at first by certain tissue sites (catalytic points) and then also by the steadily increasing total surface area of the metallic silver grains (autocatalysis). On the basis of this mechanism, several anomalies of both the argentaffin and argyrophil reactions are explained.  相似文献   

5.
Physico-chemical mechanism of the argyrophil III reaction   总被引:1,自引:0,他引:1  
Summary Because there are several points of physico-chemical similarity between the argyrophil I reaction (formation of metallic silver grains by reducing groups of the tissue) and the argyrophil III reaction (formation of metallic silver grains by reducing groups existing in a dissolved state) a similarity between their mechanisms is also assumed. The electrochemical half processes of the argyrophil III reaction (i.e. the transformation of tissue-adsorbed reducing molecules into their oxidized form, and the reduction of silver ions to silver atoms) take place separately in space, while the electrons released in the former half reaction are transported by the semiconduction bands of the tissue to the catalytic points where the metallic silver grains are forming.  相似文献   

6.
Gel based silver staining of proteins is thought to occur by selective reduction of silver ions to insoluble metallic silver at specific initiation sites in the vicinity of the protein molecules. Silver stained protein bands generally are dark brown or black with considerable variation in color intensity. The color variation has been attributed to diffractive scattering by silver grains of different sizes. Our experiments, however, demonstrate that color variation is due to the formation of silver chromate deposits that are incorporated into formalin fixed proteins. Understanding the mechanism of silver staining is essential for developing a method for protein quantification.  相似文献   

7.
Summary The classical von Kossa method has been modified: the high silver nitrate concentration in the original was replaced by 0.05% silver lactate with hydroquinone remaining the reducing agent of choice. The present modification stained calcification nodules with a sensitivity comparable to the original von Kossa reaction, but resulted in a reduced background staining in cultured osteoblasts. The method works well also with plastic- or paraffin-embedded tissue sections.  相似文献   

8.
摘要 目的:探究萝卜硫素通过Nrf2信号通路对大鼠草酸钙肾结石形成的作用和机制。方法:选取7~8周龄Wistar健康雄性大鼠30只,随机分为空白对照组、模型组和药物干预组。空白对照组给予正常饮用水,标准饲料;模型组给予1%乙二醇饮用水+2%氯化铵2 mL/d灌胃,标准饲料;药物干预组给予1%乙二醇饮用水+2%氯化铵2 mL/d灌胃+0.2 mg萝卜硫素腹腔注射,标准饲料。灌胃给药均连续28天。于第29天收分别集各组大鼠24 h尿液及肾脏标本,使用全自动生化分析仪检测尿液中K+、Na+、Cl+、Ca2+、Mg2+、P5+、Fe2+含量,使用ELISA法测定尿液中丙二醛( malondialdehyde,MDA)与草酸水平,使用HE染色分析大鼠肾脏标本病理损伤情况,Von Kossa染色比较各组大鼠钙盐沉积情况,免疫组化法测定谷胱甘肽(glutathione,GSH)、核因子E2相关因子2(nuclear factor erythroid-2 related factor 2,Nrf2)、8-羟基脱氧鸟苷(8-hydroxy-2 deoxyguanosine,8-OHDG)蛋白表达水平。结果:模型组大鼠尿液P5+、Ca2+、草酸、MDA含量显著高于空白对照组,HE染色示模型组肾小管较空白对照组变性严重,Von Kossa染色结果显示模型组钙盐沉积较空白对照组明显增多,模型组GSH、Nrf2免疫组化评分显著低于空白对照组,8-OHdG显著高于空白对照组,差异均有统计学意义(P<0.05);药物干预组大鼠尿液P5+、Ca2+、草酸、MDA含量显著低于模型组,HE染色、Von Kossa染色显示肾小管较模型组损伤减轻,钙盐沉积较模型组减轻,免疫组化显示GSH、Nrf2蛋白表达显著高于模型组,8-OHdG显著低于空白对照组,差异均有统计学意义(P<0.05)。结论:萝卜硫素对大鼠肾小管具有抗氧化损伤作用,可降低草酸钙晶体的释放,抑制草酸钙结石的形成,该作用可能是通过激活Nrf2蛋白及其下游信号通路实现的。  相似文献   

9.
Physico-chemical mechanism of the argyrophil I reaction   总被引:2,自引:0,他引:2  
Summary Kinetic experiments have shown that the argyrophil I reaction (the formation of metallic from ionic silver by reducing groups of the tissues) is a catalytic process. Topochemical considerations, and several reaction kinetic observations, suggest that the semi-conductor properties and the favourable chemical structure of certain sites (catalytic points) of the tissue structure play a fundamental role in the catalysis. The electrochemical half processes in the argyrophil I reaction (i.e., the transformation of tissue-bound reducing groups into their oxidized form and the reduction of silver ions into silver atoms) take place separately in space, while the electrons released in the former half reaction are transported by the semi-conduction bands of the tissue to the catalytic points where the metallic silver grains are formed.  相似文献   

10.
Factors influencing the consistency and specificity of the staining of neuronal degeneration products were studied in brain sections by varying systematically the composition of solutions used in the steps which are common to the degeneration methods. The formation of nuclei of metallic silver was determined either by physical development of 110Ag, after dissolving reducible silver by acetic acid. In degenerating axons metallic silver nucleic are formed by their own reducing groups in the first (acid) and in the second (alkaline) impregnating bath. The first impregnation turned out to be sufficient to produce complete staining of degenerating axons. The reducing capacity of normal axons and myelin can be suppressed by oxidation or by lowering the pH of the impregnating solution. Degenerating axon terminals are not able to reduce silver ions in either of the impregnating baths. Rather, the metallic silver nuclei initiating their staining are formed in the Nauta reducer by interaction of its reducing agent (formol) with silver ions which had been trapped in the tissue during the impregnation. Thus the nuclei are enlarged to microscopic visibility by a nonstandardized physical developer coming about from the Nauta reducer and the silver ions transferred with the sections. In this reaction catalytic sites in degenerating terminals as well as ammonium ions and the alkali reserve of the tissue play an important role. On the basis of the present results it was possible to stabilize the conditions for staining degenerating axons and degenerating axons terminals in two separate staining procedures detailed in following papers.  相似文献   

11.
F Gallyas 《Histochemistry》1982,74(3):393-407
Kinetic experiments have shown that the argyrophil I reaction (the formation of metallic from ionic silver by reducing groups of the tissues) is a catalytic process. Topochemical considerations, and several reaction kinetic observations, suggest that the semi-conductor properties and the favourable chemical structure of certain sites (catalytic points) of the tissue structure play a fundamental role in the catalysis. The electrochemical half processes in the argyrophil I reaction (i.e., the transformation of tissue-bound reducing groups into their oxidized form and the reduction of silver ions into silver atoms) take place separately in space, while the electrons released in the former half reaction are transported by the semi-conduction bands of the tissue to the catalytic points where the metallic silver grains are formed.  相似文献   

12.
This report presents a method which can be used for counterstaining semithin sections of plastic embedded tissue. The sections are treated with a solution of silver lactate, followed by physical development. During the silver lactate treatment, silver ions are bound by various tissue components as metallic silver or silver sulfide. During physical development catalytic reduction of silver ions to metallic silver takes place where silver has been bound in the tissue, enlarging the silver deposits to microscopically visible dimensions. The amplified silver deposits give high contrast staining in yellow, brown and black suitable for both color and monochrome photography. The localization of the silver deposits is highly specific and may reflect several independent chemical processes. Examples in several tissues are shown.  相似文献   

13.
This report presents a method which can be used for counterstaining semithin sections of plastic embedded tissue. The sections are treated with a solution of silver lactate, followed by physical development. During the silver lactate treatment, silver ions are bound by various tissue components as metallic silver or silver sulfide. During physical development catalytic reduction of silver ions to metallic silver takes place where silver has been bound in the tissue, enlarging the silver deposits to microscopically visible dimensions. The amplified silver deposits give high contrast staining in yellow, brown and black suitable for both color and monochrome photography. The localization of the silver deposits is highly specific and may reflect several independent chemical processes. Examples in several tissues are shown.  相似文献   

14.
Factors influencing the consistency and specificity of the staining of neuronal degeneration products were studied in brain sections by varying systematically the composition of solutions used in the steps which are common to the degeneration methods. The formation of nuclei of metallic silver was determined either by physical development or 110Ag, after dissolving reducible silver by acetic acid. In degenerating axons metallic silver nuclei are formed by their own reducing groups in the first (acid) and in the second (alkaline) impregnating bath. The first impregnation turned out to be sufficient to produce complete staining of degenerating axons. The reducing capacity of normal axons and myelin can be suppressed by oxidation or by lowering the pH of the impregnating solution. Degenerating axon terminals are not able to reduce silver ions in either of the impregnating baths. Rather, the metallic silver nuclei initiating their staining are formed in the Nauta reducer by interaction of its reducing agent (formol) with silver ions which had been trapped in the tissue during the impregnation. Thus the nuclei are enlarged to microscopic visibility by a nonstandardized physical developer coming about from the Nauta reducer and the silver ions transferred with the sections. In this reaction catalytic sites in degenerating terminals as well as ammonium ions and the alkali reserve of the tissue play an important role. On the basis of the present results it was possible to stabilize the conditions for staining degenerating axons and degenerating axon terminals in two separate staining procedures detailed in following papers.  相似文献   

15.
Summary A study of the mechanisms involved in silver staining of blood vessels has been performed on the rabbit and rat aorta and vena cava, both in fixed and unfixed states. Pretreatment with cationic detergents, organic solvents, and solutions containing free iodide ions inhibited the silver staining. Anionic or neutral detergents, oxidizing agents, binders of such ions as Ca++, Mg++ and SO 4 - failed to inhibit the staining. Staining of the intercellular gaps between endothelial cells and between smooth muscle cells could also be obtained if vessels were treated with a cationic detergent and bromocresol green, or by a modified Hale's colloidal iron technique. Silver lines could be returned to dechlorinated vessels, if treated with sodium chloride before silver nitrate staining, but not vice versa; by an extended treatment with dilute silver nitrate or with gold chloride following normal silver nitrate staining; and by treatment with heparin prior to silver staining. Dark chamber experiments have demonstrated that a photographic developer can take the place of light in the silver staining procedure and that a photographic fixer has the same effect on vessel silver staining as dechlorination.The obtained results have led to the hypothesis that silver staining of vessels occurs in two stages. In the first silver ions from silver nitrate are bound by polyanions located primarily in the intercellular gaps, and then reduced. This produces a network of reduced silver grains which, however, are still too sparsely aggregated to be visualized. Chloride ions in the tissues also bind and precipitate silver ions preventing their removal in subsequent rinsing procedures. In the second stage light (or a photographic developer) reduces the silver ions in silver chloride, producing a visible accumulation of metallic silver, but only around the silver grains reduced during the first stage, analogous to the photographic process.The possible existence and function of an intercellular cement substance is discussed in light of the evidence for the presence of polyanionic groups in the intercellular gaps.  相似文献   

16.
A method for light and electron microscopic demonstration of mercury sulfides and mercury selenides in mammalian tissue is presented. Silver ions adhering to the surface of submicroscopic traces of mercury sulfides or selenides in the tissue are reduced to metallic silver by hydroquinone. Physical development thereupon renders deposits of mercury sulfides or mercury selenide visible as spheres of solid silver. Examples of localization of mercury in the central nervous system and various organs from animals exposed to mercury chloride or methyl mercury chloride with or without additional sodium selenide treatment are presented. Selenium treatment results in a considerable increase in the amount of mercury that can be made visible by silver amplification. After mercury chloride treatment, most of the mercury is localized in lysosomes and is only rarely seen in secretory granules. After simultaneous selenium treatment, mercury is also found in nuclei of proximal tubule cells in the kidney and in macrophages. The "sulfide-osmium" method for ultrastructural localization of mercury suggested by Silberberg, Lawrence, and Leider (Arch Environ Health 19:7, 1969) and the light microscopic method using a photographic emulsion suggested by Umeda, Saito, and Saito (Jpn J Exp Med 39:17, 1969) have been experimentally analyzed and commented on.  相似文献   

17.
Crystals of calcium oxalate in pathological material and artificially precipitated in the absence or presence of citric acid in gelatin models were examined by polarized light and treated with silver nitrate under a variety of conditions. It was found that the intensity of the staining reaction was largely proportional to the strength of the silver solution, and was enhanced in in vitro studies by the presence of citric acid. Staining was also influenced by the crystal form, which was itself related to the absence or presence of citric acid.  相似文献   

18.
Ag staining was applied on interphasic nucleoli of Zea mays root cells 120h after germination. We applied the two-step Ag-NOR staining technique to small root fragments and the one-step technique to sections of Lowicryl-embedded tissue. The small-sized silver grains were mainly located in the dense fibrillar component (DFC). The unstained fibrillar centers (FCs) differed in their proteinic contents from the NOR (which is positively silver stained) and were not the interphasic NOR counterpart.  相似文献   

19.
ULTRASTRUCTURE OF SARCOPLASMIC RETICULUM PREPARATIONS   总被引:11,自引:7,他引:4       下载免费PDF全文
Fragmented sarcoplasmic reticulum (FSR) from rabbit muscle was examined by positive staining, negative staining, and freeze-etch electron microscopic techniques in the absence and presence of calcium transport conditions. The existence of 30–40 A particles covering the outer surface of FSR vesicles was confirmed by two different negative stains in unfixed, glutaraldehyde-fixed and osmium tetroxide-fixed material. Freeze-etch microscopy revealed a second type of particle, 80–90 A in diameter, on the fractured surfaces of FSR vesicles. Following calcium oxalate accumulation, negative and positive staining techniques provided evidence for large nodular deposits within FSR vesicles which probably correspond to calcium oxalate crystals and are responsible for increments in turbidity during calcium oxalate accumulation. The most probable configuration of FSR vesicles in solution is spherical. "Tadpole" or tubular configurations were not seen by freeze-etch microscopy, positive staining, or in prefixed negatively stained material.  相似文献   

20.
Rat mesenchymal stem cells (rMSCs) represent a small portion of the cells in the stromal compartment of bone marrow and have the potential to differentiate into bone, cartilage, fat, and fibrous tissue. These mesenchymal progenitor cells were maintained as primary isolates and as subcultured cells in separate closed modular incubator chambers purged with either 95% air and 5% CO(2) (20% or control oxygen) or 5% oxygen, 5% CO(2), and 90% nitrogen (5% or low oxygen). At first passage, some cells from each oxygen condition were loaded into porous ceramic vehicles and implanted into syngeneic host animals in an in vivo assay for osteochondrogenesis. The remaining cells were continued in vitro in the same oxygen tension as for primary culture or were switched to the alternate condition. The first passage cells were examined for in vitro osteogenesis with assays involving the quantification of alkaline phosphatase activity and calcium and DNA content as well as by von Kossa staining to detect mineralization. Cultures maintained in low oxygen had a greater number of colonies as primary isolates and proliferated more rapidly throughout their time in vitro, as indicated by hemacytometer counts at the end of primary culture and increased DNA values for first passage cells. Moreover, rMSCs cultivated in 5% oxygen produced more bone than cells cultured in 20% oxygen when harvested and loaded into porous ceramic cubes and implanted into syngeneic host animals. Finally, markers for osteogenesis, including alkaline phosphatase activity, calcium content, and von Kossa staining, were elevated in cultures which had been in low oxygen throughout their cultivation time. Expression of these markers was usually increased above basal levels when cells were switched from control to low oxygen at first passage and decreased for cells switched from low to control oxygen. We conclude that rMSCs in culture function optimally in an atmosphere of reduced oxygen that more closely approximates documented in vivo oxygen tension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号